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Abstract: Let (M,r, h , i) be a manifold endowed with a �at torsionless connection r and a Riemannian
metric h , i and (TkM)k≥� the sequence of tangent bundles given by TkM = T(Tk−�M) and T�M = TM. We
show that, for any k ≥ �, TkM carries a Hermitian structure (Jk , gk) and a �at torsionless connectionrk and
when M is a Lie group and (r, h , i) are left invariant there is a Lie group structure on each TkM such that
(Jk , gk ,rk) are left invariant. It is well-known that (TM, J�, g�) is Kähler if and only if h , i is Hessian, i.e, in
each system of a�ne coordinates (x�, . . . , xn), h∂xi , ∂xj i = ∂�ϕ

∂xi ∂xj
. Having in mindmany generalizations of the

Kähler condition introduced recently, we give the conditions on (r, h , i) so that (TM, J�, g�) is balanced,
locally conformally balanced, locally conformally Kähler, pluriclosed, Gauduchon, Vaisman or Calabi-Yau
with torsion.Moreover, we can control at the level of (r, h , i) the conditions insuring that some (TkM, Jk , gk)
or all of them satisfy a generalized Kähler condition. For instance, we show that there are some classes of
(M,r, h , i) such that, for any k ≥ �, (TkM, Jk , gk) is balanced non-Kähler and Calabi-Yau with torsion. By
carefully studying the geometry of (M,r, h , i), we develop a powerful machinery to build a large classes of
generalized Kähler manifolds.
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� Introduction
Let (N, J, g) be a complex manifold of real dimension �n, n ≥ �, equipped with a Hermitian metric g. For any
η 2 Ωp(N),

Jη(X�, . . . , Xp) = (−�)pη(JX�, . . . , JXp) and dcη = −(−�)pJ−�dJη, X�, . . . , Xp 2 Γ(TN).

The fundamental form is given by ω(., .) = g(J., .) and the Lee form is given by θ = Jd*ω = −d*ω � J, where for
any X�, . . . , Xp−� 2 Γ(TN),

d*η(X�, . . . , Xp−�) = −
�nX

i=�
rLC

Ei η(Ei , X�, . . . , Xp−�),

rLC is the Levi-Civita connection of g and (E�, . . . , E�n) is a local g-orthonormal frame. A fundamental class
of Hermitian metrics is provided by Kähler metrics, satisfying dω = �. In literature, many generalizations of
the Kähler condition have been introduced. Indeed, (N, J, g) is called:

1. strongly Kähler with torsion or pluriclosed if ddcω = �, i.e., dJdJω = �,
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2. balanced if θ = �,
3. locally conformally balanced if θ is closed,
4. Gauduchon if d*θ = �,
5. locally conformally Kähler if dω = �

n−� θ ^ ω and if, in addition,rLCθ = � then it is called Vaisman.

For general results about these generalizedKählermetrics,we refer the reader to [1, 3, 4, 6, 10, 11, 22, 25, 27, 28].
The Levi-Civita connection of (N, g) is the only torsion free metric connection. In general, it does not pre-

serve the complex structure J, this condition forcing the metric to be Kähler. Gauduchon proved in [12] that
there exists and a�ne line of canonical Hermitian connections (they preserve both J and g) passing through
the Bismut connection and the Chern connection. The Bismut connectionrB (also known as Strominger con-
nection) is the unique Hermitian connection with totally skew-symmetric torsion and the Chern connection
rC is the unique Hermitian connection whose torsion has trivial (�, �)-component. For any X, Y , Z 2 Γ(TN),

(
g(rB

XY , Z) = g(rLC
X Y , Z) + �

�dω(JX, JY , JZ),
g(rC

XY , Z) = g(rLC
X Y , Z) − �

�dω(JX, Y , Z).
(1)

Let Rτ(X, Y) = rτ
[X,Y] − rτ

Xr
τ
Y + rτ

Yr
τ
X be the curvature tensor of rτ. The Ricci form of rτ is given, for any

X, Y 2 Γ(TN), by

ρτ(X, Y) = �
�

�nX

i=�
g(Rτ(X, Y)Ei , JEi),

where (E�, . . . , E�n) is a local g-orthonormal frame. It is known [1] that ρC = ρB − dJθ. Hermitian structures
satisfying Hol�(rB) ⇢ SU(n), or equivalently ρB = �, are known in literature as Calabi-Yau with torsion and
appear in heterotic string theory, related to the Hull-Strominger system in six dimensions [17, 20, 24].

On the other hand, let (M,r, h , i) be amanifold of dimension n endowedwith a �at torsionless connec-
tionr and a Riemannian metric h , i. Actually,r de�nes an a�ne structure on M, i.e., there exists on M an
atlas of charts such that all transition functions between charts are a�ne transformations ofRn. Conversely,
any a�ne atlas de�nes a �at torsionless connection. We refer to the charts of this atlas as a�ne coordinates.

Through-out this paper, we call such triple (M,r, h , i) an a�ne-Riemann manifold, we denote by D the
Levi-Civita connection of h , i, K(X, Y) = D[X,Y] − DXDY + DYDX its curvature, � the di�erence tensor and �*

its adjoint given, for any X, Y , Z 2 Γ(TM), by

�XY = DXY −rXY and h�*XY , Zi = hY , �XZi. (2)

Their traces with respect to the metric are the vector �elds given by

trh , i(�) =
nX

i=�
�Ei Ei and trh , i(�*) =

nX

i=�
�*Ei Ei , (3)

where (E�, . . . , En) is a local h , i-orthonormal frame. The 1-form α given, for any X 2 Γ(TM), by

α(X) = htrh , i(�*), Xi (4)

is closed (see Proposition 3.1) and it is known as the �rst Koszul form in the theory of Hessian manifolds. The
vanishing of α is equivalent to the Riemannian volume being parallel with respect to r. We introduce also
the 1-form ξ given, for any X 2 Γ(TM), by

ξ (X) = htrh , i(�), Xi. (5)

We call ξ the adjoint Koszul form. These two 1-forms play an important role in this paper.
It is well-known (see [23]) that there is a Hermitian structure (J�, g�) on TM canonically associated to

(M,r, h , i) and (TM, J�, g�) is Kähler if and only if h , i is Hessian, i.e, in each system of a�ne coordinates
(x�, . . . , xn) there exists a function ϕ such that h∂xi , ∂xj i = ∂�ϕ

∂xi ∂xj
. This is equivalent to h , i satisfying the

Codazzi equation
rX(h , i)(Y , Z) = rY (h , i)(X, Z), X, Y , Z 2 Γ(TM). (6)
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Wewill see that (6) is equivalent to � = �*. Actually, there is also a �at torsionless connectionr� on TM such
that r�J� = �. The a�ne-Riemann structure (TM,r�, g�) gives rise to a Hermitian structure (TTM, J�, g�)
and a �at torsionless connection r� on TTM. By induction, we get a sequence of Hermitian structures
(TkM, Jk , gk) where TkM = T(Tk−�M) and T�M = TM. Moreover, each TkM carries a �at torsionless con-
nectionrk such thatrk(Jk) = �.

The purpose of this paper is to explore the properties of this sequence of Hermitian structures and �nd
the conditions on (M,r, h , i) leading to some or all (TkM, Jk , gk) to satisfy one of the generalized Kähler
conditions introduced above. This will lead to the construction of interesting classes of generalized Kähler
manifolds. We �nd also a large class of Hermitian manifolds which are Calabi-Yau with torsion or with van-
ishing Chern Ricci form. We will show also that the study of the geometry of a�ne-Riemann manifolds is
interesting in its own right and we will generalize some results obtained on Hessian manifolds.

Let us enumerate the main results of this paper and give its organization:

1. In Section 2, we de�ne the sequence of Hermitian structures (TkM, Jk , gk) and the sequence of �at tor-
sionless connections rk associated to an a�ne-Riemann manifold (M,r, h , i) and we show that if M
is a Lie group and (r, h , i) are left invariant then there is on each TkM a Lie group structure such that
(Jk , gk ,rk) are left invariant.

2. In Section 3, we give the useful tools for the study of the Hermitian manifolds (TkM, Jk , gk). Namely, we
compute the Levi-Civita connection rLC of (TM, g�) and we show that the Lee form θ� of (TM, J�, g�)
is given by means of the Koszul forms, namely, θ� = π*�(α − ξ ) where π� : TM �! M is the canonical
projection. We compute also the di�erence tensor for (TM,r�, g�) as well as its dual and we deduce by
induction the Koszul forms αk and ξk and hence the Lee form of (TkM,rk , gk). We give the conditions
involving α, ξ , trh , i(�), trh , i(�*) so that (TM, J�, g�) is balanced, locally conformally balanced, Gaudu-
chon, locally conformally Kähler or Vaisman.

3. In Section 4, we prove that (TM, J�, g�) is pluriclosed if and only if the curvature K of h , i satis�es, for
any X, Y 2 Γ(TM),

K(X, Y) = �*X � �Y − �*Y � �X .

It is known (see [23, Theorem 8.8 pp. 162]) that if M is compact, trh , i(�*) = � and h , i is Hessian, i.e.,
(TM, J�, g�) is Kähler then r is the Levi-Civita of h , i. By using the splitting theorem of J. Cheeger and
D. Gromoll (see for instance [5, Corollary 6.67 pp. 168]), we prove that this result is still valid when we
suppose that M is compact, trh , i(�*) = �, r is complete and (TM, J�, g�) is pluriclosed (see Theorem
4.1).

4. In Section 5, we compute the Bismut connectionrB and the Chern connectionrC of (TM, J�, g�) and we
give their the curvatures and their Ricci forms. We show that if trh , i(�) = � (resp. trh , i(�*) = �) then the
Ricci form ρB (resp. ρC) of (TM, J�, g�) vanish.

5. In Section 6, we remark �rst that if � = � then for any k ≥ �, the a�ne connection rk is the Levi-Civita
connection of gk and hence (TkM, Jk , gk) is Kähler �at. Moreover, for k� ≥ � �xed, we show:

(a) If k� ≥ � then (Tk�M, Jk� , gk� ) is Kähler if and only if � = �,
(b) (Tk�M, Jk� , gk� ) is locally conformally balanced if and only if (TM, J�, g�) is locally conformally bal-

anced and this is equivalent to dξ = �,
(c) (Tk�M, Jk� , gk� ) is balanced if and only if trh , i(�) = (�k� − �)trh , i(�*) and in this case all the others

(TkM, Jk , gk) are locally conformally balanced and (Tk�+�M, Jk�+�, gk�+�) is Calabi-Yau with torsion.

We express also in a�ne local coordinates the conditions on h , i so that (TM, J�, g�) is balanced or
pluriclosed and we give many examples. We show that an a�ne-Riemann manifold (M,r, h , i) so that
(TM, J�, g�) is Vaisman non-Kähler carries a codimension one totally geodesic foliation and h , i is �at
when dimM = �.

6. In Section 7, we study the class of a�ne-Riemann manifolds (M,r, h , i) satisfying D(�) = �. We call
the elements of this class rigid a�ne-Riemann manifolds. We show for this class that, for any k ≥ �,
(TkM, Jk , gk) is locally conformally balanced. By using a theorem by Kostant [19, Theorem 4], we show
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that when M is simply-connected and h , i is complete then (M, h , i) is a symmetric space and there is
a connected Lie group G which acts transitively and reducibly on M by preserving both r and h , i. We
determine the elements of such class when dimM ≤ �.

7. In Section 8,we study the class of a�ne-Riemannmanifolds (M,r, h , i) satisfying trh , i(�) = trh , i(�*) =
�. We call the elements of this class in�nitely balanced a�ne-Riemannmanifolds. Indeed, we prove that
the condition trh , i(�) = trh , i(�*) = � and � =� � imply that, for any k ≥ �, (TkM, Jk , gk) is balanced
(non-Kähler when k ≥ �) and their Ricci forms ρCk and ρBk vanishes. Moreover, if � = �*, i.e, h , i is Hes-
sian then the Ricci curvature of h , i is nonnegative and (TM, J�, g�) is Kähler Ricci-�at. In dimension
2, we show that trh , i(�) = trh , i(�*) = � implies that h , i is Hessian and the curvature is nonnegative.
Moreover, if h , i is complete then � = �, i.e.,r is the Levi-Civita of h , i. Non trivial examples of in�nitely
balanced a�ne-Riemann manifolds exist. We show that, for any n ≥ �, there is an a�ne-Riemann struc-
ture (r, h , i) on Sn × R such that the corresponding � satis�es, � = � �, � = �* and trh , i(�) = �. Thus,
(T(Sn × R), J�, g�) is Kähler Ricci-�at and, for any k ≥ �, (Tk(Sn × R), Jk , gk) is balanced non-Kähler and
their Ricci forms ρCk and ρ

B
k vanish.

8. In Section 9, by using the classi�cation of 3-dimensional real Novikov algebras, we give the in�nitesimal
part of a large class of generalized Kähler left invariant structures on some 6-dimensional Lie groups. We
give also a large class of Calabi-Yau with torsion left invariant structures.

9. We think that one of the important contribution of this work is the development of a powerful machinery
which permits the construction of large classes of examples of generalized Kähler manifolds (see Theo-
rems 6.2, 6.3, 8.4, Corollaries 6.1, 7.1, Examples 1-5 and Tables 3-8).

� The canonical sequence of Hermitian structures associated to an
a�ne-Riemann manifold

In this section, we introduce the Hermitian structures and the a�ne connections on the sequence of tangent
bundles associated to an a�ne-Riemannmanifold and we show that these structures are left invariant when
the a�ne-Riemann structure is left invariant.

�.� The Hermitian structures on the sequence of tangent bundles associated to an
a�ne-Riemann manifold

Let (M,r, h , i) be an a�ne-Riemann manifold of dimension n. Let π� : TM �! M be the canonical
projection and Q : TTM �! TM the connection map ofr locally given by

Q

0

@
nX

i=�
bi∂xi +

nX

j=�
Zj∂µj

1

A =
nX

l=�

0

@Zl +
nX

i=�

nX

j=�
biµjΓ lij

1

A ∂xl ,

where (x�, . . . , xn) is a system of local coordinates, (x�, . . . , xn , µ�, . . . , µn) the associated system of coordi-
nates on TM andr∂xi ∂xj =

Pn
l=� Γ

l
ij∂xl . Then

TTM = ker Tπ� � kerQ.

