Coding challenges

Mohamed Boucetta

Exercise 0.1 A peak of an array is an item array[i] such that array[i] \geq array $[i-1]$ and array[i] \geq array $[i+1]$. Note that the first item array[0] is a peak if array $[0] \geq$ array $[1]$ and the last item array[end] is a peak of array if array[end] \geq array[end-1]. For instance, $L=[2,1,4,3,7,9,10]$ contains three peaks 2, 4, 10.
Build a function which takes an array of integers and returns a peak. Note that an array contains always a peak and can have many peaks.

Solution : There is a brute-force solution which consists in scanning the array and comparing each item array $[i]$ to array $[i-1]$ and array $[i+1]$. This solution has a linear time complexity $O(N)$ and $O(1)$ space complexity. (N is the number of the items in the array).
There is another solution which has time complexity $O(\ln N)$ and $O(1)$ space complexity. The idea is to choose the item array[$\mathrm{N} / 2]$. Then :

1. If $\operatorname{array}[\mathrm{N} / 2] \geq \operatorname{array}[\mathrm{N} / 2-1]$ and $\operatorname{array}[\mathrm{N} / 2] \geq \operatorname{array}[\mathrm{N} / 2+1]$ then $\operatorname{ar}-$ ray[$\mathrm{N} / 2$] is a peak,
2. If array $[\mathrm{N} / 2]<\operatorname{array}[\mathrm{N} / 2-1]$ then you are certain that there is a peak in [array $[0], \ldots$, array $[\mathrm{N} / 2-1]]$ and you apply your function to this array,
3. If array $[\mathrm{N} / 2]<\operatorname{array}[\mathrm{N} / 2+1]$ then you are certain that there is a peak in [array $[\mathrm{N} / 2+1], \ldots$, array $[$ end $]]$ and you apply your function to this array,

It is a recursive algorithm and the base cases are when $N=1$ the function returns the unique item in the array and when $N=2$ the function returns the maximum of the array.

