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The Geometry of the Sasaki Metric on the
Sphere Bundles of Euclidean Atiyah Vector
Bundles

Mohamed Boucetta and Hasna Essoufi

Abstract. Let (M, 〈 , 〉TM ) be a Riemannian manifold. It is well known
that the Sasaki metric on TM is very rigid, but it has nice properties
when restricted to T (r)M = {u ∈ TM, |u| = r}. In this paper, we
consider a general situation where we replace TM by a vector bundle
E −→ M endowed with a Euclidean product 〈 , 〉E and a connection
∇E which preserves 〈 , 〉E . We define the Sasaki metric on E and we

consider its restriction h to E(r) = {a ∈ E, 〈a, a〉E = r2}. We study

the Riemannian geometry of (E(r), h) generalizing many results first

obtained on T (r)M and establishing new ones. We apply the results
obtained in this general setting to the class of Euclidean Atiyah vector
bundles introduced by the authors in Boucetta and Essoufi J Geom
Phys 140:161–177, 2019). Finally, we prove that any unimodular three
dimensional Lie group G carries a left invariant Riemannian metric, such
that (T (1)G, h) has a positive scalar curvature.
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1. Introduction

Through this paper, a Euclidean vector bundle is a vector bundle πE : E −→
M endowed with 〈 , 〉E ∈ Γ(E∗⊗E∗) which is bilinear symmetric and positive
definite in the restriction to each fiber.

Let (M, 〈 , 〉TM ) be a Riemannian manifold of dimension n, πE : E −→
M a vector bundle of rank m endowed with a Euclidean product 〈 , 〉E , and
a linear connection ∇E which preserves 〈 , 〉E . Denote by K : TE −→ E the
connection map of ∇E locally given by:

K

⎛
⎝

n∑
i=1

bi∂xi
+

m∑
j=1

Zj∂μj

⎞
⎠ =

m∑
l=1

⎛
⎝Zl +

n∑
i=1

m∑
j=1

biμjΓl
ij

⎞
⎠ sl,

0123456789().: V,-vol  



  178 Page 2 of 30 M. Boucetta and H. Essoufi MJOM

where (x1, . . . , xn) is a system of local coordinates, (s1, . . . , sm) is a basis of
local sections of E, (xi, μj) the associated system of coordinates on E, and
∇E

∂xi
sj =

∑m
l=1 Γl

ijsl. Then:

TE = ker dπE ⊕ ker K.

The Sasaki metric gs on E is the Riemannian metric given by:

gs(A,B) = 〈dπE(A), dπE(B)〉TM + 〈K(A),K(B)〉E , A,B ∈ TaE.

For any r > 0, the sphere bundle of radius r is the hypersurface E(r) ={
a ∈ E, 〈a, a〉E = r2

}
.

They are two classes of such Euclidean vector bundles naturally associ-
ated with a Riemannian manifold.

We refer to the first one as the classical case. It is the case where E =
TM , 〈 , 〉E = 〈 , 〉TM , and ∇E is the Levi–Civita connection of (M, 〈 , 〉TM ).

The second case will be called the Atiyah Euclidean vector bundle asso-
ciated with a Riemannian manifold. It has been introduced by the authors
in Ref. [4]. It is defined as follows.

Let (M, 〈 , 〉TM ) be a Riemannian manifold, so(TM) =
⋃

x∈M so(TxM)
where so(TxM) is the vector space of skew-symmetric endomorphisms of
TxM and k > 0. The Levi–Civita connection ∇M of (M, 〈 , 〉TM ) defines a
connection on the vector bundle so(TM) which we will denote in the same
way and it is given, for any X ∈ Γ(TM) and F ∈ Γ(so(TM)), by:

∇M
X F (Y ) = ∇M

X (F (Y )) − F (∇M
X Y ).

The Atiyah Euclidean vector bundle associated with (M, 〈 , 〉TM , k) is the
triple (E(M,k), 〈 , 〉k,∇E) where E(M,k) = TM ⊕ so(TM) −→ M , 〈 , 〉k,
and ∇E are a Euclidean product and a connection on E(M,k) given, for any
X,Y ∈ Γ(TM) and F,G ∈ Γ(so(TM)), by:

∇E
XY = ∇M

X Y + HXY, ∇E
XF = HXF + ∇M

X F,

〈X + F, Y + G〉k = 〈X,Y 〉TM − k tr(F ◦ G),

where RM is the curvature tensor of ∇M given by: RM (X,Y ) = ∇M
[X,Y ] −(∇M

X ∇M
Y − ∇M

Y ∇M
X

)
,

HXY = −1
2
RM (X,Y ) and 〈HXF, Y 〉TM = −1

2
k tr(F ◦ RM (X,Y )).

(1)

The connection ∇E preserves 〈 , 〉k and its curvature R∇E

plays a key role in
the study of (E(r)(M,k) endowed with the Sasaki metric. Since R∇E

depends
only on (M, 〈 , 〉TM , k), we will call it the supracurvature of (M, 〈 , 〉TM , k).
The origin of Atiyah Euclidean vector bundle and the justification of its name
can be found in [4].

This paper has two goals:
1. The study of the Riemannian geometry of E(r) endowed with the Rie-

mannian metric h restriction of gs to generalize all the results obtained
in the classical case. We refer to [3,6] for a survey on the geometry of
(T (r)M,h). Our study has some similarities with [2].
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2. The application of the results obtained in the general case to the Eu-
clidean Atiyah vector bundle E(r)(M,k) endowed with the Sasaki met-
ric. We will show that the geometry of (E(r)(M,k), h) is so rich, and by
doing so, we open new horizons for further explorations.

Let us give now the organization of this paper. In Sect. 2, we give the dif-
ferent curvatures of (E(r), h). In Sect. 3, we derive sufficient conditions for
which (E(r), h) has either non-negative sectional curvature, positive Ricci
curvature, positive or constant scalar curvature. In Sect. 4, we first compute
the supracurvature of different classes of Riemannian manifolds and we char-
acterize those with vanishing supracurvature (see Theorem 4.1). Then, we
perform a detailed study of (E(r)(M,k), h) having in mind the results ob-
tained in Sect. 3. In Sect. 5, we prove that any unimodular three-dimensional
Lie group G carries a left invariant Riemannian metric, such that (T (1)G,h)
has a positive scalar curvature.

2. Sectional Curvature, Ricci Curvature, and Scalar Curvature
of the Sasaki Metric on Sphere Bundles

Through this section, (M, 〈 , 〉TM ) is a n-dimensional Riemannian manifold
and πE : E −→ M a vector bundle of rank m endowed with a Euclidean
product 〈 , 〉E and a linear connection ∇E for which 〈 , 〉E is parallel. We
shall denote by ∇M the Levi–Civita connection of (M, 〈 , 〉TM ), and by RM

and R∇E

the curvature tensors of ∇M and ∇E , respectively. We use the
convention:

RM (X,Y ) = ∇M
[X,Y ] −

(∇M
X ∇M

Y − ∇M
Y ∇M

X

)
and

R∇E

(X,Y ) = ∇E
[X,Y ] −

(∇E
X∇E

Y − ∇E
Y ∇E

X

)
.

The derivative of R∇E

with respect to ∇M and ∇E is the tensor field
∇M,E

X (R∇E

) given, for any X,Y,Z ∈ Γ(TM), α ∈ Γ(E), by:

∇M,E
X (R∇E

)(Y, Z, α) = ∇E
X(R∇E

(Y, Z)α) − R∇E

(∇M
X Y, Z)α − R∇E

(Y, ∇M
X Z)α

−R∇E

(Y, Z)∇E
Xα. (2)

Let KM , ricM , and sM denote the sectional curvature, the Ricci curvature,
and the scalar curvature of (M, 〈 , 〉TM ), respectively.

We recall the definition of the Sasaki metric gS on E, we consider its
restriction h to the sphere bundles E(r) =

{
a ∈ E, 〈a, a〉E = r2

}
(r > 0), and

we give the expressions of the different curvatures of (E(r), h).
For any a ∈ E, there exists an injective linear map ha : TxM −→ TaE

given in a coordinates system (xi, βj) on E associated with a coordinate
system (xi)n

i=1 on M and a local trivialization (s1, . . . , sm) of E by:

ha(u) =
n∑

i=1

ui∂xi
−

m∑
k=1

⎛
⎝

n∑
i=1

m∑
j=1

uiβjΓk
ij

⎞
⎠ ∂βk

,
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where

u =
n∑

i=1

ui∂xi
, ∇E

∂xi
sj =

m∑
k=1

Γk
ijsk and a =

m∑
i=1

βisi.

Moreover, if HaE denotes the image of ha, then:

TE = VE ⊕ HE,

where VE = ker dπE . For any α ∈ Γ(E) and for any X ∈ Γ(TM), we denote
by αv ∈ Γ(TE) and Xh ∈ Γ(TE) the vertical and horizontal vector field
associated with α and X, respectively. The flow of αv is given by Φα(t, a) =
a + tα(πE(a)) and Xh is given by Xh(a) = ha(X(πE(a))).

The Sasaki metric gs on E is determined by the formulas:

gs(X
h, Y h) = 〈X, Y 〉TM ◦ πE , gs(α

v, βv) = 〈α, β〉E ◦ πE and gs(X
h, αv) = 0,

for all X,Y ∈ Γ(TM) and α, β ∈ Γ(E).
For any X ∈ Γ(TM) and α ∈ Γ(E), Xh is tangent to E(r); however, αv

is not tangent to E(r). Therefore, we define the tangential lift of α by:

αt(a) = αv(a) − 〈α, a〉E
U(a)
r2

, (a) ∈ E,

where U is the vertical vector field on E whose flow is given by Φ(t, (a)) = eta.
We have:

TaE(r) =
{
Xh + αt / X ∈ TxM and α ∈ Ex with 〈α, a〉E = 0

}
.