For X 2 Γ(TM), we denote by Xh its horizontal lift and by Xv its vertical lift. The �ow of Xv is given by
ΦX(t, (x, u)) = (x, u + tX(x)) and Xh(x, u) = h(x,u)(X(x)), where h(x,u) : TxM �! kerQ(x, u) is the inverse
of the restriction of dπ� to kerQ(x, u). Since the curvature ofr vanishes, for any X, Y 2 Γ(TM),

[Xh , Yh] = [X, Y]h , [Xh , Yv] = (rXY)v and [Xv , Yv] = �. (7)

The connectionr� on TM given by

r�
Xh Yh = (rXY)h , r�

Xh Yv = (rXY)v and r�
Xv Yh = r�

Xv Yv = �, (8)
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for any X, Y 2 Γ(TM), is �at torsionless and de�nes an a�ne structure on TM. The tensor �eld J� : TTM �!
TTM given by J�Xh = Xv and J�Xv = −Xh satis�es J�� = −IdTTM, r�(J�) = � and hence de�nes a complex
structure on TM.

On the other hand, we de�ne on TM a Riemannian metric g� by

g�(Xh , Yh) = hX, Yi � π�, g�(Xv , Yv) = hX, Yi � π� and g�(Xh , Yv) = �, X, Y 2 Γ(TM).

This metric is Hermitian with respect to J� and its fundamental form ω = g�(J�., .) satis�es

ω(Xh , Yh) = ω(Xv , Yv) = � and ω(Xh , Yv) = −ω(Yv , Xh) = hX, Yi � π�, X, Y 2 Γ(TM). (9)

Actually, we have a sequence of Hermitian structures. The a�ne-Riemann manifold (TM,r�, g�) gives rise
to a Hermitian structure (TTM, J�, g�) and a �at torsionless connection r� on TTM. By induction, we get a
sequence of Hermitian structures (TkM, Jk , gk)where TkM = T(Tk−�M) and T�M = TM. Moreover, each TkM
carries a �at torsionless connectionrk such thatrk(Jk) = �.

�.� The canonical sequence of Hermitian structures associated to a left invariant
a�ne-Riemann structure

Let (G,r, h , i) be an a�ne-Riemann manifold such that G is a connected Lie group and (r, h , i) are left
invariant. Let (g = TeG, [ , ]) be the Lie algebra of G. For any a 2 g, we denote by a− the left invariant vector
�eld on G associated to a. The a�ne connectionr de�nes a product • on g by

(a • b)− = (ra−b−)(e), a, b 2 g.

This product is Lie-admissible, i.e., a • b − b • a = [a, b] and left symmetric, i.e., for any a, b, c 2 g,

ass(a, b, c) = ass(b, a, c),

where ass(a, b, c) = (a • b) • c − a • (b • c). This is equivalent to L : g �! End(g), a 7! La is a representation
of Lie algebras, where Lab = a • b,

Put Φ(g) = g × g and de�ne on Φ(g) a product *, a bracket [ , ]Φ, an isomorphism J : Φ(g) �! Φ(g) and
a scalar product h , iϕ by

(a, b) * (c, d) = (a • c, a • d), [(a, b), (c, d)]Φ = ([a, c], a • d − c • b), (10)
J(a, b) = (−b, a) and h(a, b), (c, d)iΦ = ha, ci + hb, di, (11)

for any (a, b), (c, d) 2 Φ(g). It is easy to check that * is left symmetric and hence its commutator which is
[ , ]Φ is a Lie bracket. Moreover, for any (a, b), (c, d) 2 Φ(g),

NJ((a, b), (c, d)) = [J(a, b), J(c, d)]Φ − J[(a, b), J(c, d)]Φ − J[J(a, b), (c, d)]Φ − [(a, b), (c, d)]Φ = �.

On the other hand, let ρ : G �! GL(g) be the homomorphism of groups such that deρ = L and consider the
product on G × g given by

(p, a).(q, b) = (pq, b + ρ(q−�)(a)), p, q 2 G, a, b 2 g.

Proposition 2.1. (G × g, .) is a Lie group whose Lie algebra is (Φ(g), [ , ]Φ).

Proof. For any (p, a), (q, b) 2 G × g, (p, a)−� = (p−�, −ρ(p)(a)) and

L(p,a) � R(p−� ,−ρ(p)(a))(q, b) = (p, a)(q, b)(p−�, −ρ(p)(a))

= (pq, b + ρ(q−�)(a))(p−�, −ρ(p)(a))
= (pqp−�, −ρ(p)(a) + ρ(p)(b) + ρ(pq−�)(a)).
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So, for any (X, b), (Y , c) 2 T(e,�)(G × g),

Ad(p,a)(X, b) = (AdpX, ρ(p)(b) − ρ(p)(X • a))

and hence
[(X, b), (Y , c)] = ([X, Y], X • c − Y • b).

The triple (J, h , iΦ , *) induces a left invariant triple (J�, g�,r�) on G × g satisfying

J�(a, b)− = (−b, a)−, g�((a, b)−, (c, d)−) = h(a, b), (c, d)iΦ and r�
(a,b)− (c, d)

− =
�
(a, b) * (c, d)

�− , a, b, c, d 2 g.

Thus (G × g, J�, g�) is a left invariant Hermitian structure andr� is a left invariant �at torsionless connection
on G × g.

Denote by Θ : TG �! G × g the identi�cation Xp �! (p, TpLp−�Xp).

Theorem 2.1. Let (TG, J�, g�) be the canonical Hermitian structure associated to (G,r, h , i) and r� the
associated canonical a�ne connection. Then Θ sends (J�, g�,r�) to (J�, g�,r�), i.e., for any X, Y 2 Γ(TG),

g(X, Y) = g�(Θ*X, Θ*Y), Θ*(J�X) = J�Θ*X and Θ*(r�
XY) = r�

Θ*XΘ*Y .

To prove this theorem, we need some preparation.

Proposition 2.2. Let (G,D) be a Lie group endowed with a left invariant connection, τ : [�, �] �! G a curve
and V : [�, �] �! TG a vector �eld along τ. We de�ne τ` : [�, �] �! g andW : [�, �] �! g by

τ`(t) = Tτ(t)Lτ(t)−� (τ
′(t)) and W(t) = Tτ(t)Lτ(t)−� (V(t)).

Then V is parallel along τ with respectD if and only if, for any t 2 [�, �],

W ′(t) + τ`(t) •W(t) = �,

where u • v = (Du−v−)(e).

Proof. We consider (u�, . . . , un) a basis of g and (X�, . . . , Xn) the corresponding left invariant vector �elds.
Then

τ`(t) =
nX

i=�
τ`i (t)ui , W(t) =

nX

i=�
Wi(t)ui , τ′(t) =

nX

i=�
τ`i (t)Xi , V(t) =

nX

i=�
Wi(t)Xi .

Then

DtV(t) =
nX

i=�
W ′

i(t)Xi +
nX

i=�
Wi(t)Dτ′(t)Xi

=
nX

i=�
W ′

i(t)Xi +
nX

i,j=�
Wi(t)τ`j (t)DXj Xi

=
nX

i=�
W ′

i(t)Xi +
nX

i,j=�
Wi(t)τ`j (t)(uj • ui)−

=
⇣
W ′(t) + τ`(t) •W(t)

⌘−

and the result follows.

Proposition 2.3. Let (G,r, h , i) be a left invariant a�ne-Riemann structure on a connected Lie group. Then:

1. For any X 2 TpG and any a 2 g,

TΘ(Xv)(p, a) = (�, TpLp−� (X)) and TΘ(Xh)(p, a) = (X, −TpLp−� (X) • a).
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2. For any (a, b) 2 g × g, (a, b)− = TΘ((a−)h + (b−)v).

Proof.1. The �rst relation is obvious. Recall that the horizontal lift of X at up 2 TG is given by

Xh(up) =
d
dt |t=�

V(t),

where V : [�, �] �! TG is the r-parallel vector �eld along a curve τ : [�, �] �! G such that τ(�) = p,
τ′(�) = X and V(�) = up. Put a = TpLp−� (up). By virtue of Proposition 2.2,

TupΘ(Xh) = d
dt |t=�

(τ(t),W(t)) = (X, −TpLp−� (X) • a).

2. For any p 2 G and u 2 g, we have

(a, b)−(p, u) = T(e,�)L(p,u)(a, b)

= d
dt |t=�

(p, u)(exp(ta), tb)

= d
dt |t=�

(p exp(ta), tb + ρ(exp(−ta))(u))

= (a−(p), b − a • u)
= (a−(p), −TpLp−� (a−(p)) • u) + (�, TpLp−� (b−(p))

= TΘ(a−)h(p, u) + TΘ(b−)v(p, u).

�.�.�.� Proof of Theorem 2.1
Proof. By virtue of Proposition 2.3,

J�(a, b)− = (−b, a)− = −TΘ(b−)h + TΘ(a−)v ,

= TΘJ�((b−)v) + TΘJ�((a−)h)
= TΘJ�(TΘ)−�(a, b)−.

The other relations can be deduced similarly.

� Basic tools for the study of the canonical sequence of Hermitian
structures associated to an a�ne-Riemann manifold

Trough-out this section and the next one, (M,r, h , i) is an a�ne-Riemann manifold of dimension n, D the
Levi-Civita connection of h , i and µ the Riemannian volume. Let (TkM, Jk , gk ,rk), k ≥ �, be the canonical
sequence of Hermitian structures associated to (M,r, h , i) endowed with the sequence of �at torsionless
connections. For any k ≥ �, we denote by πk : TkM �! Tk−�M the canonical projection. We consider the
di�erence tensor � and its dual �* given by (2), their traces given by (3) and the Koszul forms α and ξ given
by (4) and (5).

Since bothr andD are torsionless, � is symmetric and it is easy to check that, for any X, Y , Z, U 2 Γ(TM),

rX(h , i)(Y , Z) = h�XY + �*XY , Zi, hDX(�)(Y , Z), Ui = hDX(�*)(Y , U), Zi. (12)

Sincer is �at, the curvature K(X, Y) = D[X,Y] − [DX , DY ] of h , i satis�es

K(X, Y)Z = DY (�)(X, Z) − DX(�)(Y , Z) + [�X , �Y ]Z. (13)
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From the relation K(X, Y)* = −K(X, Y), we deduce that

K(X, Y)Z = DX(�*)(Y , Z) − DY (�*)(X, Z) + [�*X , �*Y ]Z (14)

and hence
DY (� + �*)(X, Z) − DX(� + �*)(Y , Z) = [�*X , �*Y ]Z − [�X , �Y ]Z. (15)

The �rst Koszul form α satis�es the following properties.

Proposition 3.1. For any X 2 Γ(TM),

rXµ = hX, trh , i(�*)iµ = tr(�X)µ = α(X)µ. (16)

In particular, the �rst Koszul 1-form α is closed.

Proof. Let (E�, . . . , En) be a local h , i-orthonormal frame.

rXµ(E�, . . . , En) = −
nX

i=�
µ(E�, . . . ,rXEi , . . . , En) = −

nX

i=�
hrXEi , Eii =

�
�

nX

i=�
rX(h , i)(Ei , Ei)

(12)= �
� h�XEi + �*XEi , Eii = tr(�X) = htrh , i(�*), Xi.

The fact that α is closed is a consequence of the fact that, for any X, Y 2 Γ(TM),

(r[X,Y] −rXrY +rYrX)µ = �.

Proposition 3.2. The di�erential of the fundamental form ω associated to (TM, J�, g�) is given by

dω(Xh , Yh , Zh) = dω(Xv , Yv , Zv) = dω(Xh , Yv , Zv) = � and dω(Xh , Yh , Zv) = h�*XY − �*YX, Zi � π�,

for any X, Y , Z 2 Γ(TM). Hence

(J�dω)(Xh , Yh , Zh) = (J�dω)(Xv , Yv , Zv) = (J�dω)(Xh , Yh , Zv) = � and (J�dω)(Xv , Yv , Zh) = −h�*XY−�*YX, Zi�π�.

Proof. From (7) and (9), we have obviously dω(Xh , Yh , Zh) = dω(Xv , Yv , Zv) = dω(Xh , Yv , Zv) = �. On the
other hand,

dω(Xh , Yh , Zv) = X.hY , Zi � π� − Y .hX, Zi � π� − h[X, Y], Zi � π� − hrXZ, Yi � π� + hrYZ, Xi � π�
= rX(h , i)(Y , Z) � π� −rY (h , i)(X, Z) � π�,
(12)= h�*XY − �*YX, Zi � π�.

As an immediate consequence of the expression of dω, the proof above, (14) and (15), we get the following
result which sums up some of the important properties of Hessian manifolds (see [23]). Recall that a Hessian
manifold is an a�ne-Riemann manifold (M,r, h , i) such that in any a�ne coordinates (x�, . . . , xn) there
exists a function ϕ such that h∂xi , ∂xj i = ∂�ϕ

∂xi∂xj for any i, j 2 {�, . . . , n}. This is equivalent to h , i satisfying
the Codazzi equation (6).

Corollary 3.1. (TM, J�, g�) is Kähler if and only if (M,r, h , i) is Hessian manifold which is also equivalent to
� = �*. In this case,

DY (�)(X, Z) = DX(�)(Y , Z) and K(X, Y) = [�X , �Y ], X, Y , Z 2 Γ(TM).

Let us compute now the Levi-Civita connectionrLC of (TM, J�, g�) and its Lee form.
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Proposition 3.3. For any X, Y 2 Γ(TM),

rLC
Xh Yh = (DXY)h , rLC

Xv Yv = −�� (�
*
XY + �*YX)h , rLC

Xv Yh = (�sYX)v and rLC
Xh Yv = (DXY)v − (�aXY)v ,

where
�a = �

� (� − �*) and �s = �
� (� + �*).

Proof. Let X, Y , Z 2 Γ(TM). From the Koszul formula and (7), we have obviously

�g(rLC
Xh Yh , Zv) = �g(rLC

Xv Yv , Zv) = �g(rLC
Xv Yh , Zh) = �.

