Coding challenges

Mohamed Boucetta

Exercise 0.1 Build a function which take a sorted array of integers and a number and returns true if the number is in the array false otherwise. For instance, if $L=[0,5,7,10,19]$, the function returns true if the number is 7 and false if the number is 6 .

Solution : The naive solution is to scan the array and to compare the number to the items of the array. This solution has $O(N)$ complexity and can be used for an unsorted array (N is the number of items in the array).
The fact that the array is sorted permits to have a far more efficient algorithm known as binary search which has $O\left(l_{2} N\right)$ complexity.

1. We set three variables low $=0$ and high $=\mathrm{N}$ and mid $=($ low + high $) /$ 2.
2. We compare the number to array[mid]. If they match, we return array[mid].
3. If array[mid] < number, since the array is sorted we are certain that the number is not in $[\operatorname{array}[0], \ldots$ array [mid]] and we look in [array[mid +1$]$, ...array [high1]] by setting low $=$ mid +1 .
4. If array[mid] > number, since the array is sorted we are certain that the number is not in [array[mid],... array[high-1]] and we look in [array[0],..., array [mid1]] by setting high $=$ mid .
5. We repeat this operations while low $<$ high.

Let us see how this algorithm works on a concrete example.

$$
L=[2,3,4,5,6,7,8,10,32,54,78,90,101,120] \quad \text { and } \text { number }=91 .
$$

1. low $=0$, high $=14$ and mid $=7$.
2. $L[7]=10<91$. low $=8$, high $=14$ and mid $=11$.
3. $\mathrm{L}[11]=90<91$, low $=12$, high $=14$ and $\mathrm{mid}=13$.
4. $\mathrm{L}[13]=120>91$, low $=12$, high $=13$ and mid $=12$.
5. $\mathrm{L}[12]=101>91$, low $=12$, high $=12$ and the while loop stop and the function returns false.

