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Abstract: Let (M, V, ( , )) be a manifold endowed with a flat torsionless connection V and a Riemannian

metric ( , ) and (TkM)kzl the sequence of tangent bundles given by T ky = T(T"’lM) and T'M = TM. We

show that, forany k = 1, T*M carries a Hermitian structure (x» &) and a flat torsionless connection vk and

when M is a Lie group and (V, ( , )) are left invariant there is a Lie group structure on each T*M such that

Uk 8k» V) are left invariant. It is well-known that (TM, J1, g1) is Kahler if and only if (', )is Hessian, i.e, in

each system of affine coordinates (x1, .. ., Xn), (Ox;, Ox;) = %. Having in mind many generalizations of the
i

Kéahler condition introduced recently, we give the conditions on (V, { , ) so that (TM, J1, g1) is balanced,
locally conformally balanced, locally conformally Kdhler, pluriclosed, Gauduchon, Vaisman or Calabi-Yau
with torsion. Moreover, we can control at the level of (V, ( , )) the conditions insuring that some (TkM ks 816)
or all of them satisfy a generalized Kahler condition. For instance, we show that there are some classes of
(M, Vv, (, ))such that, for any k > 1, (T*M, J ©» &1) is balanced non-Kéhler and Calabi-Yau with torsion. By
carefully studying the geometry of (M, V, (, )), we develop a powerful machinery to build a large classes of
generalized Kahler manifolds.
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1 Introduction
Let (N, J, g) be a complex manifold of real dimension 2n, n > 2, equipped with a Hermitian metric g. For any
n € QF(N),

JnXa, ..., Xp) = (-1Pn0UX1,...,JXp) and d°n=-(-1)¥J'dln, Xi,...,Xp € I(TN).

The fundamental form is given by w(., .) = g(J., .) and the Lee form is given by 8 = Jd"w = -d" w o J, where for
any Xi,...,Xp1 € I'(TN),

2n
d'nXy, ..., Xp1) ==Y VENE, X1,..., Xp1),
i=1

VL€ is the Levi-Civita connection of gand (Eq,..., E>,) is alocal g-orthonormal frame. A fundamental class
of Hermitian metrics is provided by Kahler metrics, satisfying dw = 0. In literature, many generalizations of
the Kéhler condition have been introduced. Indeed, (N, J, g) is called:

1. strongly Kdhler with torsion or pluriclosed if dd°w = 0, i.e., dJdJw = 0,
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2. balancedif 6 = 0,

3. locally conformally balanced if 6 is closed,

4. Gauduchonifd 6 =0,

5. locally conformally Kéhler if dw = 116 A w and if, in addition, V-6 = 0 then it is called Vaisman.

For general results about these generalized Kihler metrics, we refer the reader to [1, 3, 4, 6, 10, 11, 22, 25, 27, 28].

The Levi-Civita connection of (N, g) is the only torsion free metric connection. In general, it does not pre-
serve the complex structure J, this condition forcing the metric to be Kihler. Gauduchon proved in [12] that
there exists and affine line of canonical Hermitian connections (they preserve both J and g) passing through
the Bismut connection and the Chern connection. The Bismut connection V2 (also known as Strominger con-
nection) is the unique Hermitian connection with totally skew-symmetric torsion and the Chern connection
v¢ is the unique Hermitian connection whose torsion has trivial (1, 1)-component. For any X, Y, Z € I'(TN),
8(V}Y, 2) = g(V§'Y, 2) + $dw(X, Y, ] 2), ”

g(V$Y,2) = g(ViY,2) - 1dw(X, Y, 2).

Let R"(X, Y) = V[y y; - VxV§ + V}V be the curvature tensor of V*. The Ricci form of V" is given, for any

X,Y € I'(TN), by
2n

XYY =2 > E(R'X, V)E JED,
where (E1, ..., E»y) is a local g-orthonormal frame. It is known [1] that p¢ = p® - dJ6. Hermitian structures
satisfying Hol°(V®) ¢ SU(n), or equivalently p® = 0, are known in literature as Calabi-Yau with torsion and
appear in heterotic string theory, related to the Hull-Strominger system in six dimensions [17, 20, 24].

On the other hand, let (M, V, {, )) be a manifold of dimension n endowed with a flat torsionless connec-
tion V and a Riemannian metric (, ). Actually, V defines an affine structure on M, i.e., there exists on M an
atlas of charts such that all transition functions between charts are affine transformations of R". Conversely,
any affine atlas defines a flat torsionless connection. We refer to the charts of this atlas as affine coordinates.

Through-out this paper, we call such triple (M, V, ( , )) an affine-Riemann manifold, we denote by D the
Levi-Civita connection of ( , ), K(X,Y) = Dix,y; - DxDy + DyDy its curvature, ~y the difference tensor and ~
its adjoint given, for any X, Y, Z € I'(TM), by

7Y =DxY-VxY and (vxY,Z) = (Y,x2). @)

Their traces with respect to the metric are the vector fields given by

n n
tr ()= gE and tr ,(y) =) gE;, €©)
i=1 i=1
where (Eq, ..., En)isalocal {, )-orthonormal frame. The 1-form a given, for any X € I'(TM), by
a(X) = (tr; (v, X) (4)

is closed (see Proposition 3.1) and it is known as the first Koszul form in the theory of Hessian manifolds. The
vanishing of a is equivalent to the Riemannian volume being parallel with respect to V. We introduce also
the 1-form & given, for any X € I'(TM), by

£X) = (tr (7). X). (5)

We call ¢ the adjoint Koszul form. These two 1-forms play an important role in this paper.

It is well-known (see [23]) that there is a Hermitian structure (J1, g1) on TM canonically associated to
M, v, {, ))and (TM, J1, g1) is Kahler if and only if { , ) is Hessian, i.e, in each system of affine coordinates
(x1, ..., xn) there exists a function ¢ such that (dx;, 0x;) = %. This is equivalent to ( , ) satisfying the
Codazzi equation o

vX(< ) >)(Y, Z) = vY(< ’ >)(Xa Z)’ Xs Y’ Ze F(TM)- (6)



20 —— Mohamed Boucetta DE GRUYTER

We will see that (6) is equivalent to v = ~". Actually, there is also a flat torsionless connection V! on TM such
that V1J; = 0. The affine-Riemann structure (TM, V1, g1) gives rise to a Hermitian structure (TTM, J,, )
and a flat torsionless connection V2 on TTM. By induction, we get a sequence of Hermitian structures
(T*M, Ji, g) where TXM = T(T*'M) and T'M = TM. Moreover, each T*M carries a flat torsionless con-
nection V¥ such that V¥(J ) =0.

The purpose of this paper is to explore the properties of this sequence of Hermitian structures and find
the conditions on (M, V, ( , )) leading to some or all (T"M, J > &1) to satisfy one of the generalized Kédhler
conditions introduced above. This will lead to the construction of interesting classes of generalized Kdhler
manifolds. We find also a large class of Hermitian manifolds which are Calabi-Yau with torsion or with van-
ishing Chern Ricci form. We will show also that the study of the geometry of affine-Riemann manifolds is
interesting in its own right and we will generalize some results obtained on Hessian manifolds.

Let us enumerate the main results of this paper and give its organization:

1. In Section 2, we define the sequence of Hermitian structures (T"M , Jx» 81) and the sequence of flat tor-
sionless connections V¥ associated to an affine-Riemann manifold (M, v, {, ))and we show that if M
is a Lie group and (V, ( , )) are left invariant then there is on each T*M a Lie group structure such that
Uk 8k» VX) are left invariant.

2. In Section 3, we give the useful tools for the study of the Hermitian manifolds (T*M, J > 8x)- Namely, we
compute the Levi-Civita connection VL€ of (TM, g1) and we show that the Lee form 6, of (TM, J1, g1)
is given by means of the Koszul forms, namely, 6, = n](a - &) where m; : TM — M is the canonical
projection. We compute also the difference tensor for (TM, V%, g;) as well as its dual and we deduce by
induction the Koszul forms a; and &, and hence the Lee form of (T*M, V¥, g). We give the conditions
involving a, &, tr | >(7), tr >(7*) so that (TM, J,, g1) is balanced, locally conformally balanced, Gaudu-
chon, locally conformally Kdhler or Vaisman.

3. In Section 4, we prove that (TM, J1, g1) is pluriclosed if and only if the curvature K of ( , ) satisfies, for
any X, Y € I'(TM),

K(X, Y) = 7 o vy = 7y © 7x-

It is known (see [23, Theorem 8.8 pp. 162]) that if M is compact, tre, >('y*) = 0and (, )is Hessian, i.e.,
(TM, J1, g1) is Kéhler then V is the Levi-Civita of ( , ). By using the splitting theorem of J. Cheeger and
D. Gromoll (see for instance [5, Corollary 6.67 pp. 168]), we prove that this result is still valid when we
suppose that M is compact, tr >(7*) = 0, V is complete and (TM, J1, g1) is pluriclosed (see Theorem
4.1).

4. In Section 5, we compute the Bismut connection V5 and the Chern connection V¢ of (TM, J1, g1) and we
give their the curvatures and their Ricci forms. We show that if tr, | )(’y) = 0 (resp. tr; >(7*) = 0) then the
Ricci form p® (resp. p©) of (TM, J1, g1) vanish.

5. In Section 6, we remarKk first that if v = 0 then for any k > 1, the affine connection v is the Levi-Civita
connection of g and hence (T kM, ] «» &¢) is Kahler flat. Moreover, for ko > 1 fixed, we show:

(@) Ifko = 2 then (TkoM, J ko» 8k,) is Kéhler if and only if v = 0,

(b) (Tkem,J ko» &k,) is locally conformally balanced if and only if (TM, J1, g1) is locally conformally bal-
anced and this is equivalent to d¢ = 0,

(c) (ThoM,J ko> 8k,) is balanced if and only if tre, >('y) = (2ko — 1)tr< , >('y*) and in this case all the others
(T*M, J, g) are locally conformally balanced and (T**'M, J ko+1> 8ko+1) is Calabi-Yau with torsion.