On the other hand,

�g(rLC
Xh Yh , Zh) = �hDXY , Zi � π�,

�g(rLC
Xv Yv , Zh) = −Z.hX, Yi � π� + hrZX, Yi � π� + hrZY , Xi � π�

= −rZ(h , i)(X, Y) � π�
(12)= −h�ZX + �*ZX, Yi � π�,
= −h�*XY + �*YX, Zi � π�,

�g(rLC
Xv Yh , Zv) = Y .hX, Zi � π� − hrYX, Zi � π� − hrYZ, Xi � π�,

= rY (h , i)(X, Z) � π�
(12)= h�YX + �*YX, Zi � π�.

Proposition 3.4. The Lee form θ� of (TM, J�, g�) is given by

θ� = π*�(α − ξ ),

where α and ξ are the Koszul forms of (M,r, h , i). In particular, (TM, J�, g�) is balanced if and only if α = ξ
which is also equivalent to

trh , i(�* − �) = �.

Moreover, (TM, J�, g�) is locally conformally balanced if and only if dξ = �.

Proof. Let (E�, . . . , En) be a local h , i-orthonormal frame. Having in mind the expressions of rLC given in
the last proposition, for any X 2 Γ(TM),

−d*ω(Xh) =
nX

i=�

⇣
rLC

Ehi
ω(Ehi , Xh) +rLC

Evi ω(E
v
i , Xh)

⌘

=
nX

i=�

⇣
Ehi .ω(Ehi , Xh) − ω(rLC

Ehi
Ehi , Xh) − ω(Ehi ,rLC

Ehi
Xh) + Evi .ω(Evi , Xh) − ω(rLC

Evi E
v
i , Xh) − ω(Evi ,rLC

Evi X
h)
⌘

= �.

−d*ω(Xv) =
nX

i=�

⇣
rLC

Ehi
ω(Ehi , Xv) +rLC

Evi ω(E
v
i , Xv)

⌘

=
nX

i=�

⇣
Ehi .ω(Ehi , Xv) − ω(rLC

Ehi
Ehi , Xv) − ω(Ehi ,rLC

Ehi
Xv) + Evi .ω(Evi , Xv) − ω(rLC

Evi E
v
i , Xv) − ω(Evi ,rLC

Evi X
v)
⌘

=
nX

i=�

✓
Ei .hEi , Xi � π� − hDEi Ei , Xi � π� − hEi , DEi Xi � π� +

�
� hEi , �Ei X − �*Ei Xi � π�
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+h�*Ei Ei , Xi � π� −
�
� h�

*
Ei X + �*XEi , Eii � π�

◆

= htrh , i(�*) − trh , i(�), Xi � π�.

Finally,
θ�(Xh) = −d*ω(J�Xh) = htrh , i(�*) − trh , i(�), Xi � π�, θ�(Xv) = �

and we get the desired formula. Moreover, since α is closed then dθ� = � if and only if dξ = �.

Proposition 3.5. We have

d*θ� = d*(α − ξ ) � π� − htrh , i(�*) − trh , i(�), trh , i(�*)i � π�

and hence (TM, J�, g�) is Gauduchon if and only if

d*(α − ξ ) = |trh , i(�*)|� − htrh , i(�*), trh , i(�)i.

Proof. A straightforward computation using the de�nition of the divergence and the expressions ofrLC.

Proposition 3.6. 1. (TM, J�, g�) is locally conformally Kähler if and only if, for any X, Y 2 Γ(TM),

(n − �)(�*XY − �*YX) = θ�(X)Y − θ�(Y)X, (17)

where θ� = α − ξ .
2. (TM, J�, g�) is Vaisman if and only if (17) holds and the vector �eld Π := trh , i(�*−�) is parallel with respect

to both D andr.

Proof.1. (TM, J�, g�) is locally conformally Kähler if and only if (n − �)dω = θ� ^ ω. For any X, Y , Z 2 Γ(TM),

θ� ^ ω(Xh , Yh , Zh) = θ� ^ ω(Xv , Yv , Zv) = �,

θ� ^ ω(Xh , Yh , Zv) = θ�(Xh)hY , Zi � π� − θ�(Yh)hX, Zi � π�
= θ�(X) � π�hY , Zi � π� − θ�(Y) � π�hX, Zi � π�,

θ� ^ ω(Xh , Yv , Zv) = �

and the �rst assertion follows by virtue of Proposition 3.2.
2. (TM, J�, g�) is Vaisman if andonly if it is locally conformallyKähler andrLCθ� = �. Now, byusingProposition

3.3, for any X, Y 2 Γ(TM),

rLC
Xh (θ�)(Yh) = (DX(θ�)(Y))h , rLC

Xh (θ�)(Yv) = rLC
Xv (θ�)(Yh) = � and rLC

Xv (θ�)(Yv) = �
� θ�(�

*
XY + �*YX).

On the other hand, if (17) holds then θ�(�*XY −�*YX) = �. Thus (TM, J�, g�) is Vaisman if and only if (17) holds,
Dθ� = � and, for any X, Y 2 Γ(TM), θ�(�*XY) = �. This relation is equivalent to �X(Π) = � for any X 2 Γ(TM),
Dθ� = � is equivalent to DΠ = � and we get the desired result since � = D −r.

Let us compute the di�erence tensor Γ = rLC −r� of (TM,r�, g�) as well as its adjoint Γ*, the Koszul forms
αk, ξk as well as the Lee form θk of (TkM,rk , gk).

Proposition 3.7. For any X, Y 2 Γ(TM),

ΓXh Yh = (�XY)h , ΓXh Yv = ΓYv Xh = �
� (�XY + �*XY)v , ΓXv Yv = −�� (�

*
XY + �*YX)h ,

Γ*Xh Yh = (�*XY)h , Γ*Xh Yv = �
� (�XY + �*XY)v , Γ*Xv Yh = −�� (�XY + �*YX)v and Γ*Xv Yv = �

� (�
*
XY + �*YX)h ,

trg� (Γ) = (trh , i(�) − trh , i(�*))h , trg� (Γ*) = �(trh , i(�*))h ,

ξk = −θk , αk = �kπ*k � . . . � π*�(α) and θk = π*k � . . . � π*�((�
k − �)α − ξ ), k ≥ �.
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Proof. The expressions of Γ are an immediate consequence of Proposition 3.3 and (8) and one can deduce
easily Γ*. If (E�, . . . , En) is a local h , i-orthonormal frame then

trg� (Γ) =
nX

i=�

⇣
ΓEhi E

h
i + ΓEvi E

v
i

⌘
= (trh , i(�)−trh , i(�*))h and trg� (Γ*) =

nX

i=�

⇣
Γ*Ehi E

h
i + Γ*Evi E

v
i

⌘
= �(trh , i(�*))h .

This implies that ξ� = π*�(ξ − α) = −θ�, α� = �π*�(α) and hence

θ� = π*�(α� − ξ�) = π*� � π�(�α − ξ ), ξ� = π*�(ξ� − α�) = −θ� and α� = �π*�(α�) = ��π*� � π�(α).

By induction, we get all the desired formulas.

We end this section by a remark on the Hermitian structure (TM, J�, g�). Indeed, the fact that r�(J�) = �
makes the Hermitian structure (TM, J�, g�) particular as the following remark suggests. We don’t use this
remark in our paper but, may be, it can be used in further studies.

Remark 1. One can check that the tensor Γ satis�es, for any U, V 2 Γ(TTM),

ΓJ�U J�V − J�ΓJ�UV − J�ΓU J�V − ΓUV = �. (18)

By using the fact thatr�(J�) = � and the known formula (see [18, Proposition 4.2])

�g�(rLC
U (J�)V ,W) = �dω(U, J�V , J�W) − �dω(U, V ,W) + g�(NJ� (V ,W), J�U)

we get that (18) is equivalent to

dω(J�U, J�V , J�W) = dω(J�U, V ,W) + dω(U, J�V ,W) + dω(U, V , J�W).

� A�ne-Riemann manifolds with pluriclosed (TM, J�, g�)
In this section, we give the conditions so that (TM, J�, g�) is pluriclosed and we generalize a result obtained
in the theory of Hessian manifolds.

Let us compute ddcω = −dJ−�� dJ�ω = dJ�dω.

Proposition 4.1. For any X, Y , Z, U 2 Γ(TM),
(
dJ�dω(Xh , Yh , Zh , Uh) = dJ�dω(Xv , Yv , Zv , Uv) = dJ�dω(Xh , Yh , Zh , Uv) = dJ�dω(Xh , Yv , Zv , Uv) = �,
dJ�dω(Xh , Yh , Zv , Uv) = �hK(X, Y)Z − (�*X � �Y − �*Y � �X)Z, Ui � π�.

In particular, (TM, J�, g�) is pluriclosed if and only if for any X, Y 2 Γ(TM), the curvature K of D satis�es

K(X, Y) = �*X � �Y − �*Y � �X .

Proof. Put ν(X, Y) = �*XY − �*YX. By using Proposition 3.2, we get easily

dJ�dω(Xh , Yh , Zh , Uh) = dJ�dω(Xv , Yv , Zv , Uv) = dJ�dω(Xh , Yh , Zh , Uv) = dJ�dω(Xh , Yv , Zv , Uv) = �.

On the other hand, having in mind (7), let us compute S := dJ�dω(Xh , Yh , Zv , Uv). Indeed,

S = Xh .J�dω(Yh , Zv , Uv) − Yh .J�dω(Xh , Zv , Uv) − J�dω([X, Y]h , Zv , Uv) + J�dω((rXZ)v , Yh , Uv)

− J�dω((rXU)v , Yh , Zv) − J�dω((rYZ)v , Xh , Uv) + J�dω((rYU)v , Xh , Zv)
= −X.hν(Z, U), Yi � π� + Y .hν(Z, U), Xi � π� + hν(Z, U), [X, Y]i � π� + hν(rXZ, U), Yi � π�
+ hν(Z,rXU), Yi � π� − hν(rYZ, U), Xi � π� − hν(Z,rYU), Xi � π�
= −X.h�*ZU, Yi � π� + X.h�*UZ, Yi � π� + Y .h�*ZU, Xi � π� − Y .h�*UZ, Xi � π� + h�*ZU, [X, Y]i � π�
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− h�*UZ, [X, Y]i � π� + h�*DXZU, Yi � π� − h�*UDXZ, Yi � π� − h�*�XZU, Yi � π� + h�*U�XZ, Yi � π�
+ h�*ZDXU, Yi � π� − h�*DXUZ, Yi � π� − h�*Z�XU, Yi � π� + h�*�XUZ, Yi � π�
− h�*DYZU, Xi � π� + h�*UDYZ, Xi � π� + h�*�Y ZU, Xi � π� − h�*U�YZ, Xi � π�
− h�*ZDYU, Xi � π� + h�*DYUZ, Xi � π� + h�*Z�YU, Xi � π� − h�*�YUZ, Xi � π�.

We simplify this expression by using the properties of D:

S = −hDX�
*
ZU, Yi � π� + hDX�

*
UZ, Yi � π� + hDY�

*
ZU, Xi � π� − hDY�

*
UZ, Xi � π�

+ h�*DXZU, Yi � π� − h�*UDXZ, Yi � π� − h�*�XZU, Yi � π� + h�*U�XZ, Yi � π�
+ h�*ZDXU, Yi � π� − h�*DXUZ, Yi � π� − h�*Z�XU, Yi � π� + h�*�XUZ, Yi � π�
− h�*DYZU, Xi � π� + h�*UDYZ, Xi � π� + h�*�Y ZU, Xi � π� − h�*U�YZ, Xi � π�
− h�*ZDYU, Xi � π� + h�*DYUZ, Xi � π� + h�*Z�YU, Xi � π� − h�*�YUZ, Xi � π�
= −hDX(�*)(Z, U), Yi � π� + hDX(�*)(U, Z), Yi � π� + hDY (�*)(Z, U), Xi � π� − hDY (�*)(U, Z), Xi � π�
− h�*�XZU, Yi � π� + h�*U�XZ, Yi � π� − h�*Z�XU, Yi � π� + h�*�XUZ, Yi � π�
+ h�*�Y ZU, Xi � π� − h�*U�YZ, Xi � π� + h�*Z�YU, Xi � π� − h�*�YUZ, Xi � π�.

By using (12), we get

S = −hDX(�)(Z, Y), Ui � π� + hDX(�)(U, Y), Zi � π� + hDY (�)(Z, X), Ui � π� − hDY (�)(U, X), Zi � π�
− hU, �Y � �XZi � π� + h�*Y � �XZ, Ui � π� − hU, �*X � �YZi � π� + hZ, �Y � �XUi � π�
+ hU, �X � �YZi � π� − h�*X � �YZ, Ui � π� + hU, �*Y � �XZi � π� − h�*Y � �*XZ, Ui � π�
(13)= hK(X, Y)Z, Ui � π� − hK(X, Y)U, Zi � π� + �h(�*Y � �X − �*X � �Y )Z, Ui � π�
= �hK(X, Y)Z − (�*X � �Y − �*Y � �X), Ui � π�.

In [23, Theorem 8.8 pp. 162], Shima proved that if (M,r, h , i) is a compact Hessian manifold such that its
�rst Koszul form vanishes thenr is the Levi-Civita connection of h , i. Note that in this case the �rst Koszul
form and the dual Koszul form coincide. The following theorem is a generalization of this result under an
additional assumption, namely,r is complete. It will be interesting to see if we can drop this assumption.

Theorem 4.1. Let (M,r, h , i) be an a�ne-Riemann manifold such that (TM, J�, g�) is pluriclosed and the
dual Koszul form of (M,r, h , i) vanishes. Then the Ricci curvature of h , i is nonnegative. Moreover, if M is
compact andr is complete then � = �, i.e.,r is the Levi-Civita connection of h , i.

Proof. Note that the vanishing of dual Koszul form is equivalent to trh , i(�) = �. From the relation

K(X, Y) = �*X � �Y − �*Y � �X

and the fact that trh , i(�) = �, we deduce that the Ricci curvature of h , i is given by

ric(X, X) = tr(�*X � �X) ≥ �

and ric(X, X) = � if and only if �X = �. By using the splitting theorem of J. Cheeger and D. Gromoll (see for
instance [5, Corollary 6.67 pp. 168]), we deduce that if M is compact its universal Riemannian covering is
isometric to a Riemannian product (M × Rd , h , i� × h , i�) where M is compact and h , i� is the canonical
metric of Rd. But if r is complete the universal covering of M is di�eomorphic to Rn which completes the
proof.
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� The Bismut and Chern connections of (TM, J�, g�) and their
curvatures

Let (M,r, h , i) be an a�ne-Riemann manifold of dimension n. The expressions of the Bismut and Chern
connections of (TM, J�, g�) can be deduced easily from (1) and Propositions 3.2-3.3.

