Coding challenges

Mohamed Boucetta

Exercise 0.1 Build a function which takes a square matrix whose entries are 0, 1 or 2 and returns 1 if there is a row and a column of 1, returns 2 if there is a row and a column of 2 and returns 0 otherwise. For instance

$$
M=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right) N=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right), L=\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 0 \\
2 & 2 & 2
\end{array}\right)
$$

for M the function will return 1, for N the function will return 0 and for L the function will return 2.

Solution : The idea is that if the items of a row (or a column) are all equal to 1 (resp. 2) then the row doesn't contains 0 and the sum of its items is equal to n (resp. $2 n$), where n is the length of the row.
First introduce two functions sumRow and sumColumn. The function sumRow take a matrix and the index of a row and returns -1 if the row contains 0 or the sum of its items otherwise.
We set two counts, count1 and count2 to get, respectively, the number of rows with all items equal to 1 and the number of rows with all items equal to 2 . This is done by the first for loop and by using the remark above.
If count1 $=0$ and count2 $=0$, we return 0 , obviously. If count1 >0 and count2 >0, we are certain that there couldn't be neither a column with all its items equal to 1 or a column with all its items 2 and we return 0 .
If count1 $=0$ and count $2>0$, we look by the mean of a for loop of if there is a column with all its items equal to 2 . We do the same if If count1 >0 and count2 $=0$.
The time complexity is $O\left(N^{2}\right)$ and the space complexity is $O(1)$.