We express also in affine local coordinates the conditions on ( , ) so that (TM, J;, g1) is balanced or
pluriclosed and we give many examples. We show that an affine-Riemann manifold (M, V, (, )) so that
(TM, J1, g1) is Vaisman non-Kdhler carries a codimension one totally geodesic foliation and ( , ) is flat
when dim M = 2.

6. In Section 7, we study the class of affine-Riemann manifolds (M, V, ( , )) satisfying D(y) = 0. We call
the elements of this class rigid affine-Riemann manifolds. We show for this class that, for any k = 1,
(T"M, J «» 81 is locally conformally balanced. By using a theorem by Kostant [19, Theorem 4], we show
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that when M is simply-connected and { , ) is complete then (M, ( , )) is a symmetric space and there is
a connected Lie group G which acts transitively and reducibly on M by preserving both V and ( , ). We
determine the elements of such class when dim M < 3.

. In Section 8, we study the class of affine-Riemann manifolds (M, V, (, )) satisfying tr( >(’y) =tr., >(’y*) =
0. We call the elements of this class infinitely balanced affine-Riemann manifolds. Indeed, we prove that
the condition tr, | >(’y) = tr, >(7*) = 0 and v # O imply that, for any k = 1, (TkM,]k,gk) is balanced
(non-Kahler when k > 2) and their Ricci forms p,f and pf vanishes. Moreover, if v = 7*, i.e, (, )is Hes-
sian then the Ricci curvature of ( , ) is nonnegative and (TM, J1, g1) is Kahler Ricci-flat. In dimension
2, we show that tr >(7) =tr, >(7*) = 0 implies that ( , ) is Hessian and the curvature is nonnegative.
Moreover, if {, ) is complete then v = 0, i.e., V is the Levi-Civita of { , ). Non trivial examples of infinitely
balanced affine-Riemann manifolds exist. We show that, for any n > 2, there is an affine-Riemann struc-
ture (V, (, )) on S" x R such that the corresponding ~ satisfies, v # 0, v = " and tre, >('y) = 0. Thus,
(T(S" xR), J1, g1) is Kahler Ricci-flat and, for any k > 2, (T¥(S" x R), J;, g}) is balanced non-Kzhler and
their Ricci forms p§ and p? vanish.

. In Section 9, by using the classification of 3-dimensional real Novikov algebras, we give the infinitesimal
part of a large class of generalized Kdhler left invariant structures on some 6-dimensional Lie groups. We
give also a large class of Calabi-Yau with torsion left invariant structures.

. We think that one of the important contribution of this work is the development of a powerful machinery
which permits the construction of large classes of examples of generalized Kdhler manifolds (see Theo-
rems 6.2, 6.3, 8.4, Corollaries 6.1, 7.1, Examples 1-5 and Tables 3-8).

2 The canonical sequence of Hermitian structures associated to an

affine-Riemann manifold

In this section, we introduce the Hermitian structures and the affine connections on the sequence of tangent
bundles associated to an affine-Riemann manifold and we show that these structures are left invariant when

the affine-Riemann structure is left invariant.

2.1 The Hermitian structures on the sequence of tangent bundles associated to an
affine-Riemann manifold

Let (M, V,( , )) be an affine-Riemann manifold of dimension n. Let 7; : TM — M be the canonical

projection and Q : TTM — TM the connection map of V locally given by

n

n n n n
QDobiox+> Ziow | =D [ Zi+D> D byl | 0x,,
i=1 j=1

=1 i=1 j=1

where (x1, ..., xn) is a system of local coordinates, (x1, ..., Xn, M1, - - . » Un) the associated system of coordi-
nates on TM and V_0x; = i, I;0x. Then

TTM = ker Tty @ Kker Q.

For X € I'(TM), we denote by X" its horizontal lift and by XV its vertical lift. The flow of XV is given by
DX(t, (x, u) = (x,u + tX(x)) and X"(x, u) = KW (X(x)), where "% : T,M — ker Q(x, u) is the inverse
of the restriction of drm; to ker Q(x, u). Since the curvature of V vanishes, for any X, Y € I'(TM),

(X", ¥"] = [X, ¥I", X", ¥']= (VxY)" and [X*,Y']=0.
The connection V! on TM given by

Vi ¥ = (Vx", viuY' = (VxY) and VigY'=viY'-=o, (8)

@)
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forany X, Y € I'(TM), is flat torsionless and defines an affine structure on TM. The tensor field J; : TTM —
TTM given by J; X" = X" and J; X" = -X" satisfies J7 = —Idrry, V'(J1) = 0 and hence defines a complex
structure on TM.

On the other hand, we define on TM a Riemannian metric g; by

g (xXN YN = (X, Vyom, g1(X',Y)=(X,Y)om; and g,(X",Y")=0, X,YeI(TM).
This metric is Hermitian with respect to J; and its fundamental form w = g1(J;., .) satisfies
wX" YN = wX,¥)=0 and w&", V") =-w(",X")=(X,Y)om, X,YeI(TM). )

Actually, we have a sequence of Hermitian structures. The affine-Riemann manifold (TM, vi, g1) gives rise
to a Hermitian structure (TTM, J,, g>) and a flat torsionless connection V2 on TTM. By induction, we get a
sequence of Hermitian structures (TXM, J s> 8x) where TKM = T(T*"*M) and T*'M = TM. Moreover, each T*M
carries a flat torsionless connection V¥ such that V¥(J;) = 0.

2.2 The canonical sequence of Hermitian structures associated to a left invariant
affine-Riemann structure

Let (G, V, (, )) be an affine-Riemann manifold such that G is a connected Lie group and (V, ( , )) are left
invariant. Let (g = TeG, [, ]) be the Lie algebra of G. For any a € g, we denote by a~ the left invariant vector
field on G associated to a. The affine connection V defines a product ¢ on g by

(a b b)_ = (Va’b_)(e), a, b € g'
This product is Lie-admissible, i.e., a ® b — b ® a = [a, b] and left symmetric, i.e., for any a, b, c € g,
ass(a, b, ¢) = ass(b, a, ¢),

where ass(a, b,c) =(ae®b) e c—ae(bec). Thisis equivalent to L : g — End(g), a — L, is a representation
of Lie algebras, where Lsb = a ¢ b,

Put @(g) = g x g and define on @(g) a product *, a bracket [ , ], an isomorphism J : @(g) — ®(g) and
a scalar product ( , )4 by

(a,b)*(c,d)=(aec,aed), [(a,b),(c,d)]p=~a,cl,aed-ceb), (10)
J(a,b) =(-b,a) and ((a,b),(c,d))e ={(a,c)+(b,d), (11)

for any (a, b), (c, d) € @(g). It is easy to check that * is left symmetric and hence its commutator which is
[, lo is a Lie bracket. Moreover, for any (a, b), (c, d) € @(g),

N]((a’ b)a (C’ d)) = U(as b)’ ](C’ d)](D _][(a’ b)’ ](Ca d)](D _]U(as b)’ (C9 d)]d) - [(a’ b)’ (C’ d)]CD =0.

On the other hand, let p : G — GL(g) be the homomorphism of groups such that dep = L and consider the
product on G x g given by

(, a).(q, b) = (pq, b +p(g ")), p,qeG,a,beg.

Proposition 2.1. (G x g, .) is a Lie group whose Lie algebra is (D(g), [, 1o)-

Proof. Forany (p, a),(q,b) € Gxg, (p,a) = (p~, —-p(p)(a)) and

Lip.0) © Ryt -poyan(@> b) = (0, a)(q, b)(p ", -p(p)(a))
= (pq, b +plg @), -p(p)(a))
= (pap™", -p(p)(a) + p(p)(b) + p(pq~)(a)).
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So, for any (X, b), (Y, ¢) € T(,,0)(G x g),

Ad, 4(X, b) = (AdpX, p(p)(b) - p(p)(X * a))

and hence
[(X,Db),(Y,0)]l=(X,Y],Xec-Yeb).

The triple (J, ( , ), *) induces a left invariant triple (Jo, g0, V°) on G x g satisfying
Jola,b)” = (-b,a)", go((a,b)", (c,d)) = ((a, b), (c,d))p and V(,, (c,d) = ((a,b)*(c,d)”, a,b,c,deg.

Thus (G x g, Jo, go) is a left invariant Hermitian structure and v is a left invariant flat torsionless connection
on G x g.
Denote by © : TG — G x g the identification X, — (p, TpL,1Xp).

Theorem 2.1. Let (TG, J,, g1) be the canonical Hermitian structure associated to (G, V, ( , )) and V! the
associated canonical affine connection. Then O sends (J1, g1, V') to (Jo, o, V°), i.e., forany X, Y € I'(TG),

2(X,Y) = g0(0:X, 6:Y), 0«(J1X) = Jo0sX and 6:(ViY)=V9. 46.Y.
To prove this theorem, we need some preparation.

Proposition 2.2. Let (G, D) be a Lie group endowed with a left invariant connection, T : [0, 1] — G a curve
and V : [0, 1] — TG a vector field along T. We define t* : [0, 1] — gand W : [0, 1] —s g by

() = To Lo (T(8)  and  W(E) = Ty Lo (VD).
Then V is parallel along T with respect D if and only if, for any t € [0, 1],
W (6) + T(t) ® W(t) = 0,
whereu e v = (Dy-v7)(e).
Proof. We consider (uy, ..., un) a basis of g and (X4, ..., Xn) the corresponding left invariant vector fields.
Then
n n n n
(0 = Y TiOw, WO =Y WiOu;, 70 =Y T (OX;, VO =Y WiD)X;.

i=1 i=1 i=1 i=1
Then

DV (t)

n n
Z W;(t)Xl + Z Wi(t)DT'(t)Xi

i=1 i=1

= Y WiOX+ > Wie)T] () Dy, X;

i=1 i,j=1
n n

= D WiOXi+ > WO (O e wi)
i=1 i,j=1

(w’(t) +Tlt) 0 W(t))i

and the result follows. O
Proposition 2.3. Let (G, V, ( , )) be a left invariant affine-Riemann structure on a connected Lie group. Then:

1. Forany X € TpyGandany a € g,

TOX")(p, @) = (0, TyL,+(X) and TOXM(p, ) = (X, ~TpL,+(X) * a).
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2. Forany(a,b) € gxg, (a,b)” = TO((a)" + (b7)").
Proof. The first relation is obvious. Recall that the horizontal lift of X at up € TG is given by
d
XMup) = = V(D)
(up) d £e=0 ®
where V : [0,1] — TG is the V-parallel vector field along a curve T : [0, 1] — G such that 7(0) = p,
7(0) = X and V(0) = up. Puta = TpL,-1(up). By virtue of Proposition 2.2,

T, 00" = G (0, W(O) = (X, ~Ty L1 () » ).