Proposition 5.1. We have, for any X, Y 2 Γ(TM),
(
rB

Xh Yh = (DXY)h , rB
Xv Yv = −(�*YX)h ,

rB
Xv Yh = (�*YX)v , rB

Xh Yv = (DXY)v .
and

(
rC

Xh Yh = (DXY)h − (�aXY)h , rC
Xv Yv = −(�sXY)h ,

rC
Xv Yh = (�sXY)v , rC

Xh Yv = (DXY)v − (�aXY)v .

where
�a = �

� (� − �*) and �s = �
� (� + �*).

Now, we give the curvature RB ofrB.

Proposition 5.2. For any X, Y , Z 2 Γ(TM),
8
>>>>><

>>>>>:

RB(Xh , Yh)Zh = (K(X, Y)Z)h , RB(Xh , Yh)Zv = (K(X, Y)Z)v ,
RB(Xv , Yv)Zv = (�*�*

ZY
X)v − (�*�*

ZX
Y)v , RB(Xv , Yv)Zh = (�*�*

ZY
X)h − (�*�*

ZX
Y)h ,

RB(Xh , Yv)Zv = (�*Z � �XY)h + (DX(�*)(Z, Y))h ,
RB(Xh , Yv)Zh = −(�*Z � �XY))v − (DX(�*)(Z, Y))v ,

where K is the curvature of D. Moreover, the Ricci form is given by

ρB(Xh , Yh) = ρB(Xv , Yv) = � and ρB(Xh , Yv) = −h�XY , trh , i�i � π� − hDXtrh , i(�), Yi � π�.

In particular, if trh , i(�) = � then (TM, J�, g�) is Calabi-Yau with torsion, i.e., ρB = �.

Proof. We have

RB(Xh , Yh)Zh = (K(X, Y)Z)h

RB(Xh , Yh)Zv = (K(X, Y)Z)v ,

RB(Xv , Yv)Zv = rB
Xv (�*ZY)h −rB

Yv (�*ZX)h = (�*�*
ZY
X)v − (�*�*

ZX
Y)v ,

RB(Xv , Yv)Zh = −rB
Xv (�*ZY)v +rB

Yv (�*ZX)v = (�*�*
ZY
X)h − (�*�*

ZX
Y)h ,

RB(Xh , Yv)Zv = rB
(rXY)v Z

v +rB
Xh (�*ZY)h +rB

Yv (DXZ)v

= −(�*Z(rXY))h + (DX�
*
ZY)h − (�*DXZY)

h ,

= (�*Z � �XY)h + (DX�
*
ZY)h − (�*DXZY)

h − (�*Z(DXY))h ,

RB(Xh , Yv)Zh = rB
(rXY)v Z

h −rB
Xh (�*ZY)v +rB

Yv (DXZ)h

= (�*Z(rXY))v − (DX�
*
ZY)v + (�*DXZY)

v

= −(�*Z(�XY))v + (�*Z(DXY))v − (DX�
*
ZY)v + (�*DXZY)

v .

Let (E�, . . . , En) be a local orthonormal frame of h , i. Then

�ρB(Xh , Yh) =
nX

i=�

⇣
g�(RB(Xh , Yh)Ehi , Evi ) − g�(RB(Xh , Yh)Evi , Ehi )

⌘
= �,

�ρB(Xv , Yv) =
nX

i=�

⇣
g�(RB(Xv , Yv)Ehi , Evi ) − g�(RB(Xv , Yv)Evi , Ehi )

⌘
= �,
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�ρB(Xh , Yv) =
nX

i=�

⇣
g�(RB(Xh , Yv)Ehi , Evi ) − g�(RB(Xh , Yv)Evi , Ehi )

⌘

=
nX

i=�

⇣
−�h�*Ei � �XY + DX(�*)(Ei , Y), Eii

⌘

= −�h�XY , trh , i�i � π� − �
nX

i=�
hDX(�*)(Ei , Y), Eii � π�

(12)= −�h�XY , tr�i � π� − �
nX

i=�
hDX(�)(Ei , Ei), Yi � π�

= −�h�XY , trh , i�i � π� − �htrh , i(DX(�)), Yi � π�.

Fix a point p 2 M. It is known that there exists a local orthonormal frame (E�, . . . , En) in a neighborhood of
p such that (DEj)(p) = � for j = �, . . . , n. For any X 2 Γ(TM),

trh , i(DX(�)) =
nX

i=�
DX(�)(Ei , Ei)

= DX(trh , i(�)) − ��DXEi Ei

By evaluating at p we get that trh , i(DX(�))(p) = DX(trh , i(�))(p) which completes the proof.

We give also the curvature RC ofrC.

Proposition 5.3. For any X, Y , Z 2 Γ(TM),
8
>>>>><

>>>>>:

RC(Xh , Yh)Zh = RC(Xv , Yv)Zh = ([�sX , �sY ]Z)h ,
RC(Xh , Yh)Zv = RC(Xv , Yv)Zv = ([�sX , �sY ]Z)v ,
RC(Xh , Yv)Zh = −(DX(�s)(Y , Z))v + ([�aX , �sY ]Z)v − (�s�XYZ)

v ,
RC(Xh , Yv)Zv = (DX(�s)(Y , Z))h − ([�aX , �sY ]Z)h + (�s�XYZ)

h ,

where K is the curvature of D. Moreover, the Ricci form is given by

ρC(Xh , Yh) = ρC(Xv , Yv) = � and ρC(Xh , Yv) = −h�XY , trh , i(�*)i � π� − hDXtrh , i(�*), Yi � π�.

In particular, if trh , i(�*) = � then the Ricci form ρC of (TM, J�, g�) vanishes.

Proof. By using Proposition 5.1,

RC(Xh , Yh)Zh = (D[X,Y]Z)
h − (�a[X,Y]Z)

h −rC
Xh (DYZ)h +rC

Xh (�aYZ)h +rC
Yh (DXZ)h −rC

Yh (�aXZ)h

= (D[X,Y]Z)
h − (�a[X,Y]Z)

h − (DXDYZ)h + (�aXDYZ)h + (DX�
a
YZ)h − (�aX�aYZ)h

+ (DYDXZ)h − (�aYDXZ)h − (DY�
a
XZ)h + (�aY�aXZ)h

= (K(X, Y)Z)h + (DX(�a)(Y , Z))h − (DY (�a)(X, Z))h + ([�aY , �aX]Z)h .

RC(Xv , Yv)Zv = rC
Xv (�sYZ)h −rC

Yv (�sXZ)h

= (�sX�sYZ)v − (�sY�sXZ)v = ([�sX , �sY ]Z)v ,

RC(Xv , Yv)Zh = −rC
Xv (�sYZ)v +rC

Yv (�sXZ)v

= ([�sX , �sY ]Z)h .

RC(Xh , Yv)Zh = rC
(rXY)v Z

h −rC
Xh (�sYZ)v +rC

Yv (DXZ)h −rC
Yv (�aXZ)h
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= (�sDXYZ)
v − (�s�XYZ)

v − (DX�
s
YZ)v + (�aX�sYZ)v + (�sYDXZ)v − (�sY�aXZ)v

= −(DX(�s)(Y , Z))v + ([�aX , �sY ]Z)v − (�s�XYZ)
v ,

RC(Xh , Yv)Zv = rC
(rXY)v Z

v +rC
Xh (�sYZ)h +rC

Yv (DXZ)v −rC
Yv (�aXZ)v

= (�s�XYZ)
h − (�sDXYZ)

h + (DX�
s
YZ)h − (�aX�sYZ)h − (�sYDXZ)h + (�sY�aXZ)h ,

= (DX(�s)(Y , Z))v − ([�aX , �sY ]Z)v + (�s�XYZ)
v ,

Now, by using (14) and (15)

RC(Xh , Yh)Zh = (DY (�)(X, Z))h − (DX(�)(Y , Z))h + ([�X , �Y ]Z)h + +(DX(�a)(Y , Z))h − (DY (�a)(X, Z))h + ([�aY , �aX]Z)h

= �
�DY (� + �*)(X, Z) − �

�DX(� + �*)(Y , Z) + ([�X , �Y ]Z)h + ([�aY , �aX]Z)h

= �
� ([�

*
X , �*Y ]Z)h −

�
� ([�X , �Y ]Z)

h + ([�X , �Y ]Z)h +
�
� ([�Y − �*Y , �X − �*X]Z)h

= �
� ([�

*
X , �*Y ]Z)h +

�
� ([�X , �Y ]Z)

h + �
� ([�Y − �*Y , �X − �*X]Z)h

= �
� ([�

*
X , �*Y ]Z)h +

�
� ([�X , �Y ]Z)

h − �
� ([�Y , �

*
X]Z + [�*Y , �X]Z)h

= [�sX , �sY ].

Let (E�, . . . , En) be a local orthonormal frame of h , i. We have obviously, ρC(Xh , Yh) = ρC(Xv , Yv) = �. Then

�ρC(Xh , Yv) =
nX

i=�

⇣
g�(RC(Xh , Yv)Ehi , JEhi ) + g�(RC(Xh , Yv)Evi , JEvi )

⌘

=
nX

i=�

⇣
g�(RC(Xh , Yv)Ehi , Evi ) − g�(RC(Xh , Yv)Evi , Ehi )

⌘

= �
nX

i=�

�
h−DX(�s)(Y , Ei) + [�aX , �sY ]Ei − �s�XYEi , Eii � π�

�

= −�tr(��XY ) � π� −
nX

i=�
hDX(�)(Y , Ei), Eii � π� −

nX

i=�
hDX(�*)(Y , Ei), Eii � π�

(16)−(12)= −�h�XY , trh , i(�*)i � π� − �htrh , i(DX(�*)), Yi � π�.

The same argument as at the end of the proof of Proposition 5.2 completes the proof.

� The canonical sequence of Hermitian structures of an
a�ne-Riemann manifold: global and local results

In this section, we prove a global result on the sequence (TkM, Jk , gk), we give in local a�ne coordinates
the necessary and su�cient conditions for (TM, J�, g�) to be balanced or pluriclosed. We illustrate these re-
sults by many examples and we give some properties of a�ne-Riemann manifolds for which (TM, J�, g�) is
Vaisman.

Let us start with the following result which constitutes one of the main results of this paper.

Theorem 6.1. Let (M,r, h , i) be an a�ne-Riemann manifold. Then:

1. If � = � then, for any k ≥ �,rk is the Levi-Civita connection of gk and (TkM, Jk , gk) is Kähler �at.
2. For some k ≥ �, (TkM, Jk , gk) is Kähler if and only if � = �.
3. For some k ≥ �, (TkM, Jk , gk) is locally conformally balanced if andonly if (TM, J�, g�) is locally conformally

balanced and this is equivalent to dξ = �.
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4. For k� ≥ �, (Tk�M, Jk� , gk� ) is balanced if and only if

trh , i(�) = (�k� − �)trh , i(�*). (19)

In this case, (Tk�+�M, Jk�+�, gk�+�) is Calabi-Yau with torsion and for any k = � k�, (TkM, Jk , gk) is locally
conformally balanced.

5. If trh , i(�) = trh , i(�*) = � then, for any k ≥ �, (TkM, Jk , gk) is balanced, Calabi-Yau with torsion and its
Chern Ricci form vanishes.

Proof.1. Note �rst that � = � if and only if D = r. On the other hand, it is obvious from Proposition 3.7 that
� = � if and only if the operator di�erence Γ for (TM,r�, g�) vanishes. By induction, we get that � = � if and
only if, for any k ≥ �, the operator di�erence Γk of (TkM,rk , gk) vanishes and the result follows.

2. According to Corollary 3.1, (T�M, J�, g�) is Kähler if and only if Γ* = Γ. But from Proposition 3.7, this implies
that for any X, Y 2 Γ(TM)

ΓXh Yh = (�XY)h = Γ*Xh Yh = (�*XY)h and ΓXv Yv = −�� (�
*
XY + �*YX)h = Γ*Xv Yv = �

� (�
*
XY + �*YX)h

and hence � = �. By induction, we get the result.
3. Fix k ≥ �. Then (TkM, Jk , gk) is locally conformally balanced if and only if its Lee form θk is closed. But from

Proposition 3.7, θk = π*k � . . . � π*�((�
k − �)α − ξ ). The �rst Koszul form α being closed we get the result.

4. Fix k� ≥ �. Then (Tk�M, Jk� , gk� ) is balanced if and only if θk� = π*k� � . . . � π
*
�((�k� − �)α − ξ ) = � which is

equivalent to trh , i(�) = (�k� − �)trh , i(�*). But from Proposition 3.7, θk = −ξk and one can use Proposition
5.2 to deduce that if (Tk�M, Jk� , gk� ) is balanced then (T

k�+�M, Jk�+�, gk�+�) is Calabi-Yau with torsion. On the
other hand, since α is closed then dξ = � which completes the proof.

5. It is a consequence of what above and Propositions 5.2-5.3.

Example 1. 1. In the item 4 of Theorem 6.1, one can build a balanced Hermitian structure on TkM by solving
an equation on (M,r, h , i). Let us give some examples of this situation.
(a) We consider the left symmetric product onR� given by

e� • e� = ae�, e� • e� = ae� + e�, e� • e� = e� + ae�, e� • e� = ae�, e� • e� = ae�.

The associated non vanishing Lie brackets are given by

[e�, e�] = e�, [e�, e�] = e�.

We denote by G the connected simply-connected Lie group associated to (R�, [ , ]) and byr the left in-
variant �at torsionless connection on G de�ned by •. For a = �, the left invariantmetric on G associated

to the scalar product

2

6664

� � �

� � �

� � �

3

7775
onR� satis�es (19) for k� = � with trh , i(�) = � � and trh , i(�*) = � �.

Thus (T�G, J�, g�) is balanced, (T�G, J�, g�) is Calabi-Yauwith torsion and, for any k = � �, (TkG, Jk , gk)
is locally conformally balanced not balanced.

(b) We consider the left symmetric product onR� given by

e� • e� = ae�, e� • e� = (� + a)e�, e� • e� = (� + a)e�, e� • e� = ae�, e� • e� = ae�.