The restriction h of gs to E(r) is given by:

h(Xh, Y h) = 〈X,Y 〉TM ◦ πE , h(Xh, αt) = 0,

h(αt, βt)(a) = 〈α, β〉E − 〈α, a〉E〈β, a〉E

r2
= 〈ᾱ, β̄〉E ,

where α, β ∈ Γ(E), X, Y ∈ Γ(TM) and ᾱ = α − 〈α,a〉E

r2 a.
The following proposition can be established in the same way as the

classical case where E = TM , 〈 , 〉E = 〈 , 〉TM , and ∇E = ∇M .

Proposition 2.1. We have:

[αt, βt] =
〈α, a〉E

r2
βt − 〈β, a〉E

r2
αt, [Xh, αt] =

(∇E
Xα

)t
and

[Xh, Y h](a) = [X,Y ]h(a) + (R∇E

(X,Y )a)t,

where R∇E

is the curvature of ∇E given by R∇E

(X,Y ) = ∇E
[X,Y ] −(∇E

X∇E
Y − ∇E

Y ∇E
X

)
.

To compute the Riemannian invariants of (E(r), h) (Levi–Civita con-
nection and the different curvatures), we will use the following facts:

(i) The projection πE : (E(r), h) −→ (M, 〈 , 〉TM ) is a Riemannian submer-
sion with totally geodesic fibers and, hence, the different Riemannian
invariants can be computed using O’Neill formulas (see [1, chap. 9]).
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Here, the O’Neill shape tensor, say B, is given by the expression of
[Xh, Y h]. Therefore, by virtue of Proposition 2.1, we get:

BXhY h((a)) =
1
2
V[Xh, Y h](a) =

1
2
(R∇E

(X,Y )a)v

=
1
2
(R∇E

(X,Y )a)t, (3)

Bαt = 0 and h(BXhαt, Y h) = −h(BXhY h, αt) for any α ∈ Γ(E), X,Y ∈
Γ(TM), and (a) ∈ E(r).

(ii) O’Neill’s formulas involve the Riemannian invariants of (M, 〈 , 〉TM ),
the tensor B and the Riemannian invariants of the restriction of h to
the fibers.

Based on these facts, the Levi–Civita connection ∇ of (E(r), h) is given
by:

∇XhY h(a) = (∇M
X Y )h(a) +

1
2
(R∇E

(X,Y )a)t,

∇Xhαt = BXhαt + (∇E
Xα)t, ∇αtXh = BXhαt,

(∇αtβt)(a) = −〈β, a〉
r2

αt and h(BXhαt, Y h) = −h(BXhY h, αt), (4)

X,Y ∈ Γ(TM), α, β ∈ Γ(E), and a ∈ E(r). Note that, if (Xi)n
i=1 is a local

orthonormal frame of TM , X ∈ Γ(TM), and α ∈ Γ(E), then:

BXhαt =
1
2

n∑
i=1

〈R∇E

(X,Xi)α, a〉EXh
i . (5)

Remark 1. When E = TM , 〈 , 〉E = 〈 , 〉TM and ∇E = ∇M , we have a
simple expression of BXhαt thanks to the symmetries of R∇E

= RM , namely:

(BXhY t)(a) =
1
2
RM (Y (πE(a)), a)X(πE(a)), X, Y ∈ Γ(TM). (6)

The fibers are totally geodesic submanifolds, and a direct computation
shows that the curvature, the Ricci curvature, and the scalar curvature of
the restriction of the metric to the fibers are given by:

Rv(αt, βt)γt =
1
r2

(
h(αt, γt)βt − h(βt, γt)αt

)
,

ricv(αt, βt) =
1
r2

(m − 2)h(αt, βt) and sv =
1
r2

(m − 1)(m − 2).

To compute the different curvatures of (E(r), h), we need the following
formulas.

Proposition 2.2. For any X,Y,Z ∈ Γ(TM), α, β ∈ Γ(E), and a ∈ E, we
have:

h((∇XhB)Y hZh, αt)(a) = −1
2
〈∇M,E

X (R∇E

)(Y,Z, α), a〉E .
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Moreover, if 〈α(x), a〉E = 〈β(x), a〉E = 0, then:

h((∇αtB)XhY h, βt)(a) =
1
2
〈R∇E

(X,Y )α, β〉E(x)

+h(BY hαt, BXhβt)(a) − h(BXhαt, BY hβt)(a).

Proof. Suppose first that 〈α(x), a〉E = 〈β(x), a〉E = 0. We have:

h((∇αtB)XhY h, βt) = h(∇αt(BXhY h), βt) − h(B∇αtXhY h, βt)

−h(BXh∇αtY h, βt)

= αt.h(BXhY h, βt) − h(BXhY h,∇αtβt)

+h(BY h∇αtXh, βt) + h(∇αtY h, BXhβt)

= αt.h(BXhY h, βt) − h(BXhY h,∇αtβt)
+h(BY hαt, BXhβt) − h(BXhαt, BY hβt).

From (4) and the definition of αt, we get:

∇αtβt(a) = 0 and (αt.h(BXhY h, βt))(a) = (αv.h(BXhY h, βt))(a).

However:

αv.h(BXhY h, βt)(a) =
d
dt |t=0

h(BXhY h(a + tα), βt(a + tα))

=
d
dt |t=0

[
h(BXhY h(a + tα), βv(a + tα))

− 1
r2

〈β, a + tα〉Eh(BXhY h(a + tα), U(a + tα))

]

=
1
2

d
dt |t=0

〈R∇E

(X,Y )(a + tα), β〉E(x)

=
1
2
〈R∇E

(X,Y )α, β〉E(x),

which complete to establish the second formula.
On the other hand:

h((∇XhB)Y hZh, αt)(a) = h(∇Xh(BY hZh), αt)(a)

−h(B∇
Xh Y hZh, αt)(a) − h(BY h∇XhZh, αt)(a)

= Xh.h(BY hZh, αt)(a) − 1
2
〈R∇E

(Y,Z)a,∇E
Xα〉E

−1
2
〈R∇E

(∇M
X Y,Z)a, α〉E

−1
2
〈R∇E

(Y,∇M
X Z)a, α〉E

=
1
2
〈R∇E

(Y,Z)∇E
Xα + R∇E

(∇M
X Y,Z)α

+R∇E

(Y,∇M
X Z)α, a〉E + Xh.h(BY hZh, αt)(a).

The key point is that if φX
t (x) is the integral curve of X passing through x,

then the integral curve of Xh at a is the ∇E-parallel section at along φX
t (x)
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with a0 = a. Therefore:

Xh.h(BY hZh, αt)(a) =
d
dt |t=0

h(BY hZh, αt)(at)

= −1
2

d
dt |t=0

〈R∇E

(Y (φX
t (x)), Z(φX

t (x)))α(φX
t (x)), at〉E

= −1
2
〈∇E

X(R∇E

(Y,Z)α)(x), a〉E .

This completes the proof.
�

Proposition 2.3. Let P ⊂ TaE(r) be a plane. Then:

1. If rank(E) = 2, then there exists a basis {Xh + αt, Y h} of P satisfying:

α ∈ Ex, X, Y ∈ TxM, |X|2 + |α|2 = |Y |2 = 1, 〈X, Y 〉TM = 0 and 〈α, a〉E = 0.

The sectional curvature of (E(r), h) at P is given by:

K(P ) = 〈RM (X,Y )X,Y 〉TM − 3
4
|R∇E

(X,Y )a|2 +
1
4

n∑
i=1

〈R∇E

(Y,Xi)α, a〉2E

+〈∇M,E
Y (R∇E

)(X,Y, α), a〉E .

2. If rank(E) ≥ 3, then there exists a basis {Xh + αt, Y h + βt} of P
satisfying:

α, β ∈ Ex, X, Y ∈ TxM, |X|2 + |α|2 = |Y |2 + |β|2 = 1,

〈X, Y 〉TM = 〈α, β〉E = 0 and 〈α, a〉E = 〈β, a〉E = 0.

The sectional curvature of (E(r), h) at P is given by:

K(P ) = 〈RM (X,Y )X,Y 〉TM +
1
r2

|α|2|β|2 + 3〈R∇E

(X,Y )α, β〉E

−3
4
〈R∇E

(X,Y )a,R∇E

(X,Y )a〉E

+
1
4

n∑
i=1

(
〈R∇E

(X,Xi)β, a〉E + 〈R∇E

(Y,Xi)α, a〉E

)2

−
n∑

i=1

〈R∇E

(X,Xi)α, a〉E〈R∇E

(Y,Xi)β, a〉E

+〈∇M,E
Y (R∇E

)(X,Y, α) − ∇M,E
X (R∇E

)(X,Y, β), a〉E ,

where (Xi)n
i=1 is any orthonormal basis of TxM .

Proof. If the rank of E is equal to 2, then dimTaE(r) = n+1 and P∩{Xh,X ∈
TxM} 
= 0 and, hence, P contains a unit vector Y h. We take a unit vector
Xh + αt orthogonal to Y h to get a basis (Xh + αt, Y h) of P .