. Forany p € Gand u € g, we have

(ay b)_(p’ u) T(e,O)L(p,u)(a’ b)

d

= E\tzo(p’ u)(exp(ta), th)

B dit o P EXP(ta), b+ plexp(-ta) ()

= (a(p),b-aeu)
= (a (p), —Tprfl(a"(p)) e u)+(0, Tprfl(b"(p))
= TO(@)"(p,u)+ TOB ) (p, u).

O
2.2.0.1 Proof of Theorem 2.1
Proof. By virtue of Proposition 2.3,
Jola,b)” =(-b,a)” =-TO(b )"+ TO(a )",
= T6/1((b)") + T6J1((a)")
= T6J,(TO) (a, b)".
The other relations can be deduced similarly. O

3 Basic tools for the study of the canonical sequence of Hermitian
structures associated to an affine-Riemann manifold

Trough-out this section and the next one, (M, V, (, )) is an affine-Riemann manifold of dimension n, D the
Levi-Civita connection of ( , ) and y the Riemannian volume. Let (T*M, J > Sks v5), k = 1, be the canonical
sequence of Hermitian structures associated to (M, V, ( , )) endowed with the sequence of flat torsionless
connections. For any k > 1, we denote by 71, : TXM — T*"'M the canonical projection. We consider the
difference tensor ~ and its dual 4" given by (2), their traces given by (3) and the Koszul forms a and ¢ given
by (4) and (5).

Since both V and D are torsionless, v is symmetric and it is easy to check that, forany X, Y, Z, U € I'(TM),

Vx((» DY, 2) = (v Y +9xY, Z), (Dx()(Y, 2), U) = (Dx(y )Y, U), 2). (12)
Since V is flat, the curvature K(X, Y) = Dy y; - [Dx, Dy] of ( , ) satisfies

KX, Y)Z = Dy()(X, Z) - Dx(N(Y, Z) + [vx, 7] Z. (13)
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From the relation K(X, Y)" = -K(X, Y), we deduce that
K(X,Y)Z = Dx(y')(Y, Z) - Dy(y" )X, Z) + [yx, 7712 (14)

and hence
Dy(y +~)X, Z) - Dx(y + )Y, Z) = [vx, 1)Z - [vx, 112 (15)

The first Koszul form a satisfies the following properties.
Proposition 3.1. Forany X € I'(TM),

Yk = (X, tr |y (7)) = tr()p = a(Op. (16)

In particular, the first Koszul 1-form « is closed.

Proof. Let (Eq,...,En)bealocal (, )-orthonormal frame.

n

n n

1

Vxu(E1, ..., En) =~ E M(E1, ..., VxE;, ..., En) = - E (VxE;, E;) = 5 E Vx((, E;, E;)
i=1 i=1 i=1

121 * *
= 5 (B +xEi, Ei) = ttlyx) = (tr (), X).

The fact that a is closed is a consequence of the fact that, for any X, Y € I'(TM),

(V[X,y] - VxVy+VyVxu =0.

Proposition 3.2. The differential of the fundamental form w associated to (TM, 1, g1) is given by
do(X", Y", 2" = dw(X", Y", Z") = dw(X", Y¥,2") =0 and dw(X",Y",Z") = (xY - yX,Z) o 1,
forany X, Y, Z € I'(TM). Hence
Urdw)X", Y, 72" = (1dw)(X", Y, 2") = 1dw)X", Y",2") =0 and (J1dw)X",Y",Z") = ~(hx Y-y X, Z)om;.

Proof. From (7) and (9), we have obviously dw(X", Y", Z") = dw(X",Y",Z") = dw(X", Y",Z") = 0. On the
other hand,
doX", Y",Z") = XY, Z) oty - Y.(X, Z) oty = ([X, Y], Z) o 11y — (VxZ, Y) o 11y + (VyZ, X) o 113

=Vx((, DY, Z)om -Vy({(, D)X, Z)omy,

12) * *
© xY - 17X, Z) o my.

O

As an immediate consequence of the expression of dw, the proof above, (14) and (15), we get the following

result which sums up some of the important properties of Hessian manifolds (see [23]). Recall that a Hessian

manifold is an affine-Riemann manifold (M, V, { , )) such that in any affine coordinates (x1, ..., x») there
2

exists a function ¢ such that (0x;, dx;) = % foranyi,j € {1,...,n}. Thisis equivalent to ( , ) satisfying

the Codazzi equation (6).

Corollary 3.1. (TM, J1, g1) is Kahler if and only if (M, V, (, )) is Hessian manifold which is also equivalent to
v =~". Inthis case,

Dy(n(X, Z) =Dx(1)(Y,2) and K(X,Y)=I[yx,wl, X, Y,ZeI(TM).

Let us compute now the Levi-Civita connection VEC of (TM, J1, g1) and its Lee form.
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Proposition 3.3. Forany X, Y € I'(TM),
VYR = (Dx 1), VESYY = —%(w}y + X, VEY" = (15X and  VECYY = (DxY)’ - (14Y),

where 1 1
7' =50-9) and ¥ =3G+7).

Proof. Let X, Y, Z c I'(TM). From the Koszul formula and (7), we have obviously
28(VEE Y, 2Y) = 2g(VES Y, 2Y) = 28(VES YR, ZM) = 0.
On the other hand,

28(VE Y, ZM) = 2(DxY, Z) o my,
28(VIEYY, 2N = —Z(X, Y) oty + (V2X, Y) o1ty + (V2 Y, X) o 11y
= _vZ(< ) >)(X’ Y) o7l

12 *
© X+ 13X, Y) o m,

= —(3Y + X, Z) oy,
28(VESYM, 2V =YX, Z) oty = (VyX, Z) oty — (VyZ, X) o 111,
=Vy((, DX, Z)om

(12) *
= (ywwX+wX,Z)omy.

Proposition 3.4. The Lee form 0, of (TM, J1, g1) is given by
01 =ma-9§),

where a and & are the Koszul forms of (M, V, ( , )). In particular, (TM, ]1, g1) is balanced if and only if « = &
which is also equivalent to

tr, >(7*—’Y) =0.

Moreover, (TM, ]1, g1) is locally conformally balanced if and only if dé = 0.

Proof. Let (E1,...,En) bealocal {, )-orthonormal frame. Having in mind the expressions of vic given in
the last proposition, for any X € I'(TM),

n
~d'wx" =% (Végw(E?, X"+ vé?w(El-V,Xh))
i=1
n
-3 (E,h.w(E,'-’, X" - w(VHCEL, X") - w(E], VEEX") + B (B, X") - o(VE Y, X") - w(E}, véi?x”))
i=1
- 0.

~d'w(x) = (Vi El X+ VE 0, X))

n
i=1

(E?.w(E,h, X") - w(VEE! X*) - w(E}, VEEXY) + E} . w(E}, X") - w(véivcE,-V, X") - w(E!, véivcxv))

i=1

=

1 *
(E1<E1,X> o7 — <DE,-Ei’X> o7 — <Ei,DEiX> o7 + E(Ei,’yEiX— ’YEI-X> o7l

i=1
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* 1 * *
+(vg,Ei X) oy - 5(75,-)( +xEi, Ej) o 771)
= (tr(, )(’Y*) —trg y(0), X) omy.

Finally,
0:(X") = -d"w(1X") = (trg () —tr; (), X) oy, 6:1(X")=0

and we get the desired formula. Moreover, since a is closed then df; = 0 if and only if d¢ = 0. O
Proposition 3.5. We have
d'6y=d(a-&om —{trg () -tr, (), tr (7)) om
and hence (TM, J1, g1) is Gauduchon if and only if
d'(a-&) =trg (I = (trg (), trg ().

Proof. A straightforward computation using the definition of the divergence and the expressions of V¢, [
Proposition3.6. 1. (TM, ], g1) is locally conformally Kdhler if and only if, forany X, Y € I'(TM),

(n = DY ~77X) = Bo(X)Y - §o(V)X, (17)

where 6y = a - &.
2. (TM, J1, g1)is Vaisman if and only if (17) holds and the vector field I := tr, (" =~) is parallel with respect
tobothD and V.

Proof. (TM, ], g1) is locally conformally Kahler if and only if (n - 1)dw = 0; A w.Forany X, Y, Z € I'(TM),

01 A w(X", Y, 2" = 0, A (XY, YY,2Y) =0,
0, A wX", YR, Z%) = 0.(X")(Y, Z) o 1y - 0, (Y)(X, Z) o 11y
= eo(X) e} 7T1<Y, Z> o7 — 90(Y) o 7'[1<X, Z> o,
0; A w(X", ¥, 2") =0
and the first assertion follows by virtue of Proposition 3.2.

. (TM, J1, g1)is Vaisman if and only if it is locally conformally Kdhler and vE€o, = 0. Now, by using Proposition
3.3, forany X, Y € I'(TM),

VE O™ - Dx(6)(N)", VEOD(Y) = VIO =0 and  TE(B)(Y") = 5600 +7vX).

On the other hand, if (17) holds then 8y (yy Y —~yX) = 0. Thus (TM, J1, g1) is Vaisman if and only if (17) holds,
D6 = 0 and, for any X, Y € I'(TM), 6y(yy Y) = 0. This relation is equivalent to vx(IT) = 0 for any X € I'(TM),
D6y = 0 is equivalent to DII = 0 and we get the desired result since y =D - V. O

Let us compute the difference tensor I' = V¢ - V! of (TM, V1, g1) as well as its adjoint I'"", the Koszul forms
ay, & as well as the Lee form ) of (T¥M, V¥, g}).