The associated non vanishing Lie brackets are given by

[e�, e�] = e�, [e�, e�] = e�.

We denote by G the connected simply-connected Lie group associated to (R�, [ , ]) and byr the left in-
variant �at torsionless connection on G de�ned by •. For a = �

� , the left invariantmetric on G associated
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to the scalar product

2

6664

λ � �

� µ �

� � ν

3

7775
onR� satis�es (19) for k� = � with trh , i(�) = � � and trh , i(�*) = � �.

Thus (T�G, J�, g�) is balanced, (T�G, J�, g�) is Calabi-Yauwith torsion and, for any k =� �, (TkG, Jk , gk)
is locally conformally balanced not balanced.

Let us compute the Koszul forms of an a�ne-Riemann manifold in local a�ne coordinates.

Proposition 6.1. Let (M,r, h , i) be an a�ne-Riemann manifold. For any system of a�ne coordinates
(x�, . . . , xn),

α = �
�d ln(detG) and ξ =

nX

j=�

0

@
X

h,k
µkh

∂µjh
∂xk

1

A dxj − α, (20)

where µhk = h∂xh , ∂xk i and the matrix (µhk)�≤h,k≤n = G−� where G = (µhk)�≤h,k≤n.

Proof. Let (x�, . . . , xn) be a system of a�ne coordinates. The Riemannian volume µ is given by

µ =
p
detGdx� ^ . . . ^ dxn

and the �rst formula is a consequence of the relationrXµ = α(X)µ for any X 2 Γ(TM) (see Proposition 3.1).
On the other hand, we consider a local orthonormal frame (E�, . . . , En) of h , i and we denote by P =

(pij)�≤i,j≤n the passage matrix from (∂x� , . . . , ∂xn ) to (E�, . . . , En). We have PtGP = In. For any j = �, . . . , n,

α(∂xj ) =
nX

i=�
h�∂xj Ei , Eii

=
X

i,h,k
pkiphihD∂xj ∂xk , ∂xh i

= �
�
X

h,k
mkh

✓
∂µhk
∂xj

+
∂µjh
∂xk

−
∂µjk
∂xh

◆
.

In the same way,

ξ (∂xj ) =
nX

i=�
h�Ei Ei , ∂xj i

=
X

i,h,k
pkiphihD∂xh

∂xk , ∂xj i

= �
�
X

h,k
mkh

✓∂µkj
∂xh

+
∂µjh
∂xk

− ∂µhk
∂xj

◆

=
X

h,k
mkh

∂µjh
∂xk

− α(∂xj ),

where mkh =
Pn

i=� pkiphi. But (mkh)�≤k,h≤n = PPt and the result follows from the formula PtGP = In.

Example 2. Let f : R� �! R be a smooth function. Consider the a�ne-Riemann manifold (R�,r�, h , i)
wherer� is the canonical connection ofR� and

h , i =
 

cosh(f (x, y)) sinh(f (x, y))
sinh(f (x, y)) cosh(f (x, y))

!
.

Then deth , i = � and, by virtue of Proposition 6.1, α = �. According to Proposition 5.3, the Chern Ricci form of
(TR�, J�, g�) vanishes.
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The following theorem gives a large class of balanced metrics non-Kähler on C� endowed with its canonical
complex structure.

Theorem 6.2. We consider M = R� endowed with its canonical a�ne structure and h , i =
 

µ�� µ��
µ�� µ��

!

a Riemannian metric. Then (TM, J�, g�) is balanced if and only if there exist smooth functions ν : R� �! R,
f , h : R �! R such that

µ�� = ν, µ��(x�, x�) = f (x�) +
Z

∂ν
∂x�

(x�, x�)dx� and µ��(x�, x�) = h(x�) +
Z

∂ν
∂x�

(x�, x�)dx�.

Proof. According to Proposition 6.1,

(ξ − α)(∂x� ) = µ�� ∂µ��∂x�
+ µ��

✓
∂µ��
∂x�

+ ∂µ��
∂x�

◆
+ µ�� ∂µ��∂x�

− �
detG

∂(µ��µ�� − µ���)
∂x�

= �
detG

✓
µ��

∂µ��
∂x�

− µ��
✓
∂µ��
∂x�

+ ∂µ��
∂x�

◆
+ µ��

∂µ��
∂x�

◆
− �
detG

∂(µ��µ�� − µ���)
∂x�

= �
detG

✓
−µ��

✓
∂µ��
∂x�

− ∂µ��
∂x�

◆
+ µ��

✓
∂µ��
∂x�

− ∂µ��
∂x�

◆◆
,

(ξ − α)(∂x� ) = µ�� ∂µ��∂x�
+ µ��

✓
∂µ��
∂x�

+ ∂µ��
∂x�

◆
+ µ�� ∂µ��∂x�

− �
detG

∂(µ��µ�� − µ���)
∂x�

= �
detG

✓
µ��

∂µ��
∂x�

− µ��
✓
∂µ��
∂x�

+ ∂µ��
∂x�

◆
+ µ��

∂µ��
∂x�

◆
− �
detG

∂(µ��µ�� − µ���)
∂x�

= �
detG

✓
−µ��

✓
∂µ��
∂x�

− ∂µ��
∂x�

◆
+ µ��

✓
∂µ��
∂x�

− ∂µ��
∂x�

◆◆
.

Thus, the vanishing of ξ − α is equivalent to

∂µ��
∂x�

− ∂µ��
∂x�

= ∂µ��
∂x�

− ∂µ��
∂x�

= �

and we get the desired result.

Example 3. For any smooth functions f , h : R �! R, the metric

h , i =
 

ex+y + ef (x) ex+y

ex+y ex+y + eh(y)

!

satis�es the condition of the last corollary and hence de�nes a balanced Hermitian metric on C�.

The following theorem gives a large class of balanced metrics non-Kähler and also Calabi-Yau with torsion
metrics on Cm endowed with its canonical complex structure.

Theorem 6.3. We consider M = Rn endowed its canonical a�ne structure and h , i = Diag(µ�, . . . , µn) a
Riemannian metric. For k� ≥ �, (Tk�M, Jk� , gk� ) is balanced if and only if there exists (f�, . . . , fn) a family of
positive functions such that, for j = �, . . . , n,

∂fj
∂xj

= � and µj =
f� . . . fn
f (n�k�−�−�)j

.

In this case, (Tk�+�M, Jk�+�, gk�+�) is Calabi-Yau with torsion and, for any k =� k�, (TkM, Jk , gk) is locally con-
formally balanced.

Proof. Note �rst that, by virtue of (20), for any k ≥ �,

ξ − (�k − �)α = −
nX

j=�

∂(ln(ρj))
∂xj

dxj and ρj =
(µ�. . . . µn)�

k−�

µj
,
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and hence, according to Theorem 6.1, (Tk�M, Jk� , gk� ) is balanced if and only if, for j = �, . . . , n,

∂ρj
∂xj

= � and ρj =
(µ� . . . µn)�

k�−�

µj
.

We have obviously that ρ� . . . ρn = (µ� . . . µn)n�
k�−�−� and hence

µj =
(ρ� . . . ρn)

�
n�k�−�−�

ρj
.

If we put fj = (ρj)
�

n�k�−�−� , we get the desired result and Theorem 6.1 permits to conclude.

Now, we give the conditions in local coordinates so that (TM, J�, g�) is pluriclosed.

Theorem 6.4. Let (M,r, h , i) be an a�ne-Riemann manifold. Then (TM, J�, g�) is pluriclosed if and only if,
for any a�ne coordinates (x�, . . . , xn),

∂�µik
∂xj∂xh

+
∂�µjh
∂xi∂xk

=
∂�µjk
∂xi∂xh

+ ∂�µih
∂xj∂xk

, (21)

for any � ≤ i < j ≤ n and � ≤ k < h ≤ n and where µij = h∂xi , ∂xj i. When dimM = �, (21) reduces to

∂�µ��
∂x��

+ ∂�µ��
∂x��

= � ∂�µ��
∂x�∂x�

.

Proof. According to Proposition 4.1, (TM, J�, g�) is pluriclosed if and only if, for any � ≤ i < j ≤ n and any
� ≤ k < h ≤ n,

� = hK(∂xi , ∂xj )∂xk , ∂xh i − h�∂xj ∂xk , �∂xi ∂xh i + h�∂xi ∂xk , �∂xj ∂xh i

= −hD∂xi D∂xj ∂xk , ∂xh i + hD∂xj D∂xi ∂xk , ∂xh i − hD∂xj ∂xk , D∂xi ∂xh i + hD∂xi ∂xk , D∂xj ∂xh i

= −∂xi .hD∂xj ∂xk , ∂xh i + ∂xj .hD∂xi ∂xk , ∂xh i

= −��

 
∂�µkh
∂xi∂xj

+
∂�µjh
∂xi∂xk

−
∂�µkj
∂xi∂xh

− ∂�µkh
∂xi∂xj

− ∂�µih
∂xj∂xk

+ ∂�µki
∂xj∂xh

!

= −��

 
∂�µjh
∂xi∂xk

−
∂�µkj
∂xi∂xh

− ∂�µih
∂xj∂xk

+ ∂�µki
∂xj∂xh

!
.

Corollary 6.1. We consider M = Rn endowed with its canonical a�ne structure and h , i = Diag(µ�, . . . , µn).
Then (TM, J�, g�) is pluriclosed if and only if, for any i =� j, h =� j and h =� i,

∂�µi
∂x�j

+
∂�µj
∂x�i

= � and ∂�µi
∂xj∂xh

= �. (22)

In particular, if we take µi = efi(xi) then (TM, J�, g�) is pluriclosed.

Remark 2. The balanced structures constructed in Theorem 6.3 on TM forM = R� do not satisfy the equations
(22) (which is in accordwith the result given in [1] insuring that if a Hermitianmetric is balanced and pluriclosed,
then it must be Kähler).

We end this section by giving some properties of a�ne-Riemann manifolds with Vaisman tangent bundle.

Proposition 6.2. Let (M,r, h , i) be an a�ne-Riemann manifold such that (TM, J�, g�) is Vaisman. Then the
following assertions hold.
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1. If (TM, J�, g�) is non-Kähler then the vector �eld Π = tr(�*) − tr(�) is a non-vanishing parallel vector �eld
with respect r an D and the distribution Π? is integrable and de�nes a codimension one totally geodesic
foliation on M.

2. If dimM = � and (TM, J�, g�) is non-Kähler then the curvature of h , i vanishes.

Proof. According to Proposition 3.6, (TM, J�, g�) is Vaisman if and only if (17) holds and the vector �eld Π :=
trh , i(�* − �) is parallel with respect to both D andr.

1. One can deduce from (17) that if (TM, J�, g�) is non-Kähler then Π is non zero parallel. For any vector �elds
X, Y orthogonal to Π, DXY is also orthogonal to Π and hence F = Π? is integrable and de�nes a totally
geodesic foliation.

2. It is obvious that a Riemannian surface with a non zero parallel vector �eld is �at.

The geometry of Riemannian manifolds endowed with a codimension one totally geodesic foliation is well-
understood (see [13]). It is then an interesting problem to study a�ne-Riemann manifolds with Vaisman tan-
gent bundle.

Example 4. Consider R� endowed with a �at Riemannian metric h , i =
 

a b
b c

!
, a, b, c 2 R and the �at

torsionless connection given by

r∂x∂x = ∂y and r∂x∂y = r∂y∂y = �.

Then

�*∂x =

0

@
cb

ac−b�
c�

ac−b�

− b�
ac−b� − cb

ac−b�

1

A and �*∂y = �.

Consider the orthonormal frame (E�, E�) given by

E� =
�p
a
∂x and E� =

�p
a(ca − b�)

(a∂y − b∂x) .

By using this orthonormal frame, one can check easily that

trh , i(�*) = � and trh , i(�) =
c

ac − b� ∂y .

One can also check that

�*∂x∂y − �*∂y∂x = htrh , i(�*) − trh , i(�), ∂xi∂y − htrh , i(�*) − trh , i(�), ∂yi∂x

and hence (17) holds. Thus (TR�, J�, g�) is Vaisman and, actually this structure is left invariant.

� Rigid a�ne-Riemann manifolds
In this section, we study the case where (M,r, h , i) is an a�ne-Riemann manifold satisfying

D(�) = �. (23)

This condition implies that Dα = Dξ = � and in particular dξ = �. According to Theorem 6.1, we get the
following result which justi�es the study of this class of a�ne-Riemann manifolds.

Proposition 7.1. Let (M,r, h , i) be an a�ne-Riemann manifold satisfying (23). Then, for any k ≥ �,
(TkM, Jk , gk) is locally conformally balanced.

A�ne-Riemann manifolds satisfying (23) will be called rigid.
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Proposition 7.2. Let (M,r, h , i) be a Riemannian manifold endowed with a torsionless connection. Then the
following assertions are equivalent:

1. (M,r, h , i) is a rigid a�ne-Riemann manifold.
2. The di�erence tensor � = D −r satis�es:

D(�) = � and K(X, Y) = [�X , �y]

for any X, Y 2 Γ(TM).

Proof. It is a consequence of the following formula

K(X, Y)Z = Rr(X, Y)Z + DY (�)(X, Z) − DX(�)(Y , Z) + [�X , �Y ](Z),

where Rr is the curvature ofr.

Le us show that we can apply the following theorem due to Kostant [19, Theorem 4] to get an interesting
description of rigid a�ne-Riemann manifolds with complete Riemannian metric.

Theorem 7.1 (Kostant). Let A be a connection on a simply-connected manifold M. Assume that there exists a
second connection B on M such that

1. B is invariant under parallelism, i.e., BT = � and BR = � where T and R are, respectively, the torsion and
the curvature of B.

2. A is rigid with respect to B, i.e., S = B − A is B-parallel.
3. M is complete with respect to B.

Let g be the Lie algebra of in�nitesimal B a�ne transformations X on M such that (LX − BX)p 2 sp for some
(and hence every) point p 2 M where LX is the Lie derivative in the direction of X and sp is the B-holonomy
algebra at p. Then the in�nitesimal action ρ : g �! Γ(TM) integrates to an action ϕ : G �! Di�(M) of a
simply-connected Lie group G which preserves both A and B. Moreover, M is a reductive homogeneous space
with respect to the action of G.