If rank(E) > 2, we take an orthonormal basis (Xh + αt, Y h + βt) of P ,
that is:

|X|2 + |α|2 = |Y |2 + |β|2 = 1, 〈X, Y 〉T M + 〈α, β〉E = 0 and 〈α, a〉E = 〈β, a〉E = 0.
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We write ( 12 (|X|2 − |Y |2), 〈X,Y 〉TM ) = ρ(cos(μ), sin(μ)) with μ ∈ [0, π
2 ) and

ρ > 0. Then, the vectors

U = cos
(μ

2

)
(Xh + αt) + sin

(μ

2

)
(Y h + βt) and

V = − sin
(μ

2

)
(Xh + αt) + cos

(μ

2

)
(Y h + βt)

constitute a basis of P satisfying the desired relations.
Let us compute the sectional curvature at P . We denote by R the cur-

vature tensor of (E(r), h):

K(P ) = h(R(Xh + αt, Y h + βt)(Xh + αt), Y h + βt)

= h(R(Xh + αt, Y h + βt)Xh, Y h) + h(R(Xh + αt, Y h + βt)Xh, βt)

+h(R(Xh + αt, Y h + βt)αt, Y h)

+h(R(Xh + αt, Y h + βt)αt, βt)

= h(R(Xh, Y h)Xh, Y h) + h(R(Xh, βt)Xh, Y h) + h(R(αt, Y h)Xh, Y h)

+h(R(αt, βt)Xh, Y h)

+h(R(Xh, Y h)Xh, βt) + h(R(Xh, βt)Xh, βt) + h(R(αt, Y h)Xh, βt)

+h(R(αt, βt)Xh, βt)

+h(R(Xh, Y h)αt, Y h) + h(R(Xh, βt)αt, Y h) + h(R(αt, Y h)αt, Y h)

+h(R(αt, βt)αt, Y h)

+h(R(Xh, Y h)αt, βt) + h(R(Xh, βt)αt, βt) + h(R(αt, Y h)αt, βt)

+h(R(αt, βt)αt, βt)

= h(R(Xh, Y h)Xh, Y h) + 2h(R(Xh, Y h)Xh, βt) + 2h(R(Xh, Y h)αt, Y h)

+2h(R(Xh, Y h)αt, βt)

+h(R(Xh, βt)Xh, βt) + 2h(R(αt, Y h)Xh, βt) + 2h(R(αt, βt)Xh, βt)

+h(R(αt, Y h)αt, Y h) + 2h(R(αt, βt)αt, Y h) + h(R(αt, βt)αt, βt).

Recall that the projection πE : (E(r), h) −→ (M, 〈 , 〉TM ) is a Riemann-
ian submersion with totally geodesic fibers and O’Neill shape tensor B is
given by (3). Therefore: we can use O’Neill’s formulas for curvature given
in [1, chap. 9 p. 241]. From these formulas, we have h(R(αt, βt)Xh, βt) =
h(R(αt, βt)αt, Y h) = 0 and hence:

K(P ) = h(R(Xh, Y h)Xh, Y h) + h(R(Xh, βt)Xh, βt)

+h(R(αt, Y h)αt, Y h) + h(R(αt, βt)αt, βt)

+2h(R(Xh, Y h)Xh, βt) + 2h(R(Xh, Y h)αt, Y h)

+2h(R(Xh, Y h)αt, βt) + 2h(R(αt, Y h)Xh, βt).

Let us give every term in this expression using O’Neill’s formulas and Propo-
sition (2.2):

h(R(Xh, Y h)Xh, Y h) = 〈RM (X, Y )X, Y 〉T M

−3

4
〈R∇E

(X, Y )a, R∇E

(X, Y )a〉E ,

h(R(Xh, βt)Xh, βt) = h((∇βtB)XhXh, βt)

+h(BXhβt, BXhβt) = h(BXhβt, BXhβt),
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h(R(αt, Y h)αt, Y h) = h((∇αtB)Y hY h, αt)

+h(BY hαt, BY hαt) = h(BY hαt, BY hαt),

h(R(αt, βt)αt, βt) =
1

r2
|α|2|β|2,

2h(R(Xh, Y h)Xh, βt) = 2h((∇XhB)XhY h), βt)

= −〈∇M,E
X (R∇E

)(X, Y, β), a〉E ,

2h(R(Xh, Y h)αt, Y h) = −2h((∇Y hB)XhY h), αt)

= 〈∇M,E
Y (R∇E

)(X, Y, α), a〉E ,

2h(R(Xh, Y h)αt, βt) = 2h((∇αtB)XhY h, βt)

−2h((∇βtB)XhY h, αt) + 2h(BXhαt, BY hβt)

−2h(BXhβt, BY hαt)

= 2〈R∇E

(X, Y )α, β〉E − 2h(BXhαt, BY hβt)

+2h(BXhβt, BY hαt),

2h(R(αt, Y h)Xh, βt) = −2h(R(Xh, βt)Y h, αt)

= −2h((∇βtB)XhY h, αt) − 2h(BY hβt, BXhαt)

= 〈R∇E

(X, Y )α, β〉E − 2h(BXhαt, BY hβt).

To complete the proof, we need to compute the quantity:

Q = h(BXhβt, BXhβt) + h(BY hαt, BY hαt)
−4h(BXhαt, BY hβt) + 2h(BY hαt, BXhβt).

When E = TM , 〈 , 〉E = 〈 , 〉TM , and ∇E = ∇M , one can use the formula
(6) to recover the expression of the sectional curvature given in [7]. In the
general case, we use instead (5) and we get:

Q =
1
4

n∑
i=1

〈R∇E

(X,Xi)β, a〉2E +
1
4

n∑
i=1

〈R∇E

(Y,Xi)α, a〉2E

−
n∑

i=1

〈R∇E

(X,Xi)α, a〉E〈R∇E

(Y,Xi)β, a〉E

+
1
2

n∑
i=1

〈R∇E

(Y,Xi)α, a〉E〈R∇E

(X,Xi)β, a〉E .

This completes the proof. �

Example 1. Let M = S2 with its canonical metric 〈 , 〉TM , E = TM , and
∇E = ∇M . Let us compute the sectional curvature of (T (1)M,h). According
to Proposition 2.3, if P is a plane in T(x,u)T

(1)M , then P = span{Xh +
Zt, Y h} with X,Y,Z ∈ TxM , |X|2 + |Z|2 = |Y |2 = 1 and 〈Z, u〉TM = 0. The
curvature RM is given by RM (X,Y )Z = 〈X,Z〉TMY − 〈Y,Z〉TMX. Hence:

K(P ) = 〈RM (X, Y )X, Y 〉TM − 3

4
|RM (X, Y )u|2 +

1

4
|RM (Z, u)Y |2

= |X|2 − 3

4

(〈X, u〉2TM + 〈Y, u〉2TM |X|2) + 1

4

(〈Z, Y 〉2TM + 〈u, Y 〉2TM |Z|2) .
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If Z = 0 then K(P ) = 1
4 . If Z 
= 0, then {Z, u} becomes an orthogonal basis

of TxM and:

1 = |Y |2 = 〈Y, u〉2TM +
1

|Z|2 〈Y,Z〉2TM .

Thus:

K(P ) = |X|2 +
1
4
|Z|2 − 3

4
(〈X,u〉2TM + 〈Y, u〉2TM |X|2) .

If X = 0, then K(P ) = 1
4 . If X 
= 0, then {X,Y } is an orthogonal basis and

hence:

1 = |u|2 = 〈Y, u〉2TM +
1

|X|2 〈X,u〉2TM ,

and hence, K(P ) = 1
4 . Therefore, (T (1)M,h) has constant sectional curvature

1
4 . Actually, from the fact that (T (1)M,h) has constant sectional curvature
and from the long exact homotopy sequence associated with the S1-fibration
T (1)M −→ S2, one can see easily that T (1)M is simply connected and, hence,
it is diffeomorphic to the sphere S3. This has been proved first in [11].

Proposition 2.4. Let a ∈ E(r), X,Y ∈ TxM , α, β ∈ Ex, and (Xi)n
i=1 be any

orthonormal basis of TxM . Then:

1. The Ricci curvature of (E(r), h) is given by:

ric(Xh + αt, Y h + βt) =
(m − 2)

r2
〈α, β〉E + ricM (X,Y )

−1
2

n∑
i=1

〈R∇E

(X,Xi)a,R∇E

(Y,Xi)a〉E

−1
2

n∑
i=1

〈∇M,E
Xi

(R∇E

)(Xi,X, β)

+∇M,E
Xi

(R∇E

)(Xi, Y, α), a〉E

+
1
4

n∑
i=1

n∑
j=1

〈R∇E

(Xi,Xj)a, α〉E

〈R∇E

(Xi,Xj)a, β〉E .

2. The scalar curvature of (E(r), h) is given by:

τ r(a) = sM (x) +
1
r2

(m − 1)(m − 2) − 1
4
ξx(a, a),

where

ξx(a, b) =
n∑

j=1

n∑
i=1

〈R∇E

(Xi,Xj)a,R∇E

(Xi,Xj)b〉E , a, b ∈ Ex.

Proof. We will use the O’Neil formulas for the Ricci curvature and scalar
curvature given in [1, Proposition 9.36, Corollary 9.37]. From these formulas,
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Proposition 2.2, and the fact that the fibers are Einstein, we get:

ric(Xh, Y h) = ricM (X,Y ) − 2
n∑

i=1

h(BXhXh
i , BY hXh

i ) = ricM (X,Y )

−1
2

n∑
i=1

〈R∇E

(X,Xi)a,R∇E

(Y,Xi)a〉E ,

ric(αt, βt) =
(m − 2)

r2
〈α, β〉E

+
n∑

i=1

h(BXh
i
αt, BXh

i
βt)

=
(m − 2)

r2
〈α, β〉E

+
1
4

n∑
i=1

n∑
j=1

〈R∇E

(Xi,Xj)a, α〉E〈R∇E

(Xi,Xj)a, β〉E ,

ric(Xh, βt) = −h(δ̌BXh, βt) =
n∑

i=1

h((∇Xh
i
B)Xh

i
X,βt)

= −1
2

n∑
i=1

〈∇M,E
Xi

(R∇E

)(Xi,X, β), a〉E .

This establishes the expression of the Ricci curvature. The scalar curvature
is given by τ r = sM ◦ πE + sv + |B|2, which completes the proof. �

3. On the Sign of the Different Curvatures of (E(r), h)

In this section, we study the sign of sectional curvature, Ricci curvature, and
scalar curvature of sphere bundles E(r) equipped with the Sasaki metric h.

Throughout this section, (M, 〈 , 〉TM ) is a Riemannian manifold of
dimension n and (E, 〈 , 〉E) is a Euclidean vector bundle of rank m with an
invariant connection ∇E .

3.1. The Case R∇E

= 0
Note that R∇E

= 0 if and only if the O’Neill shape tensor of the Riemannian
submersion πE : (E(r), h) −→ (M, 〈 , 〉TM ) vanishes, which is equivalent to
E(r) being locally the Riemannian product of M and the fiber. Therefore, we
have the following results.