Proposition 3.7. Forany X, Y € I'(TM),
1 * 1 * *
Lo Y" = (x V", T YY = Ty X" = SO Y + 3 Y), oYY = =5 (kY + 97 X)",
* * x 1 * * 1 * x 1 * *
Ty Y = 3", T Y'Y = SOxY + 95 V)", T Y = =S (xY + 7 X)" and T ¥" = S0xY + X",

trg, () = (tr () —tr, (N, trg, (T7) = 2(tr |, ()",

& =-0, ag =210, om(a) and Oy=myo...om(@X-1a-¢), k=1.
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Proof. The expressions of I' are an immediate consequence of Proposition 3.3 and (8) and one can deduce
easily I". If (E1, ..., En)isalocal ( , )-orthonormal frame then

n n

trg, () = (FE?E? + FEIyE}’) = (tr()-tr N and tre, (M) =Y (rg?Eﬁ’ + ngvElV) = 2(tr (N
i=1 i=1

This implies that &; = 71} (£ - &) = -61, a1 = 2m;(a) and hence

0, =my(a1 - &) =m omBa-¢), & =my(&1 -a) =-0, and  a, = 2my(ay) = 2°75 o my(a).

By induction, we get all the desired formulas. O

We end this section by a remark on the Hermitian structure (TM, J1, g1). Indeed, the fact that V1(J;) = 0
makes the Hermitian structure (TM, J1, g1) particular as the following remark suggests. We don’t use this
remark in our paper but, may be, it can be used in further studies.

Remark 1. One can check that the tensor I satisfies, for any U, V € I'(TTM),
Iy, yhV-11I5,0V-11TyJiV-TyV=0. (18)
By using the fact that V(J1) = 0 and the known formula (see [18, Proposition 4.2])
481 (Vi TV, W) = 6dw(U, 1V, 1 W) - 6dw(U, V, W) + g1 (N}, (V, W), ], U)
we get that (18) is equivalent to

d(l)(]l U’ ]1 V9 ]1 W) = dw(]l U’ V’ W) + d(l)(U, ]l V’ W) + dCU(U, V’ ]1 W)'

4 Affine-Riemann manifolds with pluriclosed (TM, J4, g1)

In this section, we give the conditions so that (TM, J1, g1) is pluriclosed and we generalize a result obtained
in the theory of Hessian manifolds.
Let us compute dd‘w = -dJ;'dJ 1w = dJ dw.

Proposition 4.1. Forany X,Y,Z, U € I'(TM),

dJidw(X", YR, Zh, UM = d dw(X, YV, 2¥, UY) = dJ dw(X", YR, Zh, UY) = dl dwX", YY, 2¥, UY) = O,
dJdw(X", Y", 2V, U") = 2(K(X, Y)Z - (") o vy — 7y © w)Z, U) o 5.

In particular, (TM, J1, g1) is pluriclosed if and only if for any X, Y € I'(TM), the curvature K of D satisfies
K(X, Y) = vx o ¥y = 7y © 7x-
Proof. Putv(X, Y) = 7xY - 43 X. By using Proposition 3.2, we get easily
ddo(x", Y, 2", UM = dJydo(X", Y, 2", U") = d do(X", Y", 2", UY) = dl1dw(X", Y, 2", U") = 0.
On the other hand, having in mind (7), let us compute S := dJ;dw(X", Y, Z¥, U¥). Indeed,

S=X"Jidw(Y", 2", U0") - Y" J1dw(X", 2", U") - I1dw((X, Y]", Z¥, UY) + J1dw((Vx2)", Y", U")
- J1dw((VxU)", Y", 2") - J1dw(Vy2)", X", U") + J1dw((VyU)", X", Z")
=-X.(v(Z,U0),Yyom + Y.(v(Z,U),X) oty + (v(Z, U), [X, Y]) o1y + (v(VxZ,U), Y) o 111
+((Z,VxU), Y) oty — (W(VyZ, U), X) oty — (W(Z, VyU), X) oy
=Xy U, Yyomy + X(yZ, Y)Y ommy + Y.z U, X) o 1y = Y. (yyZ, X) oy + (77U, [X, Y]) o 1
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—(wZ, X, Yy oty + (7p,zU, Y) o 11 = {(vgDxZ, Y) o 1 — (72U, Y) o 1 + {(ygvxZ, Y) oy
+(vzDxU, Y) oty = (ypyuZ, Y) o 11 = (vzxU, Y) o 711 + (73,02, Y) o 1y

1yzU, X) o 11 + (yyDyZ, X) o 1y + (7, 2U, X) o 11 = (yyyvZ, X) o my

(
(
(
(vzDyU, X) o 111 + (vp,uZ, X) o 11 + (vzyy U, X) o 11 = (73,02, X) o 1.
We simplify this expression by using the properties of D:

S =~(DxyzU, Y) o mty + (DxyyZ, Y) o 1y + (Dy~zU, X) o 1y = (DyyyZ, X) oy
+ (1pyzU, Y) o 111 = (yDxZ, Y) o 1 = (72U, Y) o 1 + (yyxZ, ¥) o 1y
+ (vzDxU, Y) o 1 = (yp,uZ, Y) o 11 = (yz7x U, Y) o 711 + (02, ¥) o 1y
~ (Ypy2U, X) o 711 + (yyDyZ, X) o 711 + (7, zU, X) o 711 = (yyvZ, X) o m3
— (7zDyU, X) o 1 + (vp,uZ, X) o 1 + (v7vU, X) o 711 = (7,yZ, X) o 71

= —~(Dx(y)(Z, U), Y) oy + (Dx(v)(U, 2), Y) o my + (Dy(v")(Z, U), X) o 11 — (Dy(y" )(U, 2), X) o 4

— (VoyzU, Yy oy + (ygxZ, Y o 11 = (z9xU, Y) o 11 + (YpZ, Y) oy

+ (1oyzUs X) 0 111 = (v Z, X) oty + {27y U, X) o 11 = (74,02, X) o 1.

By using (12), we get

S==(Dx()(Z,Y),U) omy + (Dx(1)(U, Y), Z) o my + (Dy(1)(Z, X), U) o 11 — (Dy(V)(U, X), Z) o 1
— (U, ~y o vxZ) o 71 + (yy 0 yxZ, Uy oy = (U, vy 0 vy Z) o 11 + (Z, vy 0 4xU) o m
+ (U, yx 09y Z) o 11 = (yx 0 vy Z, Uy oy + (U, vy 0 yxZ) o 711 = {vy 0 xZ, U) o m
© (KX, V)2, U)o 11~ (KX, V)U, Z) 0 711 + 2{(3y 0 vx ~ 7 © w)Z, U) o 13

= 2(K(X, Y)Z - (vx o vy = vy © 7x), U) o 711
O

In [23, Theorem 8.8 pp. 162], Shima proved that if (M, V, ( , )) is a compact Hessian manifold such that its
first Koszul form vanishes then V is the Levi-Civita connection of ( , ). Note that in this case the first Koszul
form and the dual Koszul form coincide. The following theorem is a generalization of this result under an
additional assumption, namely, V is complete. It will be interesting to see if we can drop this assumption.

Theorem 4.1. Let (M, V, ( , )) be an affine-Riemann manifold such that (TM, J1, g1) is pluriclosed and the
dual Koszul form of (M, V, { , )) vanishes. Then the Ricci curvature of { , ) is nonnegative. Moreover, if M is
compact and V is complete then v = 0, i.e., V is the Levi-Civita connection of { , ).

Proof. Note that the vanishing of dual Koszul form is equivalent to tr y(7) = 0. From the relation
K(X,Y) = vx ovy =7y 0 x
and the fact that tr, ,(y) = 0, we deduce that the Ricci curvature of (, ) is given by
ric(X, X) = tr(yx o vx) 2 0

and ric(X, X) = 0 if and only if vx = 0. By using the splitting theorem of J. Cheeger and D. Gromoll (see for
instance [5, Corollary 6.67 pp. 168]), we deduce that if M is compact its universal Riemannian covering is
isometric to a Riemannian product (M x R4, (, Y1 x{, )o) where M is compact and ( , )o is the canonical
metric of R?. But if V is complete the universal covering of M is diffeomorphic to R" which completes the
proof. O
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5 The Bismut and Chern connections of (TM, J,, g1) and their
curvatures

Let (M, V, (, )) be an affine-Riemann manifold of dimension n. The expressions of the Bismut and Chern
connections of (TM, J,, g1) can be deduced easily from (1) and Propositions 3.2-3.3.

Proposition 5.1. We have, forany X, Y € I'(TM),
Vi Y' = (e, VRY = -0pX)", [V Y= (D))" - 0D, VY = -(x 1)
VEY" = (3yX)Y, VE Y = (DxY)". V&Y = (05Y)Y, VLYY = (DxY)” - (h4Y).
where 1 1
F=2(y=7) and 4 =@+
2 2
Now, we give the curvature R? of V2.
Proposition 5.2. Forany X, Y, Z ¢ I'(TM),
RE(xM, YMzZ" = (K(X, V)2)", RE(X", Y")Z" = (K(X, V)Z)",
B * * B h * h * h
REXY, Y)Z" = (1 X0 = (1 V)Y, REQKY, Y21 = (0 KO = (1 O,
RB(X", Y")Z" = (v 0 V)" + (Dx(+)(Z, V),
RB(X", Y")Z" = ~(y7 0 x V)" - (Dx(y")(Z, V)",
where K is the curvature of D. Moreover, the Ricci form is given by
pB(Xh, 4 =pB(XV, Y")=0 and pB(Xh, YY) = (Y, tr; yv) omy = (Dxtr; y(7), Y) oy
In particular, if tr | )('y) = 0 then (TM, J1, g1) is Calabi-Yau with torsion, i.e., p? = 0.
Proof. We have
RE(xM, YMZ' = (k(X, V)2)"
RB(X", YMZ' = (KX, Y)2)",
REXY, YN)Z" = Vi (V)" = Vi (zX)" = (X" = (4 V),
RE(XV, Y Z" = VB, (777)" + VB, (1;X)" = (y;gyx)h - (@X V",
RE(X", ¥")Z" = VB, 12" + Va3 Y) + VE(Dx2)"
= ~(2(Tx V)" + Dy )" - (2O,
= (vz o 7x V)" + Dx1z V)" - (v, V)" = (z(Dx V)",
RE(X", Y)Z" = V5 1) 2" - V(Y)Y + V5. (Dx2)"
= (1z(VxY))" - DxvzY)" + (7p,z¥)"
= ~(y2(1x V)" + (1z(Dx V)" = (Dx7zY)" + (vp,zY)".
Let (Eyq, ..., En) be alocal orthonormal frame of ( , ). Then
n
20", ¥ = 3 (a1 (RP(X", YMEL, BN - 51 RO (x", YMEY, E)) = 0,
i=1

n
20", ") = 3 (1 (RP(X, Y1IEL, EY) - g1 (R(X", Y)Y, E})) = 0,

i=1
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n
20"(x", ¥ = (a1 R, YVEL EY) - s R°(H", YV)EY, ED))

i=1

=

=" (-200, 0 mY + Dx(")Ei, V), En)
i=1

n

= 2(xY, tr )y om =23 (Dx(Y)(E;, V), Ej)omy
i1

(12)

n
= -2(yxY,try) oty =2 (Dx(W(E;, E), Y) o my
i=1

= _2<'7XYs tl’< , >’y> o7l — 2<tr< R >(Dx(’7)), Y> oTl.