Let us see that the condition (23) implies the hypothesis of Theorem 7.1 for A = r and B = D. Indeed, the
condition (23) is equivalent tor is rigid with respect to D and from (13)

K(X, Y) = [�X , �Y ] for X, Y 2 Γ(TM).

Since � is parallel, we get that DK = � and hence D is invariant under parallelism. If we suppose that M is
simply-connected and D is complete we can apply Theorem 7.1 and get the following result. Note that since K
is parallel the Lie algebra of holonomy is given by

sp =
nX

K(ui , vi), ui , vi 2 TpM
o
.

Moreover, since D is torsionless LX − BX = −DX for any X 2 Γ(TM).

Theorem 7.2. Let (M,r, h , i) be a simply-connected rigid a�ne-Riemannmanifold such that h , i is complete.
Consider

g =
n
X 2 Γ(TM), DX =

X
K(Ui , Vi)

o
.

Then the action ρ : g �! Γ(TM) integrates to an action ϕ : G �! Di�(M) of a simply-connected Lie group
which preserves both r and h , i. Moreover, M is homogeneous reductive under this action and (M, h , i) is a
Riemannian symmetric space.

The following result shows that there is a correspondence between simply-connected complete �at rigid
a�ne-Riemann manifolds and associative commutative algebras.
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Corollary 7.1. Let (M,r, h , i) be simply-connected rigid a�ne-Riemann manifold with K = � and h , i is
complete. Then (M, h , i) is isometric toRn with its canonicalmetric and there exists anassociative commutative
product • onRn such that �uv = u • v for any u, v 2 TpRn and p 2 Rn.

Conversely, let (A, •) be a real �nite dimensional associative commutative algebra and h , i a scalar product
on A. The product • de�nes on A a �at torsionless connection r and (A,r, h , i) is a rigid a�ne-Riemann
manifold.

Proof. Since K = � and h , i is complete then (M, h , i) is isometric toRn with its canonical metric. Moreover,
� is parallel and hence it is given by �uv = u • v for any u, v 2 TpRn and p 2 Rn, where • is a commutative
product onRn. The relation K(u, v) = [�u , �v] = � implies that • is associative. The converse is obvious.

Theorem 7.2 suggests us to look for rigid a�ne-Riemann manifolds among symmetric spaces and we give
now a practical method to achieve this task. The following result is a consequence of Proposition 7.2 and the
properties of the holonomy representation of symmetric spaces (see [5, Proposition 10.79]).

Proposition 7.3. Let (M, h , i) be a simply-connected Riemannian symmetric space and G its group of isome-
tries, o a �xed point of M and �� : ToM × ToM �! ToM a symmetric product such that

ad(a)(��u v) = ��ad(a)uv + ��uad(a)v and K(u, v) = [��u , ��v ] u, v 2 ToM, a 2 g�,

where g� is the Lie algebra of the isotropy at o, ad : g� �! End(ToM) is the in�nitesimal isotropy representation
and K is the curvature of h , i. Then �� is invariant by holonomy and de�nes a parallel tensor � onM. Moreover,
(M, D − �, h , i) is a rigid a�ne-Riemann manifold.

We illustrate this proposition by the following example.

Example 5. Consider M := SPD(n) the set of real symmetric positive de�nite n × n matrices, which is an open
subset of S(n): the vector space of real symmetric n × n matrices. The connected Lie group G := GL+(n,R) of
positive determinant n × n matrices acts transitively on M : g · x := gxgt , and the isotropy subgroup at In is
H := SO(n). The Lie algebra of H is h = so(n,R) and withm := S(n), we have a canonical decomposition

g = h�m and Ad(H)(m) ⇢ m.

The scalar product onm given by hA, Bi� = tr(AB) is Ad(H) invariant and hence de�nes a G-invariant Rieman-
nian metric h , i on M = G/H and (G/H, h , i) is a symmetric space. Its curvature at Tπ(e)G/H = m is given
by

K(A, B)C = [[A, B], C], A, B, C 2 m.

On the other hand, the product �� : m ×m �! m

��AB = AB + BA

satis�es
K(A, B) := [��A , ��B] and K(A, B)��CE = ��K(A,B)CE + ��CK(A, B)E, A, B, C, E 2 m.

Since the holonomy Lie algebra of (G/H, h , i) is generated by K and G/H is simply-connected and by using
Proposition 7.2, one can see that �� de�nes an invariant parallel tensor �eld � on G/H such that, if D is the Levi-
Civita connection of (G/H, h , i), (G/H, D − �, h , i) is a rigid a�ne-Riemann manifold. Moreover, one can see
that � = �* and hence (G/H, D − �, h , i) is a Hessian manifold.

Wedetermine now complete rigid a�ne-Riemannmanifolds of dimension 2 and 3.We start with the following
propositions.

Proposition 7.4. The manifold R × S�(r) carries a family depending on a non null real parameter of a�ne
structuresrc such that (R × S�(r),rc , h , i�) is a rigid a�ne-Riemann manifold where S�(r) is the 2-sphere of
radius r and h , i� is the canonical metric of R × S�(r). Moreover, for c = ±

p
�
r we have trh , i� (�) = � and hence

(T(R × S�(r)), J�, g�) is Calabi-Yau with torsion.
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Proof. By virtue of Proposition 7.2, a rigid a�ne-Riemann structure onR × S�(r) is a symmetric tensor �eld �

of type (�, �) such that

D(�) = � and K(X, Y) = [�X , �Y ], X, Y 2 Γ(T(R × S�(r))),

where D and K are, respectively, the Levi-Civita and the curvature of h , i�. According to the holonomy
principle (see [5, pp. 282]), this is equivalent to the following: for a �xed p 2 R × S�(r), there exists
�� : Tp(R × S�(r)) × Tp(R × S�(r)) �! Tp(R × S�(r)) such that, for any u, v 2 Tp(R × S�(r)) and any h 2 gp,

h.��u v = ��h.uv + ��u (h.v) and K(u, v) = [��u , ��u ], (24)

where gp is the holonomy Lie algebra at p. Take p = (�, (�, �, �)), denote by (e�, e�, e�) the canonical basis
ofR� and e� the generator ofR. Then Tp(R × S�(r)) = span(e�, e�, e�) and

gp =

8
><

>:

0

B@
� � �
� � λ
� −λ �

1

CA , λ 2 R

9
>=

>;
.

Put ��u v = A�(u, v)e� + A�(u, v)e� + A�(u, v)e�. Then the �rst equation in (24) is equivalent to
8
>><

>>:

A�(h.u, v) + A�(u, h.v) = �,
A�(h.u, v) + A�(u, h.v) = λA�(u, v),
A�(h.u, v) + A�(u, h.v) = −λA�(u, v),

for any u, v 2 Tp(R × S�(r)) and h 2 gp. The solutions of this system of equations are given by their matrices
in (e�, e�, e�)

A� =

0

BBB@

a�,� � �

� a�,� �

� � a�,�

1

CCCA
, A� =

0

BBB@

� c�,� −c�,�

c�,� � �

−c�,� � �

1

CCCA
and A� =

0

BBB@

� c�,� c�,�

c�,� � �

c�,� � �

1

CCCA

and hence

��e� =

0

BBB@

a�,� � �

� c�,� −c�,�

� c�,� c�,�

1

CCCA
, ��e� =

0

BBB@

� a�,� �

c�,� � �

c�,� � �

1

CCCA
and ��e� =

0

BBB@

� � a�,�

−c�,� � �

c�,� � �

1

CCCA
.

The second equation of (24) is equivalent to

K(e�, e�) =

0

BBB@

� a�,�a�,� − c�,�a�,� a�,�c�,�

−a�,�c�,� − c�,�� + c�,�� � �

−a�,�c�,� + � c�,�c�,� � �

1

CCCA
,

K(e�, e�) =

0

BBB@

� −a�,�c�,� a�,�a�,� − c�,�a�,�

a�,�c�,� − � c�,�c�,� � �

−a�,�c�,� − c�,�� + c�,�� � �

1

CCCA
,

K(e�, e�) =

0

BBB@

−� a�,�c�,� � �

� a�,�c�,� c�,�a�,�

� −c�,�a�,� a�,�c�,�

1

CCCA
.
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But K(e�, e�) = K(e�, e�) = � and K(e�, e�) = �
r� (E�� − E��) (Eij is the matrix with 1 in the i-row and the

j-column and zero elsewhere). This is equivalent to c�,� = � and a�,� = c�,� = − �
a�,�r� and hence �� is given

by

��e� =

0

BBB@

c�,� � �

� c�,� �

� � c�,�

1

CCCA
, ��e� =

0

BBB@

� − �
c�,�r� �

c�,� � �

� � �

1

CCCA
and ��e� =

0

BBB@

� � − �
c�,�r�

� � �

c�,� � �

1

CCCA
.

One can see that
trh , i� (�

�) =
✓
c�,� −

�
c�,�r�

◆
e� and trh , i� ((�

�)*) = �c�,�e�.

Proposition 7.5. Let (G,r, h , i) be a three dimensional Lie group endowed with a left invariant rigid a�ne-
Riemann structure such that h , i is not �at. Then the Lie algebra of G is isomorphic toR� with the non-vanishing
Lie brackets

[e�, e�] = e�, [e�, e�] = �e�
and the matrices in (e�, e�, e�) of the metric and the di�erence tensor at e are given by

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

h , i =

0

BBBB@

� �
� �

�
� � �

� � ν

1

CCCCA
, ν > �

�e� =

0

BBBB@

ν r�+�
ν r

�
ν r �

�
�

ν r�−�
ν r

ν r�−�
ν r �

� � r

1

CCCCA
, �e� =

0

BBBB@

�
ν r

�
ν r �

ν r�−�
ν r − �

ν r �

� � �

1

CCCCA
, �e� =

0

BBBB@

� � �
r

� � −�
r

r � �

1

CCCCA
, r =� �.

Moreover,

trh , i(�) =
�(ν r� + �)

�ν r (�e� − e�) and trh , i(�*) = �r(�e� − e�).

For ν = �
(�(�k−�)−�)r� we have trh , i(�) = (�k − �)trh , i(�*) and hence (TkG, Jk , gk) is balanced and

(Tk+�G, Jk+�, gk+�) is Calabi-Yau with torsion.

Proof. If (G,r, h , i) is rigid then, as a Riemannianmanifold, it is symmetric and hence it is either irreducible
and hence Einstein or it is the product ofRwith a complete Riemannian surface of constant curvature. So the
Ricci curvature has signature (+, +, +), (−, −, −), (�, +, +) or (�, −, −). It is known that no three dimensional Lie
group carries a left invariant Riemannianmetric of Ricci signature (�, +, +) (see [21]) and if the Ricci signature
is (+, +, +) then G is compact simple and it is known (see [16]) that G cannot carry a left invariant �at and
torsionless connection. So the Ricci signature is either (−, −, −) or (�, −, −). According to the determination
by Ha and Lee in [14, Tables 1 and 2] of the Ricci signatures of left invariant metrics on three dimensional Lie
groups, the Lie algebra g of G and the metric are of the following forms:

1. g� = R�, the non-vanishing Lie brackets are: [e�, e�] = e�, [e�, e�] = e� and h , i = Diag(�, �, ν), ν > �,

2. g� = R�, the non-vanishing Lie brackets are: [e�, e�] = e�, [e�, e�] = �e� and h , i =

0

BBB@

� �
� �

�
� � �

� � ν

1

CCCA
.

Now, according to Proposition 7.2, (G,r, h , i) is rigid if and only if the di�erence tensor at e, � : g × g �! g

satis�es, for any u, v 2 g,
[Lu , �v] = �Luv and K(u, v) = [�u , �v]
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where Lu is the left multiplication of the Levi-Civita product given by

�hLuv, wi = h[u, v], wi + h[w, v], ui + h[w, u], vi

and K(u, v) = L[u,v] − [Lu , Lv].
A direct computation using Maple shows that when g = g� there is no solution and in the second case we

�nd the �ei given in the statement of the proposition. The last statement is a consequence of Theorem 6.1.

Theorem 7.3. Let (M,r, h , i) be simply-connected rigid a�ne-Riemann manifold with h , i complete. Then:

1. If dimM = � then h , i is �at.
2. If dimM = � then either h , i is �at or (M,r, h , i) isomorphic toR × S�(r) endowed with the rigid structure

given in Proposition 7.4 or to the left invariant rigid structure given in Proposition 7.5.

Proof. Suppose thatdimM = �. Note�rst that the vector�elds (trh , i(�), trh , i(�*)) areD-parallel. If trh , i(�) =
trh , i(�*) = � then the curvature of h , i vanishes as we will see in Theorem 8.2. If (trh , i(�), trh , i(�*)) = � (�, �)
then there is a non zero D-parallel vector �eld on M and hence the curvature of D vanishes.

Suppose now that dimM = � and (M, h , i) is not �at. Since M is simply-connected and carries an
a�ne structure it is not compact. Then (M, h , i) is a non compact simply-connected symmetric Riemannian
manifold and hence it is the Riemannian product of a Euclidean space and a �nite number of irreducible
symmetric spaces (see [5, Theorem 7.76 pp. 194]). Then (M, h , i) is either irreducible or it is the product ofR
with a complete Riemannian surface of constant curvature. If (M, h , i) is irreducible then it is Einstein with
nonpositive scalar curvature s. If s = � then (M, h , i) it is Ricci-�at and hence �at since any homogeneous
Ricci-�at Riemannian manifold is �at (see [2]). If s < � then, according Alekseevskii conjecture which is true
in dimension ≤ � (see [5, Conjecture 7.57 pp. 190]), (M, h , i) is isometric to a solvable Lie group with a left
invariant metric. If (M, h , i) is the product ofRwith a complete Riemannian surface S of constant curvature
then S is either the 2-dimensional hyperbolic space H� or S�(r) endowed with their canonical metric. When
S = H� then (M, h , i) is isometric to a solvable Lie group with a left invariant metric. So far, we have shown
that if (M, h , i) is not�at then (M, h , i) is isometric to a 3-dimensional solvable Lie groupwith a left invariant
Riemannian metric orR × S�(r).