Proposition 3.1. Suppose that R∇E

= 0 and m = 2. Then, using the nota-
tions in Propositions 2.3 and 2.4:

K(P ) = 〈RM (X,Y )X,Y 〉TM , ric(Xh + αt, Y h + βt)

= ricM (X,Y ) and τ r(a) = sM (πE(a)).

Proposition 3.2. Suppose that R∇E

= 0 and m ≥ 3. Then:
1. (M, 〈 , 〉TM ) has constant scalar curvature if and only if (E(r), h) has

constant scalar curvature,
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2. (M, 〈 , 〉TM ) is locally symmetric if and only if (E(r), h) is locally sym-
metric,

3. (M, 〈 , 〉TM ) is Einstein with Einstein constant m−2
r2 if and only if

(E(r), h) is Einstein with the same Einstein constant,
4. (E(r), h) can never have a constant sectional curvature.

Proof. We have noticed that R∇E

= 0 if and only E(r) is locally the Rie-
mannian product of M and the fiber. However, the fiber is a sphere endowed
with its canonical metric and has constant sectional curvature. For instance,
a Riemannian product is locally symmetric if and only if its components are
locally symmetric which permits to prove 2. The same argument permits to
prove the other assertions. �

For the Euclidean vector bundles with large rank compared to the di-
mension of the base, the following theorem constitutes a converse to the third
assertion in Proposition 3.2. Note that the rank of the Atiyah vector bundle
E(M,k) is n(n+1)

2 and, hence, it satisfies the hypothesis of the next theorem.

Theorem 3.1. Suppose that m − 1 > n(n−1)
2 where m is the rank of E and

n = dimM . Then:
1. (E(r), h) is Einstein with Einstein constant λ if and only if R∇E

= 0,
λ = (m−2)

r2 and M is Einstein with Einstein constant (m−2)
r2 .

2. (E(r), h) can never has constant sectional curvature.

Proof. 1. If (E(r), h) is Einstein, then, according to Proposition 2.4, we
have for any x ∈ M , X ∈ TxM , a ∈ E

(r)
x and α ∈ Ex with 〈α, a〉E = 0 :

λ|α|2 =
(m − 2)

r2
|α|2 +

1
4

n∑
i=1

n∑
j=1

〈R∇E

(Xi,Xj)a, α〉2E . (7)

Fix x ∈ M , a ∈ E
(r)
x , and an orthonormal basis (Xi)i of TxM , and

choose an orthonormal family (α1, . . . , αm−1) of elements in the orthog-
onal of a. For any k = 1, . . . , m − 1, define the vector Uk ∈ R

n(n−1)
2 by

putting:

Uk =
(
〈R∇E

(X1,X2)a, αk〉E , R∇E

(X1,X3)a, αk〉E ,

. . . , 〈R∇E

(Xn−1,Xn)a, αk〉E

)
.

If we take α = αk in (7), we get that the Euclidean norm of Uk satisfies
|Uk|2 = 2

(
λ − (m−2)

r2

)
. Moreover, if we take α = αk + αl with l 
= k,

we get that 〈Ul, Uk〉 = 0. Thus, (U1, . . . , Um−1) is an orthogonal family
of vectors in R

n(n−1)
2 . Since m − 1 > n(n−1)

2 , they must be linearly
dependent. However, they have the same norm, so they must vanish.
This completes the proof of the first assertion.

2. If (E(r), h) has a constant sectional curvature, then it is Einstein and
hence R∇E

= 0. However, according to the expression of the sectional
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curvature given in Proposition 2.3, it cannot be constant. This completes
the proof.

�

3.2. The Case ∇M,E (R∇E

) = 0

If ∇M,E(R∇E

) = 0, then R∇E

is invariant under parallel transport of ∇M

and ∇E and, hence, there exists a constant K > 0, such that for any X,Y ∈
Γ(TM), α ∈ Γ(E):

|R∇E

(X,Y )α| ≤ K|X||Y ||α|. (8)

The following theorem generalizes a result obtained in [7].

Theorem 3.2. Suppose that ∇M,E(R∇E

) = 0 and the sectional curvature of
M is bounded below by a positive constant C. Then:

1. At every point of E(r), there exists a tangent plane with positive sectional
curvature.

2. If rank(E) = 2, then the sectional curvature of (E(r), h) is non-negative
if r2 ≤ 4C

3K .
3. If rank(E) ≥ 3, then the sectional curvature of (E(r), h) is non-negative

if:

C − 3
4
r2K2

(
4 + 3r2(n − 2)K +

3
4
r4(n − 2)2K2

)
≥ 0. (9)

In particular, for r sufficiently small, the sectional curvature of (E(r), h) is
non-negative.

Proof. Let P ⊂ TaE(r) be a plane. Then, there exists an orthonormal basis
{Xh +αt, Y h +βt} of P satisfying |X|2+ |α|2 = |Y |2+ |β|2 = 1, 〈X,Y 〉TM =
〈α, β〉E = 0 and 〈α, a〉E = 〈β, a〉E = 0. Put X = cos(t)X̃, α = sin(t)α̃,
Y = cos(s)Ỹ , β = sin(s)β̃ and a = rã with s, t ∈ [0, π/2] and |X̃| = |Ỹ | =
|α̃| = |β̃| = 1. We replace in the expression of K(P ) given in Proposition 2.3
and we get:

K(P ) = A cos2(t) cos2(s) +
1
r2

sin2(t) sin2(s)

+B cos(t) cos(s) sin(t) sin(s) + D cos2(t) sin2(s) + E sin2(t) cos2(s),

where

A = KM ({X̃, Ỹ }) − 3
4
r2|R∇E

(X̃, Ỹ )ã|2,

B = 3〈R∇E

(X̃, Ỹ )α̃, β̃〉E − r2
n∑

i=1

〈R∇E

(X̃,Xi)α̃, ã〉E〈R∇E

(Ỹ ,Xi)β̃, ã〉E

+
r2

2

n∑
i=1

〈R∇E

(X̃,Xi)β̃, ã〉E〈R∇E

(Ỹ ,Xi)α̃, ã〉E ,

D =
r2

4

n∑
i=1

〈R∇E

(X̃,Xi)β̃, ã〉2E , E =
r2

4

n∑
i=1

〈R∇E

(Ỹ ,Xi)α̃, ã〉2E .
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1. If cos(t) = cos(s) = 0, then K(P ) = 1
r2 > 0 and, hence, sectional

curvature of (E(r), h) can never be nonpositive.
Let us prove now the second assertion and the third assertion. If

X = 0 or Y = 0, then K(P ) ≥ 0. Suppose now that X 
= 0 and Y 
= 0,
so we can choose X1 = X̃ and X2 = Ỹ and get:

A ≥ C − 3
4
r2K2 and B ≥ −3K

2
(
2 + r2(n − 2)K

)
.

2. If rank(E) = 2, we can choose β = 0 and hence:

K(P ) ≥ (C − 3
4
r2K) cos2(t) cos2(s) +

1
r2

sin2(t) sin2(s).

Thus the sectional curvature is non-negative if: r2 ≤ 4C
3K .

3. Suppose that rank(E) > 2. Then, using the estimations of A and B
given above, we get:

K(P ) ≥
(

C − 3
4
r2K2

)
cos2(t) cos2(s) +

1
r2

sin2(t) sin2(s)

−3K
2

(
2 + r2(n − 2)K

)
cos(t) cos(s) sin(t) sin(s).

The right side of this inequality, say Q, can be arranged in the following
way:

Q =

[
1

r
sin(t) sin(s) − 3rK

4

(
2 + r2(n − 2)K

)
cos(t) cos(s)

]2

+

(
C − 3

4
r2K2

(
4 + 3r2(n − 2)K+

3

4
r4(n − 2)2K2

))
cos2(t) cos2(s).

This ends the proof of the last assertion.

�

Remark 2. 1. In the classical case, i.e., E = TM , 〈 , 〉E = 〈 , 〉TM , and
∇E = ∇M , the hypotheses ∇M (RM ) = 0 and M has positive sectional
curvature imply that the sectional curvature of M is bounded below by
a positive constant. Thus, in this case, our result is the same as the
result obtained in [7].

2. The left side of the inequality (9), say Q, goes to C when r goes to 0
which permitted as to get our result. In some cases, the constant K can
depend on a parameter and by varying this parameter one can make
Q > 0. This is the case in Theorem 4.3.

Theorem 3.3. Suppose that ∇M,E(R∇E

) = 0, R∇E 
= 0 and there exists a
positive constant ρ, such that ricM (X,X) ≥ ρ|X|2, for any X ∈ Γ(TM).
Then:

1. If rank(E) = 2, then (E(r), h) has non-negative Ricci curvature for r2 ≤
2ρ

nK2 , where the constant K is given in (8).
2. If rank(E) > 2, then (E(r), h) has positive Ricci curvature for r2 < 2ρ

nK2 ,
where the constant K is given in (8).
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Proof. For any a ∈ E(r), X ∈ TxM and α ∈ Ex, such that |X|2 + |α|2 = 1
and 〈α, a〉E = 0, we have from Proposition 2.4 that:

ric(Xh + αt,Xh + αt) =
(m − 2)

r2
|α|2 + ricM (X,X) − 1

2

n∑
i=1

|R∇E

(X,Xi)a|2

−
n∑

i=1

〈∇M,E
Xi

(R∇E

)(Xi,X, α), a〉E

+
1
4

n∑
i=1

n∑
j=1

〈R∇E

(Xi,Xj)a, α〉2E .

Let us write X = cos(t)X̂, α = sin(t)α̂ and â = a/r where X̂ and α̂ are unit
vectors.

Suppose that ∇M,E(R∇E

) = 0. We obtain:

ric(Xh + αt, Xh + αt) = cos2(t)

(
ricM (X̂, X̂) − r2

2

n∑
i=1

|R∇E

(X̂, Xi)â|2
)

+sin2(t)

⎛
⎝ (m − 2)

r2
+

r2

4

n∑
i=1

n∑
j=1

〈R∇E

(Xi, Xj)â, α̂〉2E

⎞
⎠ .

From the hypothesis on ricM and (8), we get:

ric(Xh + αt,Xh + αt) ≥
(

ρ − nr2K2

2

)
cos2(t) +

(m − 2)
r2

sin2(t).