Fix a point p € M. It is known that there exists a local orthonormal frame (E1, ..., En) in a neighborhood of
p such that (DE;)(p) =0forj=1,...,n.Forany X e I'(TM),

tr; y(Dx()) = ZDX(’Y)(Ei’ Ey)
i-1

= Dx(tr;, y(7)) - 2ypyE, Ei

By evaluating at p we get that tr, | >(DX(7))(p) = DX(tr< i >('y))(p) which completes the proof. O
We give also the curvature R¢ of V°.
Proposition 5.3. Forany X,Y,Z c I'(TM),

RE(x", YMzZ"h = R(X¥, Y)Z" = ([}, 12",

RE(XM, YMZ" = RY(X", Y12 = (0 12)",

RE(X", Y")Z" = ~(Dx(°)(Y, 2))" + (10§, 12" - (45, v 2D,

RE(X", Y")Z" = (Dx(v* )Y, )" - (0%, 12" + 35,y D",

where K is the curvature of D. Moreover, the Ricci form is given by

P, Y") =pC(X¥, ¥) =0 and p (X", YY) = (Y, tr; y(3)) oy — (Dxtr, ,(y"), V) o my.
In particular, if tre, >(7*) = 0 then the Ricci form pC of (TM, J1, g1) vanishes.
Proof. By using Proposition 5.1,

REXM, YMZ" = Dy 2" - (i 2" - Vi Dy 2" + V5 (452)" + Vi (Dx2)" - V5 (h52)"
= D 12" - O 2" - DxDy2)" + (DY 2)" + (Dx1$2)" - (1§+52)"
+ (DyDx2)" - (V4 DxZ)" - (Dy~£2)" + (V§r52)"
= (KX, V)2)" + Dx(v)(Y, 2)" - Dy(y)X, 2)" + ([§, 1§12)".

R, Y2 = Vo (32" - Vi (3 2)"
= (w2 - (v x2)" = vz, w12)',
REXY, Y)Z" = V% (152)" + V4 (152

= (g, 12"

REXM, Y ZM =V ) 2 - V(03 2)Y + V5. (Dx2)" - V5. (15 2)"
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= (VhyrZ)" = (Vv 2)" = (Dx 2" + (3w Z)" + (WyDxZ)" - (vyx2)"
= —(Dx(¥*)(Y, 2))" + (x> W12 = (43,v2)"

REX", YV)Z' = Vi ypZ' + VG (32" + V5 (Dx2) - V5. (152)
= (B v 2" - (v 2" + D3 D" - (2" - (1FDx 2" + (3E D",
= (Dx(* )Y, 2))" - (0%, W12)" + (¥3,v D),

Now, by using (14) and (15)

REX™, YZ" = (Dy()(X, 2))" - Dx(N(Y, 2)" + (lyx, 7712)" ++(Dx ()Y, 2)" - Dy (DX, 2)" + (17, 1£12)"
= 2Dy 49 )X, 2) = 3 Dxly 7 MY, D) + (b w12+ (1, 2512)"
= 2B 12" = S (b WD + (s 7912+ 2 (b =77, 35— 2512)"

= 2B 12"+ S (s WD + 7 (=77~ 1302
= 205D + 7 (b 12" - 2y, 312 + by 112"

= [vx> ).

Let (E1, ..., En) be alocal orthonormal frame of ( , ). We have obviously, p¢(X", Y") = p®(X”, Y*) = 0. Then

205", ¥ = 3 (1 REK™, YOEL JE) + g1 (REX", Y")EY, JEY))

i=1

n
=3 (s8R, YIB! B - 1 (REX", YVIEY, ED))
i=1
n
=2 ((-Dx(¥°)Y, Ep) + [v%, WIE;i = ¥, vEi, Ei) o 1)
i=1
n n

= 2tr(yp,y) oy = Y _(Dx(N(Y, By, Ey) oty = Y (Dx(y )Y, Ey), Ey) o 11
i=1 i=1

¥t y(y)) o my = 2(tr; y(Dx(+)), ¥) o 11.

The same argument as at the end of the proof of Proposition 5.2 completes the proof. O

(92 _»,

6 The canonical sequence of Hermitian structures of an
affine-Riemann manifold: global and local results

In this section, we prove a global result on the sequence (T¥M, J;, gx), we give in local affine coordinates
the necessary and sufficient conditions for (TM, J1, g1) to be balanced or pluriclosed. We illustrate these re-
sults by many examples and we give some properties of affine-Riemann manifolds for which (TM, J, g1) is
Vaisman.

Let us start with the following result which constitutes one of the main results of this paper.

Theorem 6.1. Let (M, V, {, ) be an affine-Riemann manifold. Then:

1. If v = O then, for any k = 1, V¥ is the Levi-Civita connection of g, and (T*M, J, gx) is Kéhler flat.

2. Forsomek = 2, (T*M, Ji, g) is Kdhler if and only if v = 0.

3. Forsomek > 1,(T*M, ], gx) is locally conformally balanced if and only if (TM, J1, g1) is locally conformally
balanced and this is equivalent to d¢ = 0.
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4. Forkg=1, (T"OM,]kO,gko) is balanced if and only if
tre () = % - Dtr (). (19)

In this case, (T**' M, Jko+1» 8ko+1) is Calabi-Yau with torsion and for any k # ko, (T*M, Ji, g) is locally
conformally balanced.

5 Iftrg >(7) =tr, >(7*) = O then, forany k = 1, (T"M,]k, 81 is balanced, Calabi-Yau with torsion and its
Chern Ricci form vanishes.

Proof. Note first that v = 0 if and only if D = V. On the other hand, it is obvious from Proposition 3.7 that
~ = 0 if and only if the operator difference I' for (TM, V?, g1) vanishes. By induction, we get that - = 0 if and
only if, for any k > 1, the operator difference I'* of (T*M, V¥, g,) vanishes and the result follows.

2. According to Corollary 3.1, (T?M, ], g>) is Kahler if and only if I = I'. But from Proposition 3.7, this implies
that for any X, Y € I'(TM)

* * 1 * * * 1 * *
T Y" = (V)" =TpY" = (xV)" and Te ¥’ = -S0xY +wX)" =T Y = S0xY + 47 X)"

and hence v = 0. By induction, we get the result.

3. Fix k = 1. Then (T*M, Ji, gx) is locally conformally balanced if and only if its Lee form 6 is closed. But from
Proposition 3.7, 6; = nz 0...0 rr;((zk - 1)a - &). The first Koszul form a being closed we get the result.

4. Fix ko = 1. Then (T M, J;,, gi,) is balanced if and only if 6;,, = M, © ... 0 (2% - 1)a - &) = 0 which is
equivalent to tr >(’y) = (2ko - 1)tr< ’ >(7*). But from Proposition 3.7, 8, = -&; and one can use Proposition
5.2 to deduce that if (T*M, J ko» 8k,) is balanced then (T 1y, J ko+1» Eko+1) is Calabi-Yau with torsion. On the
other hand, since a is closed then d¢ = 0 which completes the proof.

5. Itis a consequence of what above and Propositions 5.2-5.3. O

Example 1. 1. Intheitem 4 of Theorem 6.1, one can build a balanced Hermitian structure on TM by solving
an equation on (M, V, { , )). Let us give some examples of this situation.
(a) We consider the left symmetric product on R> given by

e, ®e1 =ae;,e1%e; =ae; +es,eq1 ®e3 =€) +aes,ep; ®e; =daey,e3®e; =daes.
The associated non vanishing Lie brackets are given by
le1, e2] = e3, [e1, e3] = e3.

We denote by G the connected simply-connected Lie group associated to (R>, [ , 1) and by V the left in-
variant flat torsionless connection on G defined by e. For a = 1, the left invariant metric on G associated
1 1 0

tothe scalarproduct | 1 3 1 | onR satisfies (19) for ko = 2 with tre, >(y) #0andtr >(fy*) #0.

0 1 1
Thus (TG, ], g>) is balanced, (T G, J5, g3) is Calabi-Yau with torsion and, for any k # 2, (T*G, Jx, gx)
is locally conformally balanced not balanced.
(b) We consider the left symmetric product on R> given by

e1®e;=aej,e1%e; =(1+a)ey,e;®e3=(1+a)es, e, ®e; =aey,e3 ®eq =aes.
The associated non vanishing Lie brackets are given by
le1, e2] = €2, [e1, €3] = e3.

We denote by G the connected simply-connected Lie group associated to (R>, [ , 1) and by V the left in-
variant flat torsionless connection on G defined by . For a = %, the left invariant metric on G associated
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A 0 O
to the scalarproduct | 0 u 0 | on R? satisfies (19) for ko = 4 with tre, >(’y) #0andtr >(7*) #0.

0O 0 v
Thus (T*G, J4, g4) is balanced, (T G, ], gs) is Calabi-Yau with torsion and, for any k # 4, (T*G, T 8x)
is locally conformally balanced not balanced.