Suppose that (M, h , i) is isometric to a 3-dimensional solvable Lie group with a left invariant metric. Let
us show that r is also left invariant. According to Theorem 7.2, there exists a simply-connected Lie group G
which act transitively on M and preserves both r and h , i. From the determination of the isometry groups
of 3-dimensional solvable Lie groups (see [9, 14]) one can see that the dimension of the isometry group of
(M, h , i) is either 3 or 4 and hence dimG = � or �. If dimG = � then G contains the left multiplications
and hence r is left invariant. If dimG = �, the orbital map ev : G �! M, h 7! h(e) is a covering and hence
a di�eomorphism since both G and M are simply-connected. Moreover, ev commutes with the actions of G
by left multiplication on G and its natural action on M. If we pull-back the metric h , i and r on G, we get
that (M,r, h , i) is isomorphic to a Lie group with a left invariant connection and a left invariant metric. To
complete the proof, we apply Propositions 7.4 and 7.5.

� In�nitely balanced a�ne-Riemann manifolds
In this section, we introduce the notion of in�nitely balanced a�ne-Riemann manifold (see De�nition 8.1).
We illustrate the importance of this class of a�ne-Riemann manifolds and we give some of its properties.

De�nition 8.1. We call an a�ne-Riemann manifold (M,r, h , i) in�nitely balanced if its di�erence tensor �
satis�es trh , i(�) = trh , i(�*) = �. This is equivalent to the Koszul forms satisfying α = ξ = �.

This de�nition �nds its justi�cation in the following result which is a consequence of Theorem 6.1 item 3 and
Propositions 5.2-5.3.
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Theorem 8.1. Let (M,r, h , i) be an in�nitely balanced a�ne-Riemann manifold with � =� �. Then:

1. (TM, J�, g�) is balanced with ρB = ρC = � and it is Kähler if and only if � = �*.
2. For any k ≥ �, (TkM, Jk , gk) is balanced non-Kähler with ρB = ρC = �.

Example 6.
In Table 5, we give many examples of in�nitely balanced left invariant structures on some 6-dimensional Lie
groups.

Let us start by the following remark.

Proposition 8.1. Let (M,r, h , i) a compact a�ne-Riemann manifold such that (TM, J�, g�) is Gauduchon
and α = �. Then ξ = � and hence (M,r, h , i) is in�nitely balanced.

Proof. It is an immediate consequence of Proposition 3.5 and the fact that
R
M d*(α − ξ ) = �.

The following result describes completely the situation in dimension 2.

Theorem 8.2. Let (M,r, h , i) be a connected 2-dimensional in�nitely balanced a�ne-Riemann manifold.
Then h , i is Hessian, i.e., � = �* and its sectional curvature is nonnegative. Moreover, if h , i is complete then
r is the Levi-Civita connection of h , i and M is either di�eomorphic to the torus T� orR�.

Proof. Let us �rst show that h , i is Hessian. Choose an orthonormal frame (E�, E�). We have in the basis
(E�, E�), since �E�E� = �E�E�,

�E� =
 

���� ����
���� ����

!
and �E� =

 
���� ����
���� ����

!
.

The condition trh , i(�*) = trh , i� = � is equivalent to

���� + ���� = ���� + ���� = ���� + ���� = ���� + ���� = �.

Thus

�E� =
 

���� ����
���� −����

!
and �E� =

 
���� −����
−���� −����

!
.

This shows that � = �* and hence h , i is Hessian. According to (14) and (15), the curvature of h , i is given by

K(X, Y) = [�X , �Y ].

So the curvature κ : M �! R of h , i is given by

κ = hK(E�, E�)E�, E�i = tr(��E� ) ≥ �.

If M is compact, according to Gauss-Bonnet’s theorem,
Z

M

κν = �π(� − �g) ≥ �

and hence g ≤ �. But the case g = � is not possible since the 2-sphere has no a�ne structure and hence g = �,
κ = � and then � = �. IfM is non compact and h , i is complete then according to a theorem of Cohen-Vossen
[8]M is di�eomorphic toR�. But a theoremof Cheng-Yau and Pogorelov (see [23, Theorem8.6 pp. 160]) asserts
that the only Hessian metric onRn which satis�es trh , i(�) = � is the canonical metric.

In dimension superior to 3, we have the following theorem about in�nitely balanced Hessian a�ne-Riemann
manifolds.
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Theorem 8.3. Let (M,r, h , i) be an a�ne-Riemann manifold satisfying � = �* and trh , i(�) = �. Then the
Ricci curvature of h , i is nonnegative and h , i is Ricci-�at if and only if � = �. Moreover, if M is compact then
� = � and hencer is the Levi-Civita connection of h , i.

Proof. The condition � = �* implies by virtue of (14) and (15) that, for any X, Y 2 Γ(TM),

K(X, Y) = [�X , �Y ].

Since trh , i(�) = �, we get that the Ricci curvature is given by

ric(X, X) = tr(��X) ≥ �

and ric(X, X) = � if and only if �X = �. If M is compact then according to [23, Theorem 8.8 pp. 162] � = � and
r is the Levi-Civita connection of h , i.

If we drop the hypothesis M compact there are non trivial in�nitely balanced Hessian a�ne-Riemannian
manifolds.

Theorem 8.4. Let n ≥ � and c > �. On Rn \ {�} endowed with its a�ne connection r� and its canonical
Euclidean product h , i�, consider the smooth function

f (x�, . . . , xn) =
rZ

�

(tn + c)
�
n dt

where r =
q
x�� + . . . + x�n and the matrix h , i =

⇣
∂� f

∂xi ∂xj

⌘

�≤i,j≤n
. Then h , i is a Riemannian metric and (Rn \

{�},r�, h , i) is an a�ne-Riemannmanifold satisfying � = �* and trh , i(�) = �. Moreover, for any i = � j and any
u, v 2 TX(Rn \ {�})

8
><

>:

h∂xi , ∂xi i =
rn+�+c(r�−x�i )
r�(rn+c)

n−�
n

, h∂xi , ∂xj i = − cxixj
r�(rn+c)

n−�
n
,

hu, vi = �
r�(rn+c)

n−�
n

�
(rn + c)r�hu, vi� − chu, Xi�hv, Xi�

�
, X = (x�, . . . , xn)

and the Ricci curvature of h , i is nonnegative.

Proof. The function f is smooth onRn \ {�} and it is easy to show that, for any i = � j,

∂�f
∂x�i

= rn+� + c(r� − x�i )
r�(rn + c) n−�n

and ∂�f
∂xi∂xj

= −
cxixj

r�(rn + c) n−�n
.

Let (e�, . . . , en) be the canonical basis of Rn. Let us show that h , i is de�nite positive. For any X =
(x�, . . . , xn) 2 Rn \ {�} and u 2 TX(Rn \ {�}), we have

(r�(rn + c)
n−�
n )hu, ui =

nX

i=�
(r�(rn + c) − cx�i )u�i − c

X

i= �j
xixjuiuj

= r�(rn + c)
nX

i=�
u�i − c(x�u� + . . . + xnun)�

= (rn + c)|X|��|u|�� − chu, Xi��.

By virtue of Schwartz inequality

chu, Xi�� ≤ c|X|��|u|�� ≤ (rn + c)|X|��|u|��.

This shows that hu, ui ≥ � and hu, ui = � if and only if u = �. Then h , i is a Hessian metric.
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Let us show that det(h , i) = �. Indeed, the rows (L�, . . . , Ln) of h , i are given by

Li =
�

r�(rn + c) n−�n
(r�(rn + c)ei − cxiρ) and ρ = x�e� + . . . + xnen .

So

(r�n(rn + c)n−�) det(h , i) = det(r�(rn + c)e� − cx�ρ, . . . , r�(rn + c)en − cxnρ)

= r�n(rn + c)n +
nX

i=�
det(r�(rn + c)e�, . . . , r�(rn + c)ei−�, −cxiρ, r�(rn + c)ei+�, . . . , r�(rn + c)en)

= r�n(rn + c)n − cr�n(rn + c)n−�

= r�n(rn + c)n−�(rn + c − c) = r�n(rn + c)n−�.

So trh , i(�) = � which completes the proof.

� Some examples of left invariant generalized Kähler structures on
some 6-dimensional connected and simply-connected Lie groups

In this section, we give examples of left invariant generalized Kähler structures on some 6-dimensional con-
nected and simply-connected Lie groups by giving the complex isomorphism and the metric on the corre-
sponding Lie algebras.

Our examples are based on the classi�cation of 3-dimensional real Novikov algebras given in [7]. Recall
that a Novikov algebra is a left symmetric algebra such that right multiplications commute.

Let (g, ., h , i�) be a Novikov algebra of dimension 3 endowed with a scalar product. The bracket
[a, b] = a.b − b.a induces on g a Lie algebra structure. Let G be the connected and simply-connected Lie
group associated to (g, [ , ]). Then the left symmetric product and h , i� induce on G a left invariant a�ne-
Riemann structure (r, h , i). We have seen that on Φ(g) = g × g there are a Lie bracket [ , ]Φ, a complex
isomorphism J and a scalar product h , iΦ given by (10) and (11). Moreover, according to Theorem 2.1, the
Hermitian structure (TG, J�, g�) associated to (G,r, h , i) is di�eomorphic to (G × g, J�, g�) where G × g is
the simply-connected Lie group associated to (Φ(g), [ , ]Φ) and (J�, g�) are the left invariant tensor �eld
associated to (J, h , iΦ).

In Tables 1 and 2, for any 3-dimensional real Novikov algebra given in [7] and identi�ed to R� with its
canonical basis (e�, e�, e�), we give its multiplication table and the Lie bracket [ , ]Φ on Φ(R�) = R� ×R� in
the basis (f�, . . . , f�) where fi = (ei , �) for � = �, �, � and fj = (�, ej) for j = �, �, �. These 6-dimensional Lie
algebras are labeled Ng�

� (a), Ng�
� and so on. The metric h , i� is given by its matrix in (e�, e�, e�),

h , i� =

0

B@
g�,� g�,� g�,�
g�,� g�,� g�,�
g�,� g�,� g�,�

1

CA .

In Tables 3-8, when we refer to a 6-dimensional Lie algebra in Tables 1 and 2 having a generalized Kähler
structure this means that (J, h , iΦ) are given in the basis (f�, . . . , f�) by

J =
 

� −I�
I� �

!
and h , iΦ =

 
h , i� �
� h , i�

!

with the mentioned restrictions on the (gi,j).
The realization of the examples in Tables 3-8 was possible thank to the software Maple.
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Table 1: Three dimensional Novikov algebras and their associated phase Lie algebras.

Left symmetric product onR� e� • e� = ae�, e� • e� = (� + a)e�, e� • e� = (� + a)e�, e� • e� = ae�, e� • e� = ae�.

Lie brackets on Ng�
� (a)

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = af�, [f�, f�] = (� + a)f�, [f�, f�] = (� + a)f�,
[f�, f�] = af�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = −e� + e�, e� • e� = −e�, e� • e� = −e�.
Lie brackets on Ng�

� [f�, f�] = f�, [f�, f�] = f�, [f�, f�] = −f� + f�, , [f�, f�] = −f�, [f�, f�] = −f�.

Left symmetric product onR� e� • e� = ae�, e� • e� = ae� + e�, e� • e� = αe� + (� + a)e�, e� • e� = ae�, e� • e� = ae�.

Lie brackets on Ngα
�

� (a)
[f�, f�] = f�, [f�, f�] = αf� + f�, [f�, f�] = af�, [f�, f�] = af� + f�,
[f�, f�] = αf� + (� + a)f�, [f�, f�] = af�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = ae� + e�, e� • e� = ae� + e�, e� • e� = (a + a�)e� + (� + a)e�,
e� • e� = ae�, e� • e� = ae�.

Lie brackets on Nga�+a
�

� (a)
[f�, f�] = f�, [f�, f�] = (a + a�)f� + f�, [f�, f�] = af� + f�, [f�, f�] = af� + f�,
[f�, f�] = (a + a�)f� + (� + a)f�, [f�, f�] = af�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = −�
� e�, e� • e� =

�
� e� − �e�, e� • e� =

�
� e� −

�
� e�,

e� • e� = �
� e� − �e�, e� • e� = e� − ��

� e�.

Lie brackets on Ng
− ��
�

�

[f�, f�] = f�, [f�, f�] = −�
� f� + f�, [f�, f�] = −�

� f�, [f�, f�] =
�
� f� − �f�,

[f�, f�] = �
� f� −

�
� f�, [f�, f�] =

�
� f� − �f�, [f�, f�] = f� − ��

� f�.

Left symmetric product onR� e� • e� = −�
� e� + e�, e� • e� =

�
� e� − �e�, e� • e� =

�
� e� −

�
� e�,

e� • e� = �
� e� − �e�, e� • e� = e� − ��

� e�.

Lie brackets on Ng
− ��
�

�

[f�, f�] = f�, [f�, f�] = −�
� f� + f�, [f�, f�] = −�

� f� + e�, [f�, f�] =
�
� f� − �f�,

[f�, f�] = �
� f� −

�
� f�, [f�, f�] =

�
� f� − �f�, [f�, f�] = f� − ��

� f�.

Left symmetric product onR�
e� • e� = �ae� − (�a� + �

�a)e�, e� • e� = �ae� + (� − �a)e�, e� • e� = (a − �
� )e� + e�,

e� • e� = �ae� − �ae�, e� • e� = −�e� + �e�, e� • e� = −e� + �e�,
e� • e� = ae�, e� • e� = −e� + �e�, e� • e� = −�

� e� + e�.

Lie brackets on Ng
− ��
�

� (a)

[f�, f�] = f�, [f�, f�] = �af� − (�a� + �
�a)f�, [f�, f�] = �af� + (� − �a)f�,

[f�, f�] = −�
� f� + f�, [f�, f�] = (a − �

� )f� + f�, [f�, f�] = �af� − �af�, [f�, f�] = −�f� + f�,
[f�, f�] = −f� + �f�, [f�, f�] = af�, [f�, f�] = −f� + �f�, [f�, f�] = −�

� f� + f�.