This shows the two assertions. �

3.3. Ricci and Scalar Curvatures

The two following theorems are a generalization of [7, Theorem 3, Theorem
1] established in the case when E = TM .

Theorem 3.4. If M is compact with positive Ricci curvature and rank(E) ≥ 3,
then, for r sufficiently small, the Ricci curvature of the sphere bundle (E(r), h)
is positive.

Proof. Suppose now that M is compact with positive Ricci curvature and put
X = cos(t)X̂, α = sin(t)α̂ and â = a

r where X̂ ∈ TxM , α̂ ∈ Ex, |X̂| = |α̂| = 1
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and a ∈ E(r). We have:

ric(Xh + αt,Xh + αt) = cos2(t) ricM (X̂, X̂) +
(m − 2)

r2
sin2(t)

−1
2
r2cos2(t)

n∑
i=1

|R∇E

(X̂,Xi)â|2

−rcos(t)sin(t)
n∑

i=1

〈∇M,E
Xi

(R∇E

)(Xi, X̂)α̂, â〉E

+
1
4

n∑
i=1

n∑
j=1

〈R∇E

(Xi,Xj)a, α〉2E ,

≥ cos2(t)ricM (X̂, X̂) +
(m − 2)

r2
sin2(t)

−1
2
r2cos2(t)

n∑
i=1

|R∇E

(X̂,Xi)â|2

−r cos(t)sin(t)
n∑

i=1

〈∇M,E
Xi

(R∇E

)(Xi, X̂)α̂, â〉E .

Since M is compact, there exist positive constants L1 and L2, such that for
any x ∈ M and for any unit vectors X,Y,Z ∈ TxM , α, β ∈ Ex:

|R∇E

(X,Y )Z| ≤ L1 and |〈∇M,E
X (R∇E

)(Y,Z)α, β〉E | ≤ L2.

On the other hand, there is a positive number ε, such that ricM (X,X) ≥ ε,
for any unit vector X. Then, using the above estimations, we get:

ric(Xh + αt, Xh + αt) ≥ cos2(t)(ε − 1

2
r2nL2

1) +
(m − 2)

r2
sin2(t) − rnL2cos(t)sin(t)

=

(√
A cos(t) − B

2
√

A
sin(t)

)2

+ C sin2(t),

where A = ε − 1
2r2nL2

1, B = rnL2, C =
(

m−2
r2 − B2

4A

)
and r taken such that

A,C > 0. Then, the right side of this inequality is positive for every t. �

Theorem 3.5. Let (M, 〈 , 〉TM ) be a compact Riemannian manifold and
(E, 〈 , 〉E) be a Euclidean vector bundle with an invariant connection ∇E.
Then, for r sufficiently small, the scalar curvature of (E(r), h) is positive.

Proof. Suppose now that M is compact and put â = a
r , where a ∈ E(r). We

have:

τ r(a) = sM (πE(a)) +
1
r2

(m − 1)(m − 2) − 1
4
r2ξπE(a)(â, â).

Since M is compact, there exists positive constants L1 and L2, such that for
any x ∈ M and for any unit vectors X,Y ∈ TxM , α, β ∈ Ex:

|〈RM (X,Y )X,Y 〉TM | ≤ L1 and |R∇E

(X,Y )α| ≤ L2.

Then:

τ r(a) ≥ 1
r2

(m − 1)(m − 2) +
1
4
n(n − 1)(4L1 − rL2

2.).
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This means that τ r is positive on E(r) when r is sufficiently small. �
Let E −→ M be a vector bundle or rank m. Recall that its associated

sphere bundle is the quotient S(E) = E\{0}/ ∼, where a ∼ b if there exists
t > 0, such that a = tb. Let 〈 , 〉E be a Euclidean product on E. The associ-
ated O(m)-principal bundle has a connection, so there exits a connection ∇E

on E which preserves the metric 〈 , 〉E . Since S(E) can be identified to E(r)

for any r, using Theorems 3.4 and 3.5, we get the following corollary which
has been proved in [12] by a different method.

Corollary 3.1. Let E −→ M be a vector bundle over a compact Riemannian
manifold and S(E) −→ M its associated sphere bundle. Then:

1. If the Ricci curvature of M is positive, then S(E) admits a complete
Riemannian metric of positive curvature.

2. S(E) admits a complete Riemannian metric of positive scalar curvature.

We will end this section with a result which has been proved in [2] when
E = TM , 〈 , 〉TM = 〈 , 〉E , and ∇E is the Levi-Civita connection of 〈 , 〉TM .

Theorem 3.6. Let (M, 〈 , 〉TM ) be a Riemannian manifold and (E, 〈 , 〉E)
be a Euclidean vector bundle with an invariant connection ∇E. Then, the
sphere bundle (E(r), h) equipped with the Sasaki metric has constant scalar
curvature if and only if:

ξ =
|R∇E |2

m
〈 , 〉E , (10)

4msM − r2|R∇E |2 = constant. (11)

where ξ(a, b) =
∑n

j=1

(∑n
i=1〈R∇E

(Xi,Xj)a,R∇E

(Xi,Xj)b〉E

)
, for any a, b ∈

Γ(E).

Proof. The scalar curvature τ r is given, for a ∈ E(r), by:

τ r(a) = sM (πE(a)) +
1
r2

(m − 1)(m − 2) − 1
4
ξπE(a)(a, a).

Suppose that τ is constant along E(r). For fixed x ∈ M , τ r(a) does not depend
on the choice of the vector a ∈ E

(r)
x . This implies that ξx is proportional to

the metric 〈 , 〉E and the coefficient of proportionality is necessarily equal to
|R∇E |2/m. �

4. Sasaki Metric on the Sphere Bundle of the Atiyah Euclidean
Vector Bundle Associated with a Riemannian Manifold

We have seen in the last section that many results obtained on the sphere
bundles of tangent bundles over Riemannian manifolds can be generalized to
any Euclidean vector bundle. In this section, we will express these results in
the case of the sphere bundle of the Atiyah Euclidean vector bundle intro-
duced in Sect. 1 to get some new interesting geometric situations and to open
new horizons for further explorations.
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4.1. The Atiyah Euclidean Vector Bundle and the Supracurvature of a Rie-
mannian Manifold

Let (M, 〈 , 〉TM ) be a Riemannian manifold, k > 0, and (E(M,k), 〈 , 〉k,∇E)
the associated Atiyah Euclidean vector bundle defined in the Introduction.
Let KM : so(TM) −→ so(TM) be the curvature operator given by KM (X ∧
Y ) = RM (X,Y ) where X ∧ Y (Z) = 〈Y,Z〉TMX − 〈X,Z〉TMY.

The curvature R∇E

of ∇E (we refer to as the supracurvature of
(M, 〈 , 〉TM , k)) was computed in [4, Theorem 3.1]. It is given by the fol-
lowing formulas:

R∇E

(X,Y )Z =
{
RM (X,Y )Z + HY HXZ − HXHY Z

}

+
{

−1
2
∇M

Z (KM )(X ∧ Y )
}

,

R∇E

(X,Y )F =
{

(R∇E

(X,Y )F )TM

}

+
{
[RM (X,Y ), F ] + HY HXF − HXHY F

}
,

〈(R∇E

(X,Y )F )TM , Z〉k = −〈R∇E

(X,Y )Z,F 〉k, (12)

X,Y,Z ∈ Γ(TM), F ∈ Γ(so(TM)). We denote by E(r)(M,k) the sphere bun-
dle of radius r associated with E(M,k) and h the Sasaki metric on E(r)(M,k).

The supracurvature is deeply related to the geometry of (M, 〈 , 〉TM ).
Let us compute it in some particular cases. This computation will be use-
ful in the proof of Theorem 4.1 where we will characterize the Riemannian
manifolds with vanishing supracurvature.

Supracurvature of the Riemannian Product of Riemannian Manifolds.

Proposition 4.1. Let (M, 〈 , 〉TM ) be the Riemannian product of p Riemann-
ian manifolds (M1, 〈 , 〉1), . . . , (Mp, 〈 , 〉p). Then, the supracurvature of
(M, 〈 , 〉TM ) at a point x = (x1, . . . , xp) is given by:
⎧⎨
⎩

R∇E

[(X1, . . . , Xp), (Y1, . . . , Yp)](Z1, . . . , Zp) =
(
R∇E1

(X1, Y1)Z1, . . . , R∇Ep
(Xp, Yp)Zp

)
,

R∇E

[(X1, . . . , Xp), (Y1, . . . , Yp)](F ) =
(
R∇E1

(X1, Y1)F1, . . . , R∇Ep
(Xp, Yp)Fp

)
,

where Xi, Yi, Zi ∈ Txi
Mi, F ∈ so(TxM), Fi = pri ◦ F|TMi

, R∇Ei is the
supracurvature of (Mi, 〈 , 〉i, k) and i = 1, . . . , p.

Proof. It is an immediate consequence of the following formulas:

RM [X,Y ](Z) =
(
RM1(X1, Y1)Z1, . . . , R

Mp(Xp, Yp)Zp

)
,

HXY =
(
H1

X1
Y1, . . . , H

p
Xp

Yp

)
,

HXF =
(
H1

X1
F1, . . . , H

p
Xp

Fp

)
,

∇M
X (KM )(X ∧ Y ) =

(∇Z1(K
M1)(X1 ∧ Y1), . . . ,∇Zp

(KMp)(Xp ∧ Yp)
)
,

where X = (X1, . . . , Xp), Y = (Y1, . . . , Yp), Z = (Z1, . . . , Zp), and Fi =
pri ◦ F|TMi

. �
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Supracurvature of Riemannian manifolds with Constant Curvature.

Proposition 4.2. Suppose that (M, 〈 , 〉TM ) has constant sectional curvature c
and put � = 1

4c(2−ck). Then, for any X,Y ∈ Γ(TM) and F ∈ Γ(so(TM)):

R∇E

(X,Y )Z = −2�X ∧ Y (Z) and R∇E

(X,Y )F = −2�[X ∧ Y, F ].

