Coding challenges

Mohamed Boucetta

Exercise 0.1 Build a function which takes a square matriz whose entries
are 0, 1 or 2 and returns 1 if there is a row and a column of 1, returns 2 if
there is a row and a column of 2 and returns 0 otherwise. For instance

111 101 121
M=l102]|N=[102]|,L=|120],
120 120 2 2 2

for M the function will return 1, for N the function will return 0 and for L
the function will return 2.

Solution : The idea is that if the items of a row (or a column) are all equal to
1 (resp. 2) then the row doesn’t contains 0 and the sum of its items is equal to
n (resp. 2n), where n is the length of the row.

First introduce two functions sumRow and sumColumn. The function sumRow
take a matrix and the index of a row and returns -1 if the row contains 0 or the
sum of its items otherwise.

We set two counts, countl and count2 to get, respectively, the number of rows
with all items equal to 1 and the number of rows with all items equal to 2. This
is done by the first for loop and by using the remark above.

If countl = 0 and count2 =0, we return 0, obviously. If countl > 0 and count?2
> 0, we are certain that there couldn’t be neither a column with all its items
equal to 1 or a column with all its items 2 and we return 0.

If countl = 0 and count2 > 0, we look by the mean of a for loop of if there
is a column with all its items equal to 2. We do the same if If countl > 0 and
count2 = 0.

The time complexity is O(N?) and the space complexity is O(1).

1

Ready to continue listoffunctions

B listoffunctions.

func rowSum(matrix: [[Int]], row: Int) -> Int {
var sum = @
for i in 0..<matrix.count {
if matrix[rowl[il == @ {
sum = -1
break
}
else {
sum += matrix[row][i]

}

return sum

func L um(matrix: [[Intl], column: Int) -> Int {
var sum = 0
for i in @..<matrix.count {
if matrix[il[column] == @ {
sum = -1
break

}
else {

sum += matrix[il[column]

Ready to continue listoffunctions
B listoffunctions
func hasCr (_ matrix:[[Int]]) -> Int

var countl = @

var count2 0

for i in @..<matrix.count {
if rowSum(matrix: matrix, row:
continue
}
else if rowSum(matrix: matrix,
+= 1

um(matrix: matrix,
+=1

if (countl > > @) || (countl == & count2 == @){
return @
}
if countl == @ count2 > @ {
for i in @..<matrix.count {
if columnSum(matrix: matrix, column: i) == 2xmatrix.count {
return 2

}
if countl > @ && count2 == @ {
for i in @..<matrix.count {
if columnSum(matrix: matrix, column: i) == matri.
return 1

}

}

return @