Left symmetric product onR�
e� • e� = −�

� e� −
�
�� e� +

�
� e�, e� • e� = −�

� e� + �e�, e� • e� = −�
� e� + e�,

e� • e� = −�
� e� + �e�, e� • e� = −�e� + �e�, e� • e� = −e� + �e�,

e� • e� = −�
� e�, e� • e� = −e� + �e�, e� • e� = −�

� e� + e�,

Lie brackets on Ng
− ��
�

�

[f�, f�] = f�, [f�, f�] = −�
� f� + f�, [f�, f�] = −�

� f� −
�
�� f� +

�
� f�, [f�, f�] = −�

� f� + �f�,
[f�, f�] = −�

� f� + f�, [f�, f�] = −�
� f� + �f�, [f�, f�] = −�f� + �f�, [f�, f�] = −f� + �f�,

[f�, f�] = −�
� f�, [f�, f�] = −f� + �f�, [f�, f�] = −�

� f� + f�,

Left symmetric product onR�
e� • e� = −�

� e� −
��
�� e� + e�, e� • e� = −�

� e� + �e�, e� • e� = −�
� e� + e�,

e� • e� = −�
� e� + �e�, e� • e� = −�e� + �e�, e� • e� = −e� + �e�,

e� • e� = −�
� e�, e� • e� = −e� + �e�, e� • e� = −�

� e� + e�,

Lie brackets on Ng
− ��
�

�

[f�, f�] = f�, [f�, f�] = −�
� f� + f�, [f�, f�] = −�

� f� −
��
�� f� + f�, [f�, f�] = −�

� f� + �f�,
[f�, f�] = −�

� f� + f�, [f�, f�] = −�
� f� + �f�, [f�, f�] = −�f� + �f�, [f�, f�] = −f� + �f�,

[f�, f�] = −�
� f�, [f�, f�] = −f� + �f�, [f�, f�] = −�

� f� + f�,
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Table 2: Three dimensional Novikov algebras and their associated phase Lie algebras (Continued).

Left symmetric product onR� e� • e� = ae�, e� • e� = (� + a)e�, e� • e� = (� + a)e�, e� • e� = ae�, e� • e� = ae�.

Lie brackets on Ng��
� (a)

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = af�, [f�, f�] = (� + a)f�, [f�, f�] = (� + a)f�,
[f�, f�] = af�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = −e� + e�, e� • e� = −e�, e� • e� = −e�,

Lie brackets on Ng��
� [f�, f�] = f�, [f�, f�] = f�, [f�, f�] = −f� + f�, [f�, f�] = −f�, [f�, f�] = −f�,

Left symmetric product onR� e� • e� = ae�, e� • e� = ae� + e�, e� • e� = (� + a)e�,
e� • e� = ae�, e� • e� = −e� + e�, e� • e� = ae�

Lie brackets on Ng��
��(a)

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = af�, [f�, f�] = af� + f�,
[f�, f�] = (� + a)f�, [f�, f�] = af�, [f�, f�] = −f� + f�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = −e� + e�, e� • e� = −e� + e�, e� • e� = −e�, e� • e� = −e� + e�, e� • e� = −e�

Lie brackets on Ng��
��

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = −f� + f�, [f�, f�] = −f� + f�,
[f�, f�] = −f�, [f�, f�] = −f� + f�, [f�, f�] = −f�.

Left symmetric product onR� e� • e� = e�, e� • e� = (� + a)e�, e� • e� = ae�,
Lie brackets on Ng�

� (a) [f�, f�] = f�, [f�, f�] = f�, [f�, f�] = (� + a)f�, [f�, f�] = af�
Left symmetric product onR� e� • e� = ae�, e� • e� = e�, e� • e� = e�,
Lie brackets on Ng�

� (a) [f�, f�] = f�, [f�, f�] = af�, [f�, f�] = f�, [f�, f�] = f�
Left symmetric product onR� e� • e� = e�, e� • e� = e�, e� • e� = e� − e�, e� • e� = e�, e� • e� = e�, e� • e� = e�

Lie brackets on Ng�
�

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = f�, [f�, f�] = f� − f�, [f�, f�] = f�,
[f�, f�] = f�, [f�, f�] = f�.

Left symmetric product onR� e� • e� = e�, e� • e� = e� − e�, e� • e� = e�, e� • e� = e�, e� • e� = e�

Lie brackets on Ng�
�

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = f� − f�, [f�, f�] = f�,
[f�, f�] = f�, [f�, f�] = f�.

Left symmetric product onR� e� • e� = �
� e�, e� • e� = −�

� e�.
Lie brackets on Ng�

� [f�, f�] = f�, [f�, f�] = �
� f�, [f�, f�] = −�

� f�.

Left symmetric product onR� e� • e� = ae�, e� • e� = ae� + e�, e� • e� = e� + ae�, e� • e� = ae�, e� • e� = ae�

Lie brackets on Ng�
� (a)

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = af�, [f�, f�] = af� + f�,
[f�, f�] = f� + af�, [f�, f�] = af�, [f�, f�] = af�.

Left symmetric product onR� e� • e� = e� + e�, e� • e� = e� + e�, e� • e� = e� + e�, e� • e� = e�, e� • e� = e�

Lie brackets on Ng�
�

[f�, f�] = f�, [f�, f�] = f�, [f�, f�] = f� + f�, [f�, f�] = f� + f�,
[f�, f�] = f� + f�, [f�, f�] = f�, [f�, f�] = f�.

Left symmetric product onR� e� • e� = ae�, e� • e� = ae� + e�, e� • e� = −e� + ae�, e� • e� = ae�, e� • e� = ae�

Lie brackets on Ng�
� (a)

[f�, f�] = f�, [f�, f�] = −f�, [f�, f�] = af�, [f�, f�] = af� + f�,
[f�, f�] = −f� + af�, [f�, f�] = af�, [f�, f�] = af�.
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Table 3: Examples of Kähler Lie algebras.

The Lie algebra Conditions on the Hermitian metric
Ng�
� (a)

h
a = −�, g�,� = g�,� = �, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i

Ngα
�

� (a)

h
a = −�, α = �, g�,� = �, g�,� = g�,�, � < g�,�, g�,� < g�,�, − g�,��g�,�

g�,�(−g�,�+g�,�) < g�,�
i

⇥
a = −�, α < �, g�,� = g�,� = �, g�,� = − g�,�

α , g�,� = g�,�
� , � < g�,�, � < g�,�, α < −�

�
⇤

Ng��
� (a) [a = −�, g�,� = �, g�,� = �, g�,� = g�,�, � < g�,�, � < g�,�, g�,� < g�,�]

Ng��
��(a) [a = −�, g�,� = � g�,� − � g�,�, g�,� = �, g�,� = g�,�, � < g�,�, g�,� < g�,�, � g�,� − � g�,� < g�,�]

Ng�
� (a) [a = �, g�,� = �, g�,� = �, g�,� = g�,�, g�,� = �, � < g�,�, � < g�,�]

Table 4: Examples of Gauduchon Lie algebras.

The Lie algebra Conditions on the Hermitian metric

Ng�
� (a)

⇥
a = −�, (g�,�, g�,�) = � (�, �)

⇤
or [a = −�

� ]

Ngα
�

� (a) [a = −�] or [a = −�
� ]

Ng
− ��
�

� (a) [a = −�
� ] or [a = −�

� ]

Ng
− ��
�

� , Ng
− ��
�

� , Ng��
� , Ng��

�� Always

Ng�
� (a), Ng�

� (a), Ng�
�

Ng��
� (a) [a = −�] or [a = −�]

Ng��
��(a) [a = −�]

Ng�
� (a), Ng�

� (a) [a = �]

Table 5: Examples of in�nitely balanced Lie algebras.

The Lie algebra Conditions on the Hermitian metric

Ng�
� (a)

h
g�,� = �, g�,� = g�,�, � < g�,�, a < − g�,�(g�,�−g�,�)

g�,�� , g�,� = − ag�,�g�,�−g�,�g�,�−g�,��
g�,�

i

Ng�
� Always

Ng�
� (a), Ng�

� (a)
h
a = �, g�,� = �, g�,� = �, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i
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Table 6: Examples of balanced non Kähler Lie algebras.

The Lie algebra Conditions on the Hermitian metric

Ngα
�

� (a)

h
a = −�, α = �, g�� = g�,�g�,�

g�,� , � < g�,�, g�,�
�

g�,� < g�,�, g�,�
�

g�,� < g�,�
i

h
a = −�, g�,� = g�,� = �, (g�,�, g�,�) =� (− g�,�

α , g�,�� ), � < g�,�, � < g�,�, g�,�
�

g�,� < g�,�
i
,

Ng
− ��
�

� (a)

⇥
a = −�

� , g�,� = � g�,�, g�,� = � g�,�, g�,� = � g�,�, g�,� = g�,�, � < g�,�, �� g�,� < g�,�
⇤

⇥
a = −�

� , g�,� = � g�,�, g�,� = � g�,�, g�,� = � g�,�, g�,� = g�,�, � < g�,�, � g�,� < g�,�
⇤

Ng��
� (a)

h
a = −�, g�,� = �, g�,� = �, g�,� =� g�,�, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i

Ng��
��(a)

h
a = −�, g�,� = g�,�, g�,� = g�,�, � < g�,�, g�,� < g�,�, g�,�

�

g�,� < g�,�
i

Ng��
��

h
g�,� = g�,�g�,�

g�,� , g�,� = g�,�g�,�g�,�−g�,�g�,��−g�,��g�,�+g�,��g�,�+g�,��g�,�
g�,�� , � < g�,�, g�,� < g�,�, g�,�

�

g�,� < g�,�
i

Ng�
� (a)

h
g�,� = g�,� = �, g�,� = − ag�,�g�,�−g�,�g�,�

g�,� , a = � �, � < g�,�, � < g�,�, a
�g�,��−� ag�,�g�,�+g�,��

g�,� < g�,�
i

Ng�
� Always

Ng�
� (a), Ng�

� (a)
h
a = �, g�,� = �, g�,� = �, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i

Table 7: Examples of pluriclosed non Kähler Lie algebras.

The Lie algebra Conditions on the Hermitian metric

Ng�
� (a)

⇥
a = −�, (g�,�, g�,�) = � (�, �)

⇤
or [a = −�].

Ng�
� Always

Ngα
�

� (a)

h
a = −�

� , α = −�
� , g�,� = �, g�,� = −�g�,�

� + g�,�, � < g�,�, g�,� < � g�,�,
g�,��(� g�,�−� g�,�)

� g�,��−� g�,�g�,�+� g�,�� < g�,�, �� g�,� < g�,�
i

h
a 2 {−�

� , −�}, g�,� = �, g�,� = �
� g�,�, g�,� = −αg�,�, � < g�,�, α < −�

�
g�,�g�,�

g�,�g�,�−g�,�� ,
g�,��
g�,� < g�,�

i

Nga�+a
�

� (a)
h
a = −�

� , g�,� = −�
� g�,� + g�,�, g�,� = �, � < g�,�, g�,� < � g�,�, �� g�,� < g�,�, −

�g�,��g�,�
� g�,��−� g�,�g�,�+� g�,�� < g�,�

i

Ng
− ��
�

�

h
g�,� = �

� ( g�,� − g�,�), g�,� = �, � < g�,�, g�,� < � g�,�, �� g�,� < g�,�, −
�g�,��g�,�

� g�,��−� g�,�g�,�+� g�,�� < g�,�
i

Ng��
� (a), Ng��

�

h
a 2 {−�, −�}, g�,� = �, g�,� = g�,�, � < g�,�, � < g�,�, g�,� < g�,�, g�,� < g�,�, g�,��

g�,�−g�,� < g�,�
i

Ng��
��(a)

h
a = −�, g�,� = g�,� + � g�,� − � g�,�, g�,� = g�,�, � < g�,�, g�,� < g�,�, g�,�

�+� g�,�g�,�−� g�,��
g�,� < g�,�

i

h
a = −�, g�,� = g�,� + g�,� − g�,�, g�,� = g�,�, � < g�,�, g�,� < g�,�, g�,�

�+g�,�g�,�−g�,��
g�,� < g�,�

i

Ng��
��

h
g�,� = g�,� + g�,� − g�,�, g�,� = g�,�, � < g�,�, g�,� < g�,�, g�,�

�+g�,�g�,�−g�,��
g�,� < g�,�

i

Ng�
� (a) [a = �]

Ng�
� (a)

h
a = �, g�,� = g�,�, g�,� = �, � < g�,�, g�,�

�+g�,��
g�,� < g�,�

i
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Table 8: Examples of Calabi-Yau with torsion Lie algebras which are not in�nitely balanced

The Lie algebra Conditions on the Hermitian metric

Ng�
� (a)

h
a = �, g�,� = �, g�,� = �, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i

Ngα
�

� (a)

h
a = �, α = �, g�,� = − �g�,�g�,�

g�,� , g�,� = �, � < g�,�, � < g�,�, (� g�,�+g�,�)g�,�
�

g�,�� < g�,�
i

h
a = �, g�,� = �, g�,� = �, � < g�,�, � < g�,�, g�,�

�

g�,� < g�,�
i

h
a = �, α = �, g�,� = �, g�,� = � g�,�, � < g�,�, g�,� < −�

� g�,�, � g�,� < g�,�, −
g�,��

−g�,�+� g�,� < g�,�
i

h
a = �, α = �, g�,� = −g�,�, g�,� = −�

� ( g�,� − g�,�), � < g�,�, g�,� < �
� g�,�, −g�,� < g�,�, −

�g�,��
� g�,�−g�,� < g�,�

i

Ng
− ��
�

� (a)

h
a = �

� , g�,� = �, g�,� = � g�,��+g�,�g�,�−� g�,��
� g�,�−� g�,� , g�,� = −�

� g�,�, g�,� =
�
� g�,�, � < g�,�, � g�,� < g�,�,

�
�

g�,�g�,��
g�,��−� g�,��g�,�+�� g�,�g�,��−�� g�,�� < g�,�

i

Ng��
� (a)

h
a = �, g�,� = �, g�,� = �, � < g�,�, g�,�

�

g�,� < g�,�
i

Ng��
��(a)

[a = �, g�,� = −g�,�, g�,� = �, g�,� = g�,�, � < g�,�, g�,� < �, −g�,� + g�,� < g�,�]h
a = �, g�,� = − g�,�g�,�−g�,��−g�,�g�,�

g�,� , g�,� = g�,�g�,�−g�,�g�,�+g�,�g�,�
g�,� , � < g�,�, g�,� < g�,�g�,�

g�,� ,

g�,� < �, g�,� < −� g�,� −
p
�
p
g�,��, g�,� − g�,� < g�,�

i
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