Proof. The expression of R∇E

is given by (12). We have
HXY = − 1

2RM (X,Y ) = 1
2cX ∧ Y . Moreover, since the curvature is con-

stant, then ∇M (KM ) = 0.
Now, if (Xi)n

i=1 is a local frame of orthonormal vector fields, then:

〈HXF, Y 〉T M = −1

2
k tr(F ◦ RM (X, Y )) = −1

2
ck

n∑
i=1

〈F (Xi), X ∧ Y (Xi)〉T M

= −1

2
ck

n∑
i=1

(〈Y, Xi〉T M 〈F (Xi), X〉T M − 〈X, Xi〉T M 〈F (Xi), Y 〉T M )

= −ck〈F (Y ), X〉T M .

Thus, HXF = ckF (X). Therefore:

[HY ,HX ]Z =
1
2
(HY RM (Z,X) + HXRM (Y,Z))

=
1
2
ck(RM (Z,X)Y + RM (Y,Z)X)

= −1
2
ckRM (X,Y )Z.

Thus:

R∇A

(X,Y )Z =
1
2
(2 − ck)RM (X,Y )Z = −1

2
c(2 − ck)X ∧ Y (Z).

On the other hand:

[HY ,HX ]F = ck(HY F (X) − HXF (Y ))

= −1
2
ck(RM (Y, F (X)) + RM (F (Y ),X)),

= −1
2
c2k([F,X ∧ Y ]).

This completes the proof. �

Supracurvature of some locally symmetric spaces. Let G be a compact con-
nected Lie group with g its Lie algebra and K be a closed subgroup of G
with k its Lie algebra. Denote by π : G −→ G/K the canonical projection.
Suppose that g = k ⊕ p where p is AdK-invariant, [p, p] ⊂ k and the restric-
tion of the Killing form B of g to p is negative definite. The scalar product
〈 , 〉p = λB|p×p with λ < 0 defines a G-invariant Riemannian metric 〈 , 〉G/K

on G/K which is locally symmetric. For any X ∈ k, we denote by ΦX the
restriction of adX to p, then:

so(p, 〈 , 〉p) = Φk ⊕ (Φk)⊥, (13)

where (Φk)⊥ is the orthogonal with respect to the invariant scalar product
on so(p, 〈 , 〉p), (A,B) �→ −tr(AB).
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Proposition 4.3. The supracurvature of (G/K, 〈 , 〉G/K , k) at π(e) is given
by:

R∇E

(X,Y )Z = [[X,Y ], Z] +
k

4
(
[Y,U(Φ[X,Z])] − [X,U(Φ[Y,Z])]

)
,

R∇E

(X,Y )F = [Φ[X,Y ],ΦXF − k
4 U(F )] + [Φ[X,Y ], F

⊥],

where X,Y,Z ∈ Tπ(e)G/K = p, F = ΦXF + F⊥ ∈ so(p, 〈 , 〉p) = Φk ⊕ (Φk)⊥

and U(F ) is the element of k given by:

U(F ) =
n∑

i=1

[Xi, F (Xi)],

where (X1, . . . , Xn) is an orthonormal basis of p.

Proof. The expression of R∇E

is given by (12). The curvature of G/K at
π(e) is given by (see [1, Proposition 7.72]):

RG/K(X,Y )Z = [[X,Y ], Z], X, Y, Z ∈ p,

∇G/K(KG/K) = 0 and HXY = − 1
2RG/K(X,Y ) = − 1

2Φ[X,Y ]. Choose (Xi)n
i=1

an orthonormal basis of p. We have:

〈HXF, Y 〉k
(1)
= −1

2
k tr(F ◦ RG/K(X,Y ))

=
k

2

∑
i

〈F (Xi), [[X,Y ],Xi]〉p

=
λk

2

∑
i

B(F (Xi), [[X,Y ],Xi])

= −k

2

∑
i

〈[X, [Xi, F (Xi)]], Y 〉p.

Thus, HXF = −k
2 [X,U(F )]. We deduce that:

HY HXZ − HXHY Z = −1
2
HY (Φ[X,Z]) +

1
2
HX(Φ[Y,Z])

=
k

4
[Y,U(Φ[X,Z])] − k

4
[X,U(Φ[Y,Z])],

HY HXF − HXHY F =
k

4
Φ[Y,[X,U(F )]] − k

4
Φ[X,[Y,U(F )]]

= −k

4
[Φ[X,Y ],ΦU(F )].

This gives the first formula. For the second formula, we have:

R∇E

(X,Y )F = [RM (X,Y ), F ] + HY HXF − HXHY F

= [Φ[X,Y ],ΦXF + F⊥] − k

4
[Φ[X,Y ],ΦU(F )]

= [Φ[X,Y ],ΦXF − k
4 U(F )] + [Φ[X,Y ], F

⊥].

This completes the proof. �



MJOM The Geometry of the Sasaki Metrics Page 21 of 30   178 

Supracurvature of complex projective spaces. Let π : Cn+1\{0} −→ Pn(C)
be the natural projection and πs : S2n+1 −→ Pn(C) its restriction to S2n+1 ⊂
C

n+1\{0}. For any m ∈ S2n+1, put Fm = ker((πs)∗)m and let F⊥
m be the

orthogonal complementary subspace to Fm in Tm(S2n+1):

Tm(S2n+1) = Fm ⊕ F⊥
m .

We introduce the Riemannian metric 〈 , 〉P n(C) on Pn(C), so that the re-
striction of (πs)∗ to F⊥

m is an isometry onto Tπ(m)(Pn(C)). Let J0 be the
canonical complex structures on C

n+1 and the standard complex structures
J on Pn(C) is given by:

J(πs)∗v = (πs)∗J0v, v ∈ F⊥
m .

Proposition 4.4. The curvature and the supracurvature of (Pn(C), g, k) are
given by:

RP n(C)(X,Y )Z = 〈X,Z〉P n(C)Y − 〈Y,Z〉P n(C)X

−2〈JY,X〉P n(C)JZ + 〈JZ, Y 〉P n(C)JX − 〈JZ,X〉P n(C)JY,

R∇E

(X,Y )Z = (k − 1)
(〈Y,Z〉P n(C)X

−〈X,Z〉P n(C)Y + 2〈JY,X〉P n(C)JZ
)

+((2n + 3)k − 1)
(〈JZ,X〉P n(C)JY

−〈JZ, Y 〉P n(C)JX
)
,

R∇E

(X,Y )F =
(

k

2
− 1

)
[F,X ∧ Y + JX ∧ JY ]

+2〈JY,X〉P n(C)[F, J ]

+
k

2
([J ◦ F ◦ J,X ∧ Y ] − J ◦ F (X) ∧ JY

−JX ∧ J ◦ F (Y )) ,

where X,Y,Z ∈ Γ(TPn(C)) and F ∈ Γ(so(TPn(C))).

Proof. The projection πs : S2n+1 −→ Pn(C) is a Riemannian submersion
with totally geodesic fiber and its O’Neill shape tensor is given by AXhY h =
−〈J0X

h, Y h〉Cn+1J0N where N is the radial vector field and Xh, Y h are the
horizontal lift of X,Y ∈ Γ(TPn(C)). The expression of RP n(C) follows from
the formulas:

〈RS2n+1
(Xh, Y h)Zh, Th〉S2n+1

= 〈RP n(C)(X,Y )Z, T 〉P n(C) ◦ πs − 2〈AXhY h, AZhTh〉S2n+1

+〈AY hZh, AXhTh〉S2n+1 − 〈AXhZh, AY hTh〉S2n+1 ,

RS2n+1
(Xh, Y h)Zh = −(Xh ∧ Y h)Zh.
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To compute the supracurvature, we use (12). We choose an orthonormal frame
(Xi)2n

i=1 of Γ(TPn(C)). We have:

〈HXF, Y 〉P n(C) =
k

2

2n∑
i=1

〈RP n(C)(X, Y )Xi, F (Xi)〉P n(C)

=
k

2

2n∑
i=1

[〈X, Xi〉P n(C)〈Y, F (Xi)〉P n(C)

−〈Y, Xi〉P n(C)〈X, F (Xi)〉P n(C) − 2〈JY, X〉P n(C)〈JXi, F (Xi)〉P n(C)

+〈JXi, Y 〉P n(C)〈JX, F (Xi)〉P n(C)

−〈JXi, X〉P n(C)〈JY, F (Xi)〉P n(C)
]

=
k

2

(
2〈F (X), Y 〉P n(C) − 2tr(F ◦ J)〈JX, Y 〉P n(C)

−〈JX, F (JY )〉P n(C) + 〈JY, F (JX)〉P n(C)
)
.

Thus:

HXF = k(F (X) − tr(F ◦ J)JX − J ◦ F ◦ J(X)).

However, from (1), HXZ = − 1
2RP n(C)(X,Z), and hence:

HY HXZ = −k

2
(RP n(C)(X, Z)Y − tr(RP n(C)(X, Z) ◦ J)JY − J ◦ RP n(C)(X, Z) ◦ J(Y )).

However, RP n(C)(X,Z) ◦ J = J ◦ RP n(C)(X,Z) and a direct computation
gives that tr(J ◦ RP n(C)(X,Y )) = 4(n + 1)〈JY,X〉P n(C).

Therefore:

HY HXZ = k
(
2(n + 1)〈JZ, X〉P n(C)JY − RP n(C)(X, Z)Y

)

= k
(〈Y, Z〉P n(C)X − 〈X, Y 〉P n(C)

Z − 〈JY, Z〉P n(C)JX + 〈JY, X〉P n(C)JZ + 2(n + 1)〈JZ, X〉P n(C)JY
)
.

Thus:

HY HXZ − HXHY Z = k(〈Y,Z〉P n(C)X − 〈X,Z〉P n(C)Y + 2〈JY,X〉P n(C)JZ

+(2n + 3)
(〈JZ,X〉P n(C)JY − 〈JZ, Y 〉P n(C)JX

)
).

