
Coding challenges

Mohamed Boucetta

Exercise 0.1 Build a function which take a sorted array of integers and a
number and returns true if the number is in the array false otherwise. For
instance, if L = [0, 5, 7, 10, 19], the function returns true if the number is 7
and false if the number is 6.

Solution : The naive solution is to scan the array and to compare the number
to the items of the array. This solution has O(N) complexity and can be used
for an unsorted array (N is the number of items in the array).
The fact that the array is sorted permits to have a far more efficient algorithm
known as binary search which has O(ln2N) complexity.

1. We set three variables low = 0 and high = N and mid = (low + high) /
2.

2. We compare the number to array[mid]. If they match, we return ar-
ray[mid].

3. If array[mid] < number, since the array is sorted we are certain that the
number is not in [array[0],... array[mid]] and we look in [array[mid+1],...,array[high-
1]] by setting low = mid + 1.

4. If array[mid] > number, since the array is sorted we are certain that the
number is not in [array[mid],... array[high-1]] and we look in [array[0],...,array[mid-
1]] by setting high = mid .

5. We repeat this operations while low < high.

Let us see how this algorithm works on a concrete example.

L = [2, 3, 4, 5, 6, 7, 8, 10, 32, 54, 78, 90, 101, 120] and number = 91.

1. low = 0, high = 14 and mid = 7.

2. L[7] = 10 < 91. low = 8, high = 14 and mid = 11.

3. L[11] = 90 < 91, low = 12, high = 14 and mid = 13.

4. L[13] = 120 > 91, low = 12, high = 13 and mid = 12.

1



5. L[12] = 101 > 91, low = 12, high = 12 and the while loop stop and the
function returns false.

2