Let us compute the Koszul forms of an affine-Riemann manifold in local affine coordinates.

Proposition 6.1. Let (M,V,( , )) be an affine-Riemann manifold. For any system of affine coordinates
(X19~-' ,Xn),
1 - Oljn
_1 _ kh OH; o
a= 2dln(det G) and ¢ Zl %y %, dx; - a, (20)
j= ,

where Upy = (Ox,, Ox,) and the matrix (u"€) 1y 1on = G where G = (Upi)1<h, ken-

Proof. Let (x1, ..., xn) be a system of affine coordinates. The Riemannian volume y is given by
u=vVdetGdxi A...Ndxn

and the first formula is a consequence of the relation Vyu = a(X)u for any X € I'(TM) (see Proposition 3.1).
On the other hand, we consider a local orthonormal frame (Ey, ..., Ey) of ( , ) and we denote by P =
(Dij)1<i j<n the passage matrix from (0x,, . .., 0x,) to (E1, ..., En). We have P'GP =1y.Foranyj=1,...,n,

n

a(0x;) = Z(WaXiEi, E;)

i1

> Puabni{Da, Oxc: Oxy)
ik

1 OMpk . OMjh _ OMjk
Ezmkh< ox; T oxg  oxy )
h,k ]

In the same way,

n

£0x) =Y _(v5Ei, Ox)

i=1

=3 Piibni(Do,, Oxis Ox;)
i1,k

_1 OUij . OMjn Oy
_E%mkh (aXh * an - aX]'

oU;
= Z mkh# - a(an),
nk k

where myy, = 3", PriPni- But (Myp)1<x,nen = PP" and the result follows from the formula P'GP = In. O

Example 2. Letf : R? — R be a smooth function. Consider the affine-Riemann manifold (}Rz, vO, (, )
where V° is the canonical connection of R* and

()= cosh(f(x,y)) sinh(f(x,y))
’ sinh(f(x,y)) cosh(f(x,y)) )

Then det(, ) = 1 and, by virtue of Proposition 6.1, a = 0. According to Proposition 5.3, the Chern Ricci form of
(TR?, ], g1) vanishes.
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The following theorem gives a large class of balanced metrics non-Kihler on C? endowed with its canonical
complex structure.

Theorem 6.2. We consider M = R? endowed with its canonical affine structure and { , ) = ( Z 1 ﬁ 12 >
12 H22

a Riemannian metric. Then (TM, J1, g1) is balanced if and only if there exist smooth functions v : R? R,
f,h: R — R such that

0 0
Hi2 =V, H11(X1,X2)=f(X1)+/aTrl(X1,X2)dX2 and ,Uzz(Xl,Xz):h(X2)+/aT:/2(X1,X2)dX1-

Proof. According to Proposition 6.1,

(€ - )0y, = p' Op11 . 12 (6}111 N a}llz) L2202 1 d(M11p22 - P1y)

ox1 0x> ox1 ox, detG ox1
1 u Op11 Opar  Opaz )\ , OMi2) _ 1 O(uiipa - 432)
detG \"'*? ox 121 "ox, 0x1 175x, det G 0xq

_ 1/ Op11 _ 012\ | OU12 O
detG \ H12 0x> 0xq M1 0X> 0x1 ’

(& - a)(0x,) = ! Op12 . 12 (a,uu N a}lzz) 20Mn 1 d(uiipas — uiy)

()Xl aX2 aX1 TH aXZ det G aX2
_ 1 OU12 OM12  OM22 |, Op2p) _ 1 O(u11 122 — U3y)
det G H22 ox1 H12 0x> ox1 K 0X> det G 0x>
_ 1 u OM11  OM12 i OM12  OH22
detG \ "# \ox;  oxg 2\ox,  oxy )¢
Thus, the vanishing of £ - a is equivalent to
Op11 _ OM12 _ OM12 _ OMyy _
aXZ aX1 aXZ aXl
and we get the desired result. O

Example 3. For any smooth functions f, h : R — R, the metric

~ ety 4 ef(x) Xty
< ’ > - exty Xty 4 eh(y)

satisfies the condition of the last corollary and hence defines a balanced Hermitian metric on C2.

The following theorem gives a large class of balanced metrics non-Kéhler and also Calabi-Yau with torsion
metrics on C™ endowed with its canonical complex structure.

Theorem 6.3. We consider M = R" endowed its canonical affine structure and ( , ) = Diag(u,...,un) a
Riemannian metric. For ko = 1, (T®M, J ko» 8k,) is balanced if and only if there exists (f1, ..., fn) a family of
positive functions such that, forj=1,...,n,
of; fio..fn
aix]- = 0 and }1] = f§n2k0‘1—1) .
j

In this case, (TX*1M, Jko+1> 8ko+1) i Calabi-Yau with torsion and, for any k # ko, (T*M, J, g is locally con-
formally balanced.

Proof. Note first that, by virtue of (20), for any k > 1,

2k—1

~ oln(p) e
f—(zk—l)a=—zgx(?dxj and pj=u,

-1 K



36 —— Mohamed Boucetta DE GRUYTER

and hence, according to Theorem 6.1, (TkOM »Jko» 8 ko) is balanced if and only if, forj =1, ..., n,
a . 2k0’1
%i _o and p; = (a-opn)”
0x; K

We have obviously that p; ...pn = (1 .. .yn)"zko_l‘l and hence

1
Hj = w
Pj
1
If we put f; = (p;) 2o1-1, we get the desired result and Theorem 6.1 permits to conclude. .

Now, we give the conditions in local coordinates so that (TM, J1, g1) is pluriclosed.

Theorem 6.4. Let (M, V, {, )) be an affine-Riemann manifold. Then (TM, J1, g1) is pluriclosed if and only if,
for any affine coordinates (x4, ..., Xn),

0% i azlijh B azl"ik + % i,

0X;0Xy, " 0X;0Xy  OX;OXy = OX;jOXy 1)

forany1l<i<j<nand1 <k < h<nandwhere p;; = (0x;, Ox;). When dim M = 2, (21) reduces to

0%p1 . ’u2r ) 1z

ox3 ox3 0x10x

Proof. According to Proposition 4.1, (TM, ], g1) is pluriclosed if and only if, forany 1 < i < j < n and any
l<k<hz<n,

0= <K(axi’ axj)axk’ axh> - <'Ya,<]. an’ Yoy, axh> + <Waxi axk’ “Yaxj axh>
= —<DaXiDax}. an’ axh> + <D6X].Dbxi an’ aXh> - <D6Xi axk’ Daxi aXh) + (Daxi an’ DaX}. aXh>
= ~3x(Ds, dx,; Ox,) + dx;. (Do, Oxs Iy

__1 (0% . Pup Py Puy  Pu . 0%y
2 ax,-ax]- aXian ax,-axh aXian aX]'an anaXh

_1 Pup Py 0Py, N 0%y
2 aXian aXiaXh anan anaXh )

O

Corollary 6.1. We consider M = R" endowed with its canonical affine structure and ( , ) = Diag(u1, ..., Un).
Then (TM, J1, g1) is pluriclosed if and only if, for any i # j, h # jand h # i,
Ipi, O _

— =0 d
ax]? * ox? an 0X;0Xp,

=0. (22)

In particular, if we take p; = e i) then (TM, J1, g1) is pluriclosed.

Remark 2. The balanced structures constructed in Theorem 6.3 on TM for M = R> do not satisfy the equations
(22) (which is in accord with the result given in [1] insuring that if a Hermitian metric is balanced and pluriclosed,
then it must be Kdhler).

We end this section by giving some properties of affine-Riemann manifolds with Vaisman tangent bundle.

Proposition 6.2. Let (M, V, { , )) be an affine-Riemann manifold such that (TM, ]1, g1) is Vaisman. Then the
following assertions hold.
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1. If(TM, J1, g1) is non-Kéihler then the vector field IT = tr(y") - tr(y) is a non-vanishing parallel vector field
with respect V an D and the distribution IT* is integrable and defines a codimension one totally geodesic
foliation on M.

2. Ifdim M = 2 and (TM, J1, g1) is non-Kdhler then the curvature of ( , ) vanishes.

Proof. According to Proposition 3.6, (TM, J1, g1) is Vaisman if and only if (17) holds and the vector field IT :=
tr >(’y* - ~y) is parallel with respect to both D and V.

. One can deduce from (17) that if (TM, J1, g1) is non-Kahler then ITI is non zero parallel. For any vector fields
X, Y orthogonal to IT, DxY is also orthogonal to IT and hence F = IT* is integrable and defines a totally
geodesic foliation.

. Itis obvious that a Riemannian surface with a non zero parallel vector field is flat. O

The geometry of Riemannian manifolds endowed with a codimension one totally geodesic foliation is well-
understood (see [13]). It is then an interesting problem to study affine-Riemann manifolds with Vaisman tan-
gent bundle.

a b

Example 4. Consider R? endowed with a flat Riemannian metric ( , ) = ( b e > ,a,b,c R and the flat

torsionless connection given by
Vaxax = ay and vaxay = Vayay = 0.

Then

_¢cb
ac-b? ac-b?

_ b __¢ch
ac-b? ac-b?

VSX = and 7;y =0.
Consider the orthonormal frame (E1, E,) given by

E, = iax and E, =

1
Vva va(ca - b?)

By using this orthonormal frame, one can check easily that

(ady — box).

c

t1’< , >(’y*) =0 and t1’< , >(’}/) = may.

One can also check that
Yo Oy ’Ysyax = (tr, )(’Y*) —tr,y(7), 0x)0y — (tr( >(’Y*) —tr¢y(7), 9y)0x

and hence (17) holds. Thus (TR?, J;, g1) is Vaisman and, actually this structure is left invariant.

7 Rigid affine-Riemann manifolds

In this section, we study the case where (M, V, (, )) is an affine-Riemann manifold satisfying
D(y) = 0. (23)

This condition implies that Da = D& = 0 and in particular d¢ = 0. According to Theorem 6.1, we get the
following result which justifies the study of this class of affine-Riemann manifolds.