Then:

R∇E

(X,Y )Z = (k − 1)
(〈Y,Z〉P n(C)X − 〈X,Z〉P n(C)Y + 2〈JY,X〉P n(C)JZ

)

+((2n + 3)k − 1)
(〈JZ,X〉P n(C)JY − 〈JZ, Y 〉P n(C)JX

)
.

On the other hand:

HY HXF = k (HY F (X) − tr(F ◦ J)HY JX − HY J ◦ F ◦ J(X))

=
k

2
(Y ∧ F (X) + JY ∧ F ◦ J(X)

+JY ∧ J ◦ F (X) − Y ∧ J ◦ F ◦ J(X)
+2〈J ◦ F (X) − F ◦ J(X), Y 〉P n(C)J

−tr(F ◦ J)
(
Y ∧ JX − JY ∧ X + 2〈X,Y 〉P n(C)J

)
).
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Therefore, since F (X) ∧ Y + X ∧ F (Y ) = [F,X ∧ Y ]:

HY HXF − HXHY F =
k

2
([X ∧ Y + JX ∧ JY, F ]

+[J ◦ F ◦ J, X ∧ Y ] − J ◦ F (X) ∧ JY − JX ∧ J ◦ F (Y )) ,

and

[RP n(C)(X,Y ), F ] = −[X ∧ Y + JX ∧ JY

+2〈JY,XJ〉P n(C), F ] = −[X ∧ Y + JX ∧ JY, F ] − 2〈JY,X〉P n(C)[J, F ].

Thus:

R∇E

(X,Y )F = [RP n(C)(X,Y ), F ] + HY HXF − HXHY F

= (
k

2
− 1)[F,X ∧ Y + JX ∧ JY ]

+2〈JY,X〉P n(C)[F, J ] +
k

2
[J ◦ F ◦ J,X ∧ Y ]

−k

2
(J ◦ F (X) ∧ JY + JX ∧ J ◦ F (Y )).

�

It is obvious that if (M, 〈 , 〉TM ) is flat, then, for any k > 0, the
supracurvature of (M, 〈 , 〉TM , k) vanishes. Furthermore, according to Propo-
sitions 4.1 and 4.2, if (M, 〈 , 〉TM ) is the Riemannian product of p Riemannian
manifolds all having constant sectional curvature 2

k , then the supracurva-
ture of (M, 〈 , 〉TM , k) vanishes. Actually, such are the only cases where the
supracurvature vanishes.

Theorem 4.1. Let (M, 〈 , 〉TM ) be a connected Riemannian manifold. Then,
the supracurvature of (M, 〈 , 〉TM , k) vanishes if and only if the Riemannian

universal cover of (M, 〈 , 〉TM ) is isometric to: (Rn, 〈 , 〉0) × S
n1

(√
k
2

)
×

· · · × S
np

(√
k
2

)
where S

ni

(√
k
2

)
is the Riemannian sphere of dimension

ni, of radius
√

k
2 and constant curvature 2

k .

Proof. Suppose that the supracurvature of (M, 〈 , 〉TM , k) vanishes and con-
sider the Riemannian covering (N, 〈 , 〉TN ) of (M, 〈 , 〉TM ). Since (M, 〈 , 〉TM )
and (N, 〈 , 〉TN ) are locally isometric, then the supracurvature of (N, 〈 , 〉TN ,
k) vanishes. This implies by virtue of (12) that (N, 〈 , 〉TN ) is locally sym-
metric and for any X,Y ∈ Γ(TN):

〈RN (X,Y )X,Y 〉TN = 〈HXY,HXY 〉k ≥ 0.

Thus, (N, 〈 , 〉TN ) has non-negative sectional curvature. Since N is simply
connected, then (N, 〈 , 〉TN ) is a symmetric space. However, a simply con-
nected symmetric space is the Riemannian product of a Euclidean space and
a finite family of irreducible symmetric spaces (see [1, Theorem 7.76]). Thus,
(N, 〈 , 〉TN ) = (E, 〈 , 〉0) × (N1, 〈 , 〉1) × . . . × (Np, 〈 , 〉p) where (E, 〈 , 〉0) is
flat and the (Ni, 〈 , 〉i) are irreducible symmetric spaces with non-negative
sectional curvature. This implies that the Ni are compact and Einstein with
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positive scalar curvature. According to Proposition 4.1, the vanishing of the
supracurvature of (N, 〈 , 〉TN , k) implies the vanishing of the supracurvature
of (Ni, 〈 , 〉i, k) for i = 1, . . . , p.

Let i ∈ {1, . . . , p} and denote by ni the dimension of Ni. The symmetric
space Ni can be identified to G/K, where G is the component of the identity
of the group of isometries of (Ni, 〈 , 〉i) and K is the isotropy at some point.
Moreover, the Lie algebra g of G has a splitting g = k ⊕ p where k is the Lie
algebra of K and [p, p] ⊂ k. Since Ni is Einstein and irreducible, the metric
in restriction to p is proportional to the restriction of the Killing form (see
[1]).

The vanishing of the supracurvature of (Ni, 〈 , 〉i, k) implies, by virtue of
the second formula in Proposition 4.3, [Φ[p,p],Φ⊥

k ] = 0. This relation and the
fact that [p, p] is an ideal of k imply that Φ[p,p] is an ideal of so(p). However,
if dim p 
= 4, then the real Lie algebra so(p) is simple (see [8, Theorem 6.105
]), and in this case, Φ[p,p] = 0 or Φ[p,p] = so(p). If Φ[p,p] = 0, then RNi = 0,
and we get the result. Otherwise, dim k ≥ dim Φk ≥ dim so(p) = ni(ni−1)

2 .
Therefore:

dim G = dim k + ni ≥ ni(ni + 1)
2

.

However, the dimension of the group of isometries is always less or equal
to ni(ni+1)

2 with equality when the manifold has constant curvature. Thus,
dim G = n(n+1)

2 , and hence, Ni has constant curvature. If dim p = 4, (Ni, 〈 , 〉i)
is a Einstein four dimensional homogeneous space with positive scalar curva-
ture and according to the main result in [5], (Ni, 〈 , 〉i) is isometric to S

4(r),
S
2(r) × S

2(r) or P 2(C). However, Proposition 4.4 shows that the supracur-
vature of P 2(C) does not vanish and Proposition 4.2 shows that S

n(r) has

vanishing supracurvature if and only if r =
√

k
2 . This completes the proof.

�
4.2. Geometry of (E(r)(M,k), h) When M is Locally Symmetric

The following proposition is a key step to apply Theorems 3.2 and 3.3 to
E(M,k).

Proposition 4.5. If M is locally symmetric, then ∇M,E(R∇E

) = 0.

Proof. Assume that M is locally symmetric which is equivalent to ∇M (KM ) =
0. Note first that ∇M,E(R∇E

) = 0 if and only if, for any curve γ : [a, b] −→ M ,
V1, V2, V3 : [a, b] −→ TM parallel vector fields along c and F : [a, b] −→
so(TM) parallel section along c, then R∇E

(V1, V2)V3 and R∇E

(V1, V2)F are
parallel along c. However, RM (V1, V2)V3 is parallel, HV1V2 and HV1F are also
parallel, and using (12), we can conclude. �

The following theorem is an immediate consequence of Theorems 3.2,
3.3, and Proposition 4.5.

Theorem 4.2. 1. If (M, 〈 , 〉TM ) is locally symmetric and its sectional cur-
vature is positive, then, for r sufficiently small, (E(r)(M,k), h) has non-
negative sectional curvature.
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2. If M is compact with positive Ricci curvature or locally symmetric with
positive Ricci curvature, then, for r sufficiently small, the Ricci curva-
ture of (E(r)(M,k), h) is positive.
When M has positive constant sectional curvature, one can apply The-

orem 4.2, but in this case, we can apply Remark 2 to get a better result.
Theorem 4.3. Let (M, 〈 , 〉TM ) be a Riemannian manifold with positive con-
stant sectional curvature c. Then, for k close to 2

c , (E(r)(M,k), h) has non-
negative sectional curvature.
Proof. Let us find in this case a K as in (8). For any X,Y,Z ∈ Γ(TM) and
F ∈ Γ(so(TM)), we have:

|R∇E

(X,Y )(Z + F )| ≤ |R∇E

(X,Y )Z| + |R∇E

(X,Y )F |.
From Proposition 4.2, we get that:

|R∇E

(X, Y )Z| ≤ 4|�||X||Y ||Z| and R∇E

(X, Y )F = 2� (F (X) ∧ Y + X ∧ F (Y )) ,

where � = 1
4c(2 − ck). Let us compute |F (X) ∧ Y |. Let (Xi)n

i=1 be a local
orthonormal frame of TM . Then:

|F (X) ∧ Y |2 = −ktr((F (X) ∧ Y )2)

= k

n∑
i=1

〈F (X) ∧ Y (Xi), F (X) ∧ Y (Xi)〉TM

= k

n∑
i=1

〈〈Y,Xi〉TMF (X) − 〈F (X),Xi〉TMY,

〈〈Y,Xi〉TMF (X) − 〈F (X),Xi〉TMY 〉TM

= 2k|F (X)|2|Y |2 + 2k〈F (X), Y 〉2TM ≤ 4k|F |2|X|2|Y |2.
Finally:

|R∇E

(X,Y )(Z + F )| ≤ 8k|�||X||Y |(|Z| + |F |).
Therefore, we can take K = 8k|�| which goes to zero when k goes to 2

c .
Thus, when k is close to 2

c , the inequality (9) holds and we get the desired
result. �
4.3. Riemannian Manifolds Whose (E(r)(M,k), h) is Einstein

It has been proved in [2] that (T (r)M,h) is Einstein if and only if dimM = 2
and either M is flat or has constant curvature 1

r2 . We have a more rich
situation in the case of (E(r)(M,k), h).
Theorem 4.4. Let (M, 〈 , 〉TM ) be a connected Riemannian manifold. Then:

1. (E(r)(M,k), h) is Einstein with Einstein constant λ if and only if the
Riemannian covering of (M, 〈 , 〉TM ) is locally isometric to the Rie-

mannian product Sp

(√
k
2

)
× . . .×S

p

(√
k
2

)
of q spheres of dimension

p and radius
√

k
2 with:

λ =
2(p − 1)

k
=

qp(qp + 1) − 4
2r2

.
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2. (E(r)(M,k), h) can never have constant sectional curvature.

