
Coding challenges

Mohamed Boucetta

Exercise 0.1 Build a function which takes a matrix of integers with n rows
and m columns and returns a matrix with the same rows but sorted by their
sum. For intance if the input is [[0, 1, 2], [1, -1, 0], [7, 8, -9], [0, 3, 1], [0, 2,
-2]], the sum of the first row is 3, 0 for the second row, 6 for the third one, 4
the fourth one and 0 for the last one. So the output is [[1, -1, 0], [0, 2, -2],
[0, 1, 2], [0, 3, 1], [7, 8, -9]].

Solution : We illustrate our solution by taking as input

M = [[0, 1, 2], [1,−1, 0], [7, 8,−9], [0, 3, 1], [0, 2,−2]].

1. First we build a function named sumArray which takes an array and return
the sum of its items.

2. We create two variables. The first one named sumRowsSorted which is
an array with has the same number of items as the number of rows in
our input. The second one named sortedMatrix is a matrix containing the
same number of rows as our input.

sumRowsSorted = [0, 0, 0, 0, 0] and sortedMatrix = [[0], [0], [0], [0], [0]].

3. We insert the sums of the rows of our input in sumRowsSorted :

sumRowsSorted = [3, 0, 6, 4, 0].

4. We sort sumRowsSorted :

sumRowsSorted = [0, 0, 3, 4, 6].

5. We run a for loop with the range from 0 to n− 1 (where n is the number
of rows in our input). For any index i, we compute the sum si of the row
i, we look in sumRowsSorted for the first index j where si appears, we put
the row i in the j index of sortedMatrix and we replace sumRowsSorted[j]
by infinity.

1



6. Return sortedMatrix.

In our example, the for loop goes as follows :

(a) i = 0, s0 = 3. The value 3 appears at j = 2 so

{
sumRowsSorted = [0, 0, infinity, 4, 6],

sortedMatrix = [[0], [0], [0, 1, 2], [0], [0]].

(b) i = 1, s0 = 0. The value 0 appears at j = 0 so

{
sumRowsSorted = [infinity, 0, infinity, 4, 6],

sortedMatrix = [[1,−1, 0], [0], [0, 1, 2], [0], [0]].

(c) i = 2, s0 = 6. The value 6 appears at j = 4 so

{
sumRowsSorted = [infinity, 0, infinity, 4, Infinity],

sortedMatrix = [[1,−1, 0], [0], [0, 1, 2], [0], [7, 8,−9]].

(d) i = 3, s0 = 4. The value 4 appears at j = 3 so

{
sumRowsSorted = [infinity, 0, infinity, infinity, infinity],

sortedMatrix = [[1,−1, 0], [0], [0, 1, 2], [0, 3, 1], [7, 8,−9]].

(e) i = 4, s0 = 0. The value 0 appears at j = 1 so

{
sumRowsSorted = [infinity, infinity, infinity, infinity, infinity],

sortedMatrix = [[1,−1, 0], [0, 2,−2], [0, 1, 2], [0, 3, 1], [7, 8,−9]].

The time complexity is O(NlogN) : the for loop takes N iterations and in
each iteration we look in a sorted array of a value which take logN .
Since we create a matrix, the space complexity is O(pN), where N is the
number of rows and p the number of columns.

2



3