Proposition 7.1. Let (M,V,{ , )) be an affine-Riemann manifold satisfying (23). Then, for any k = 1,
(T"M, J «» 8x) 1s locally conformally balanced.

Affine-Riemann manifolds satisfying (23) will be called rigid.
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Proposition 7.2. Let (M, V, (, )) be a Riemannian manifold endowed with a torsionless connection. Then the
following assertions are equivalent:

1. (M, Vv, (, ))is arigid affine-Riemann manifold.
2. The difference tensor v = D — V satisfies:

D()=0 and K(X,Y)=[vx,w]

forany X, Y € I'(TM).

Proof. Itis a consequence of the following formula
K(X,Y)Z=RY(X,Y)Z + Dy()(X, Z) - Dx()(Y, Z) + [yx, w1(2),
where RY is the curvature of V. O

Le us show that we can apply the following theorem due to Kostant [19, Theorem 4] to get an interesting
description of rigid affine-Riemann manifolds with complete Riemannian metric.

Theorem 7.1 (Kostant). Let A be a connection on a simply-connected manifold M. Assume that there exists a
second connection B on M such that

1. Bis invariant under parallelism, i.e., BT = 0 and BR = 0 where T and R are, respectively, the torsion and
the curvature of B.

2. Ais rigid with respect to B, i.e., S = B — A is B-parallel.

3. Mis complete with respect to B.

Let g be the Lie algebra of infinitesimal B affine transformations X on M such that (Lx - Bx)p € sp for some
(and hence every) point p € M where Ly is the Lie derivative in the direction of X and sp is the B-holonomy
algebra at p. Then the infinitesimal action p : § — I'(TM) integrates to an action ¢ : G — Diff(M) of a
simply-connected Lie group G which preserves both A and B. Moreover, M is a reductive homogeneous space
with respect to the action of G.

Let us see that the condition (23) implies the hypothesis of Theorem 7.1 for A = V and B = D. Indeed, the
condition (23) is equivalent to V is rigid with respect to D and from (13)

KX, Y) =[x, vy] forX,Y e I'(TM).

Since + is parallel, we get that DK = 0 and hence D is invariant under parallelism. If we suppose that M is
simply-connected and D is complete we can apply Theorem 7.1 and get the following result. Note that since K
is parallel the Lie algebra of holonomy is given by

Sp = {ZK(ui,vi), Ui, v; € TpM} .

Moreover, since D is torsionless Ly — By = —DX for any X € I'(TM).

Theorem 7.2. Let (M, V, (, )) be asimply-connected rigid affine-Riemann manifold such that { , ) is complete.
Consider

g= {X e I(TM), DX = 3" K(U;, Vi)} .

Then the action p : ¢ — I'(TM) integrates to an action ¢ : G — Diff(M) of a simply-connected Lie group
which preserves both V and ( , ). Moreover, M is homogeneous reductive under this action and (M, { , ))isa
Riemannian symmetric space.

The following result shows that there is a correspondence between simply-connected complete flat rigid
affine-Riemann manifolds and associative commutative algebras.
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Corollary 7.1. Let (M, V, ( , )) be simply-connected rigid affine-Riemann manifold with K = 0 and ( , ) is
complete. Then (M, { , )) isisometric to R" with its canonical metric and there exists an associative commutative
product ¢ on R" such that ~,v = u ® v forany u,v € ToR" and p € R".

Conversely, let (A, ®) be a real finite dimensional associative commutative algebra and ( , ) ascalar product
on A. The product * defines on A a flat torsionless connection V and (A, V,{ , )) is a rigid affine-Riemann
manifold.

Proof. Since K =0and (, )is complete then (M, (, ))is isometric to R" with its canonical metric. Moreover,
v is parallel and hence it is given by v, v = u e v for any u, v € T,R" and p € R", where ¢ is a commutative
product on R". The relation K(u, v) = [yu, 7] = 0 implies that e is associative. The converse is obvious. [0

Theorem 7.2 suggests us to look for rigid affine-Riemann manifolds among symmetric spaces and we give
now a practical method to achieve this task. The following result is a consequence of Proposition 7.2 and the
properties of the holonomy representation of symmetric spaces (see [5, Proposition 10.79]).

Proposition 7.3. Let (M, {, )) be a simply-connected Riemannian symmetric space and G its group of isome-
tries, o a fixed point of M and ~° : ToM x ToM — ToM a symmetric product such that

ad(@)(12v) = Yoqu? + wad(@v and Ku,v) = [w,w] u,ve ToM,a € go,

where g is the Lie algebra of the isotropy at 0, ad : go — End(T,M) is the infinitesimal isotropy representation
and K is the curvature of { , ). Then~° is invariant by holonomy and defines a parallel tensor - on M. Moreover,
(M, D -+, {, ))is arigid affine-Riemann manifold.

We illustrate this proposition by the following example.

Example 5. Consider M := SPD(n) the set of real symmetric positive definite n x n matrices, which is an open
subset of S(n): the vector space of real symmetric n x n matrices. The connected Lie group G := GL*(n, R) of
positive determinant n x n matrices acts transitively on M : g - x := gxg' , and the isotropy subgroup at I, is
H :=S0(n). The Lie algebra of H is b = so(n, R) and with m := S(n), we have a canonical decomposition

g=hom and AdH)(m)C m.

The scalar product on m given by (A, B)o = tr(AB) is Ad(H) invariant and hence defines a G-invariant Rieman-
nian metric ( , Yon M = G/H and (G/H, { , )) is a symmetric space. Its curvature at Tﬂ(e)G/H = m s given
by

K(A,B)C =][A,B],C], A,B,Ccm.

On the other hand, the product 4° : mxm — m
~SB = AB + BA

satisfies
K(A,B):=[va,v8] and K(A, BWWeE = 1R pcE +7¢K(A,B)E, A,B,C,Ecm.

Since the holonomy Lie algebra of (G/H, ( , )) is generated by K and G/H is simply-connected and by using
Proposition 7.2, one can see that ° defines an invariant parallel tensor field v on G/H such that, if D is the Levi-
Civita connection of (G/H, ( , )), (G/H,D —~, ( , )) is a rigid affine-Riemann manifold. Moreover, one can see
that v = ~" and hence (G/H, D - ~, { , ) is a Hessian manifold.

We determine now complete rigid affine-Riemann manifolds of dimension 2 and 3. We start with the following
propositions.

Proposition 7.4. The manifold R x S*(r) carries a family depending on a non null real parameter of affine
structures V¢ such that (R x S*(r), V¢, (, )o) is a rigid affine-Riemann manifold where S*(r) is the 2-sphere of
radius r and { , )o is the canonical metric of R x S(r). Moreover, for ¢ = i# we have tr | >0(7) = 0 and hence
(T(R x S2(r), J1, 1) is Calabi-Yau with torsion.
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Proof. By virtue of Proposition 7.2, a rigid affine-Riemann structure on R x $2(r) is a symmetric tensor field v
of type (2, 1) such that

D(1)=0 and K(X,Y)=[uy,wl, X,YeT(TRxS* 1)),

where D and K are, respectively, the Levi-Civita and the curvature of ( , )o. According to the holonomy
principle (see [5, pp. 282]), this is equivalent to the following: for a fixed p € R x S2(r), there exists
70 Tp(R x S2(r) x Tp(R x S%(r)) — Tp(R x S?(r)) such that, for any u, v € Tp(R x S%(r)) and any h € gp,

hov =pv+e(hy) and  K(u,v) = [, 48], (4)

where g, is the holonomy Lie algebra at p. Take p = (1, (0, 0, 1)), denote by (e;, e, e3) the canonical basis
of R? and e, the generator of R. Then Tp(R x S?(r)) = span(eo, e1, ;) and

0

gp = 0 . AeR

o O O
o > O

-A
Put v = Ag(u, v)eg + A1(u, v)ey + A,(u, v)e,. Then the first equation in (24) is equivalent to

Ao(h.u,v) +Ap(u, h.v) =0,
Ai(hau, v)+A1(u, h.v) = AA,(u, v),
As(hau, v) +Ay(u, h.v) = -AA1(u, v),

forany u, v € Tp(R x S?(r)) and h € gp. The solutions of this system of equations are given by their matrices
in (e, €1, €2)

ain O 0 0 c,3 —C12 0 c¢1,2 c13
Ap = 0 ass 0 AL = €13 0 0 and A, = C1.2 0 0
0 0 as3 -c1, O 0 c13 O 0
and hence
aiq 0 0 0 a3 O 0 0 asgs
Yoy = 0 3 —Ca |»7e=| cas 0 o0 and vg,=| -c1, 0 O
0 €1,2 C1,3 C1,2 0 0 c13 O 0

The second equation of (24) is equivalent to

0 ay,103,3 —C1,3A33 A3,3C12
K(eo,e1) = | -ayic13—c1,0% + 1,37 0 0 ,
-a1,1€1,2 +2C1,2C13 0 0
0 -as3,3C1,2  a1,103,3 —C1,303,3
K(eo, €3) = a1,1€1,2 —2C1,2C13 0 0 ,
—ay,101,3 - €122 + €132 0 0
-2 as 3C1,2 0 0
K(ei, er) = 0 as33C1,y €1,3033

0 —-C1,303,3 a3,3C1,2
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But K(eg, e1) = K(eg, e;) = 0 and K(eq, e;) = r%(En - E>»3) (Ejj is the matrix with 1 in the i-row and the
j-column and zero elsewhere). This is equivalentto ¢y, =Oand a;,; = ¢1,3 = —ﬁ and hence 'yO is given
by ’

C1,3 0 0 0 _Tlsrz 0 0 0 _Tlgrz
0 _ 0 _ 0 _
Yeo = 0 C1,3 0 s Yer = C1,3 0 0 and e, = 0 0 0
0 0 C1,3 0 0 0 C1,3 0 0

One can see that
2 *
tre 4, (%) = (C1,3 - (:173r2) eo and tr ) ((4))") =3c13e0.