Proof. This is an immediate consequence of Theorems 3.1 and 4.1. �

4.4. Scalar Curvature of (E(r)(M,k), h)
As an application of Theorem 3.6, we have the following result:

Theorem 4.5. Suppose that (M, 〈 , 〉TM ) has constant sectional curvature c.
Then, (E(r)(M,k), h) has constant scalar curvature if and only if either (i)
n = 3, (ii) c = 0, or (iii) c = 2

k .

Proof. The scalar curvature τ is given by, for (x,Z + F ) ∈ E(r)(M,k):

τ(x,Z + F ) = n(n − 1)c +
1
r2

(m − 1)(m − 2) − 1
4
ξx(Z + F,Z + F ),

where

ξx(Z + F,Z + F ) = 2�2(n − 1)|Z + F |2 + 2�2(n − 3)|F |2, � =
1
4
c(2 − ck).

According to Theorem 3.6, τ is constant if and only if n = 3 or � = 0 and
we get the desired result. �

We end this subsection by giving all two-dimensional Riemannian man-
ifolds (M, 〈 , 〉TM ) for which (E(r)(M,k), h) has constant scalar curvature.

Proposition 4.6. Let (M, 〈 , 〉TM ) be a two-dimensional Riemannian mani-
fold with curvature RM (X,Y ) = −CX ∧ Y with C ∈ C∞(M). Then, for any
X,Y ∈ Γ(TM) and F ∈ Γ(so(TM)):

R∇E

(X,Y )Z = −�X ∧ Y (Z) +
1
2
Z(C)X ∧ Y and

R∇E

(X,Y )F = −�[X ∧ Y, F ] + k〈F (X), Y 〉TMgrad(C),

where � = 1
2C(2 − kC) and X ∧ Y is the skew-symmetric endomorphism of

TM given by:

X ∧ Y (Z) = 〈Y,Z〉TMX − 〈X,Z〉TMY.

Proof. According to (12):

R∇E

(X,Y,Z) = RM (X,Y,Z) + HY HXZ − HXHY Z − 1
2
∇M

Z (KM )(X ∧ Y ),

where HXY = − 1
2RM (X,Y ) = 1

2CX ∧ Y and:

〈HXF, Y 〉TM = −1
2
k tr(F ◦ RM (X,Y ))

= −1
2
Ck

n∑
i=1

〈F (Xi),X ∧ Y (Xi)〉TM = −Ck〈F (Y ),X〉TM .

Thus HXF = CkF (X) and:

HY HXZ − HXHY Z =
1
2
C2k(X ∧ Z(Y ) − Y ∧ Z(X)) =

1
2
C2kX ∧ Y (Z).
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Moreover:

∇M
Z (KM )(X ∧ Y ) = ∇M

Z (KM (X ∧ Y )) − KM (∇M
Z X ∧ Y ) − KM (X ∧ ∇M

Z Y )

= −∇M
Z (CX ∧ Y ) + C∇M

Z X ∧ Y + CX ∧ ∇M
Z Y

= −Z(C)X ∧ Y.

By adding the expressions above, we get the first formula.
On the other hand:

R∇E

(X, Y )F =
{
(R∇E

(X, Y )F )T M

}
+

{
[RM (X, Y ), F ] + HY HXF − HXHY F

}
,

where

〈(R∇E

(X, Y )F )T M , Z〉k = −〈R∇E

(X, Y )Z, F 〉k

= −1

2
Z(C)〈X ∧ Y, F 〉k

= −k

2
〈grad(C), Z〉T M

n∑
i=1

〈X ∧ Y (Xi), F (Xi)〉T M

= k〈F (X), Y 〉T M 〈grad(C), Z〉T M .

Thus, (R∇E

(X,Y )F )TM = k〈F (X), Y 〉TMgrad(C). Furthermore:

[HY ,HX ]F = Ck(HY F (X) − HXF (Y ))

= −1
2
Ck(RM (Y, F (X)) + RM (F (Y ),X)) = −1

2
C2k([F,X ∧ Y ]).

This completes the proof. �
Theorem 4.6. Let (M, 〈 , 〉TM ) be a two-dimensional Riemannian manifold.
Then, (E(r)(M,k), h) has constant scalar curvature if and only if (M, 〈 , 〉TM )
has constant curvature C = 0 or C = 2

k .

Proof. We choose an orthonormal basis (X1,X2), such that RicM (Xi) =
ρiXi, and we put F12 = 1√

2k
X1 ∧ X2. The family (X1,X2, F12) is a local

orthonormal frame of E(M,k). We have for any vector field Z:

R∇E

(X1,X2)Z = −1
2
C(2 − kC)X1 ∧ X2(Z) and

R∇E

(X1,X2)F12 = −
√

k

2
grad(C).

Then:

ξ(Xi,Xi) = 2�2 + k(Xi(C))2, i = 1, 2
ξ(F12, F12) = k|grad(C)|2,
ξ(X1,X2) = kX1(C)X2(C),

ξ(Xi, F12) = �2
√

2k〈grad(C),X1 ∧ X2(Xi)〉, i = 1, 2.

On the other hand:

|R∇E |2 = 4�2 + 2k|grad(C)|2.
Suppose that (E(r)(M,k), h) has constant scalar curvature. The equation
(10) gives for F12:

4�2 − k|grad(C)|2 = 0.
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We eliminate |grad(C)|2 in Eq. (11), to find:

24C − 3C2(2 − kC)2 = constant.

Therefore, C must be constant and C = 0 or C = 2
k . �

5. The Sasaki Metric with Positive Scalar Curvature on the
Unit Bundle of Three-Dimensional Unimodular Lie Groups

The purpose of this section is to prove the following result.

Theorem 5.1. Let G be a three-dimensional connected unimodular Lie group.
Then, there exists a left invariant Riemannian metric on G, such that
(T (1)G,h) has positive scalar curvature.

Proof. Let G be a connected three-dimensional unimodular Lie group with
left invariant metric. Using an argument developed in [9], there exists an
orthonormal basis (X1,X2,X3) of left invariant vector fields, such that:

[X1,X2] = mX3, [X1,X3] = nX2 and [X2,X3] = pX1.

By straightforward computation using the Koszul formula, we get that
the Levi–Civita connexion in this case is given by:

∇X1 =
1
2
(−m + n + p)X2 ∧ X3,∇X2 =

1
2
(m + n + p)X1 ∧ X3, and

∇X3 =
1
2
(m + n − p)X1 ∧ X2.

From this formula, we deduce that:

RG(X1,X2) = ∇[X1,X2] − [∇X1 ,∇X2 ]

=
1
2
m(m + n − p)X1 ∧ X2

− 1
4
(−m + n + p)(m + n + p)[X2 ∧ X3,X1 ∧ X3]

=
1
2

[
m(m + n − p) − 1

2
((n + p)2 − m2)

]
X1 ∧ X2

=
(

3
4
m2 +

1
2
m(n − p) − 1

4
(n + p)2

)
X1 ∧ X2.

In a similar way, we get:

RG(X1,X2) =
(

3
4
m2 +

1
2
m(n − p) − 1

4
(n + p)2

)
X1 ∧ X2 = μ12X1 ∧ X2,

RG(X1,X3) =
(

3
4
n2 +

1
2
n(p + m) − 1

4
(m − p)2

)
X1 ∧ X3 = μ13X1 ∧ X3,

RG(X2,X3) =
(

3
4
p2 +

1
2
p(n − m) − 1

4
(m + n)2

)
X2 ∧ X3 = μ23X2 ∧ X3.
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By virtue of Proposition 2.4, the scalar curvature of the unit tangent sphere
bundle (T (1)G,h) of G equipped with the Sasaki metric is given by, for any
a ∈ T (1)G:

τ(a) = 1 − μ12 − μ13 − μ23 − 1
4
ξ(a, a),

where ξ(a, a) =
∑3

i,j=1 |RG(Xi,Xj)a|2. We have:

ξ(X1,X1) = 2(μ2
12 + μ2

13), ξ(X2,X2) = 2(μ2
12 + μ2

23) and
ξ(X3,X3) = 2(μ2

13 + μ2
23).

Put

λ1 = 2τ(X1) = μ2
12 + μ2

13 + 2(μ12 + μ13 + μ23 − 1),
λ2 = 2τ(X2) = μ2

12 + μ2
23 + 2(μ12 + μ13 + μ23 − 1),

λ3 = 2τ(X3) = μ2
13 + μ2

23 + 2(μ12 + μ13 + μ23 − 1).

Then, the scalar curvature τ of (T (1)G,h) is positive if and only if λi < 0 for
all i ∈ {1, 2, 3}. There are values for parameters m,n and p for which λi is
negative for all i ∈ {1, 2, 3}.

1. For m = 1
2 , n = 1

3 and p = 1
4 : In this case, the Lie group G is isomorphic

to the group SO(3), or SU(2):

λ1 = −267223
165888

, λ2 = −269771
165888

and λ3 = −266131
165888

.

2. For m = 1
2 , n = 1

3 , and p = − 1
4 : G ∼= SL(2,R) or O(1, 2):

λ1 = −243799
165888

, λ2 = −241979
165888

and λ3 = −260179
165888

.

3. For m = 1
2 , n = 1

3 , and p = 0 : G ∼= E(2):

λ1 = −16411
10368

, λ2 = −16211
10368

and λ3 = −16711
10368

.

4. For m = 1
2 , n = 1

3 , and p = 0 : G ∼= E(1, 1) :

λ1 = −20491
10368

, λ2 = −20531
10368

and λ3 = −20551
10368

.

5. For m = 1
2 , n = − 1

3 , and p = 0 : G ∼= H(3,R) :

λ1 = −7
8
, λ2 = −7

8
and λ3 = −11

8
.

�
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Faculté des sciences et techniques
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