O

Proposition 7.5. Let (G, V, { , )) be a three dimensional Lie group endowed with a left invariant rigid affine-
Riemann structure such that { , ) is not flat. Then the Lie algebra of G is isomorphic to IR? with the non-vanishing
Lie brackets

les, e1] = ez, [e3, €3] = 2e;

and the matrices in (e, e», e3) of the metric and the difference tensor at e are given by

1 1o
()= + 1 0 [,v>0
0O 0 v
S S voow 0 0o %
Yey= | Furl vl o |y =| vl 200 |,ye=| 0 0 -2 |, r#0
0 0 r 0 0 0 r 0 O
Moreover,
tr, >(7) = W (2e1-e2) and trg, >('y*) =2r(2eq - ey).
Forv = m we have tr >('y) = (2k - 1)tr< ’ >('y*) and hence (TG, ], g,) is balanced and

(T*YG, Jis1, 8ks1) is Calabi-Yau with torsion.

Proof. 1f(G, V, (, ))isrigid then, as a Riemannian manifold, it is symmetric and hence it is either irreducible
and hence Einstein or it is the product of R with a complete Riemannian surface of constant curvature. So the
Ricci curvature has signature (+, +, +), (-, —, -), (0, +, +) or (0, —, -). It is known that no three dimensional Lie
group carries a left invariant Riemannian metric of Ricci signature (0, +, +) (see [21]) and if the Ricci signature
is (+, +, +) then G is compact simple and it is known (see [16]) that G cannot carry a left invariant flat and
torsionless connection. So the Ricci signature is either (-, -, -) or (0, —, —). According to the determination
by Ha and Lee in [14, Tables 1 and 2] of the Ricci signatures of left invariant metrics on three dimensional Lie
groups, the Lie algebra g of G and the metric are of the following forms:

. g1 = R?, the non-vanishing Lie brackets are: [e3, e1] = eq, [e3, e,] = 5 and (, ) =Diag(1,1,v),v>0,

1 1 o0
. g2 = R?, the non-vanishing Lie brackets are: [e3, e1] = e,, [e3, 5] = 2e5 and (, )= % 1 0
0 0 v

Now, according to Proposition 7.2, (G, V, { , }) is rigid if and only if the difference tensorat e, vy : gxg — g
satisfies, forany u, v € g,
[Lu, wl=91, and K(u,v) = [yu,w]
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where Ly is the left multiplication of the Levi-Civita product given by
2(Lyv, w) = ([u, vl, w) + ([w, v], u) + ([w, ul, v)

and K(u, v) = Ly, ,; — [Lu, Lv].
A direct computation using Maple shows that when g = g, there is no solution and in the second case we
find the ~, given in the statement of the proposition. The last statement is a consequence of Theorem 6.1. [

Theorem 7.3. Let (M, V, (, )) be simply-connected rigid affine-Riemann manifold with ( , ) complete. Then:

1. IfdimM = 2 then (, ) is flat.
2. Ifdim M = 3 theneither (, )is flator (M, V, ( , )) isomorphic to R x S*(r) endowed with the rigid structure
given in Proposition 7.4 or to the left invariant rigid structure given in Proposition 7.5.

Proof. Suppose thatdim M = 2. Note first that the vector fields (tr< ) (), tr (v")) are D-parallel. If tre )y (y) =
tr( (") = O then the curvature of ( , ) vanishes as we will see in Theorem 8.2. If (tr, ,(7), tr, ,(v")) # (0, 0)
then there is a non zero D-parallel vector field on M and hence the curvature of D vanishes.

Suppose now that dimM = 3 and (M, ( , )) is not flat. Since M is simply-connected and carries an
affine structure it is not compact. Then (M, (, )) is a non compact simply-connected symmetric Riemannian
manifold and hence it is the Riemannian product of a Euclidean space and a finite number of irreducible
symmetric spaces (see [5, Theorem 7.76 pp. 194]). Then (M, ( , )) is either irreducible or it is the product of R
with a complete Riemannian surface of constant curvature. If (M, (, )) is irreducible then it is Einstein with
nonpositive scalar curvature s. If s = 0 then (M, ( , )) it is Ricci-flat and hence flat since any homogeneous
Ricci-flat Riemannian manifold is flat (see [2]). If s < O then, according Alekseevskii conjecture which is true
in dimension < 5 (see [5, Conjecture 7.57 pp. 190]), (M, { , )) is isometric to a solvable Lie group with a left
invariant metric. If (M, (, )) is the product of R with a complete Riemannian surface S of constant curvature
then S is either the 2-dimensional hyperbolic space H? or $?(r) endowed with their canonical metric. When
S = H? then (M, (, )) is isometric to a solvable Lie group with a left invariant metric. So far, we have shown
thatif (M, (, ))isnot flat then (M, { , ))isisometric to a 3-dimensional solvable Lie group with a left invariant
Riemannian metric or R x S2(r).

Suppose that (M, {, )) is isometric to a 3-dimensional solvable Lie group with a left invariant metric. Let
us show that V is also left invariant. According to Theorem 7.2, there exists a simply-connected Lie group G
which act transitively on M and preserves both V and ( , ). From the determination of the isometry groups
of 3-dimensional solvable Lie groups (see [9, 14]) one can see that the dimension of the isometry group of
(M, { , ))is either 3 or 4 and hence dim G = 3 or 4. If dim G = 4 then G contains the left multiplications
and hence V is left invariant. If dim G = 3, the orbital map ev : G — M, h — h(e) is a covering and hence
a diffeomorphism since both G and M are simply-connected. Moreover, ev commutes with the actions of G
by left multiplication on G and its natural action on M. If we pull-back the metric ( , ) and V on G, we get
that (M, V, (, )) is isomorphic to a Lie group with a left invariant connection and a left invariant metric. To
complete the proof, we apply Propositions 7.4 and 7.5. O

8 Infinitely balanced affine-Riemann manifolds

In this section, we introduce the notion of infinitely balanced affine-Riemann manifold (see Definition 8.1).
We illustrate the importance of this class of affine-Riemann manifolds and we give some of its properties.

Definition 8.1. We call an affine-Riemann manifold (M, V, { , )) infinitely balanced if its difference tensor ~
satisfies tr; y(y) =tr( >(7*) = 0. This is equivalent to the Koszul forms satisfying a = & = 0.

This definition finds its justification in the following result which is a consequence of Theorem 6.1 item 3 and
Propositions 5.2-5.3.
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Theorem 8.1. Let (M, V, {, )) be an infinitely balanced affine-Riemann manifold with ~ # 0. Then:

1. (TM, J1, g1) is balanced with p® = p© = 0 and it is Kéhler if and only if y = .
2. Forany k =2, (TkM,]k, g1) is balanced non-Kdhler with pB = pC =0.

Example 6.
In Table 5, we give many examples of infinitely balanced left invariant structures on some 6-dimensional Lie
groups.

Let us start by the following remark.

Proposition 8.1. Let (M, V, ( , )) a compact affine-Riemann manifold such that (TM, ], g1) is Gauduchon
and a = 0. Then ¢ = 0 and hence (M, V, ( , )) is infinitely balanced.

Proof. Itis an immediate consequence of Proposition 3.5 and the fact that [, d'(a-¢&)=0. O

The following result describes completely the situation in dimension 2.

Theorem 8.2. Let (M, V,{ , )) be a connected 2-dimensional infinitely balanced affine-Riemann manifold.
Then ( , ) is Hessian, i.e., v = 'y* and its sectional curvature is nonnegative. Moreover, if { , ) is complete then
V is the Levi-Civita connection of ( , ) and M is either diffeomorphic to the torus T? or R?.

Proof. Let us first show that ( , ) is Hessian. Choose an orthonormal frame (E;, E;). We have in the basis
(EI’ EZ): since YE, E2 = ’YEQEI’

1 1 1 1
0 0 0 v
S (i I TR -
711 "12 712 722
The condition tr >('y*) = tr( v = 0is equivalent to

1 2 1 2 1 1 2 2
Y1+ 12 =712 + 722 =it + 722 =711 722 = 0.

1 2 2 1
Y11 1 Y11 T
VE, = 2 1 and g, = 1 2 .
Y11 71 711 T

This shows that v = ~* and hence {, )is Hessian. According to (14) and (15), the curvature of ( , ) is given by

Thus

KX, Y) = [vx, vl
So the curvature x : M — R of (, ) is given by
K = (K(E1, E;)E1, E,) = tr(vg,) 2 0.

If M is compact, according to Gauss-Bonnet’s theorem,

/Kv=2n(2—2g)20
M

and hence g < 1. But the case g = 0 is not possible since the 2-sphere has no affine structure and hence g = 1,
x = 0 and then v = 0. If M is non compact and ( , ) is complete then according to a theorem of Cohen-Vossen
[8] M is diffeomorphic to R?. But a theorem of Cheng-Yau and Pogorelov (see [23, Theorem 8.6 pp. 160]) asserts
that the only Hessian metric on R" which satisfies tr >(7) = 0 is the canonical metric. O

In dimension superior to 3, we have the following theorem about infinitely balanced Hessian affine-Riemann
manifolds.
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Theorem 8.3. Let (M, V, ( , )) be an affine-Riemann manifold satisfying v = ~* and tr; y(y) = 0. Then the
Ricci curvature of { , ) is nonnegative and ( , ) is Ricci-flat if and only if v = 0. Moreover, if M is compact then
~ = 0 and hence V is the Levi-Civita connection of { , ).

Proof. The condition v = " implies by virtue of (14) and (15) that, for any X, Y € I'(TM),
KX, Y) = [vx, vyl
Since tr; (y) = 0, we get that the Ricci curvature is given by
ric(X, X) = tr(y)z() >0

and ric(X, X) = 0 if and only if vx = 0. If M is compact then according to [23, Theorem 8.8 pp. 162] v = 0 and
V is the Levi-Civita connection of (, ). O

If we drop the hypothesis M compact there are non trivial infinitely balanced Hessian affine-Riemannian
manifolds.

Theorem 8.4. Letn > 2 and ¢ > 0. On R™ \ {0} endowed with its affine connection V° and its canonical
Euclidean product { , )o, consider the smooth function

FOt, . xn) = [+ 0)ndt
/

wherer = /X3 +...+x} and the matrix ( , ) = (aazg ) . Then { , ) is a Riemannian metric and (R" \
1<i,j<n

x; Ox;
{0}, VO, (, )) is an affine-Riemann manifold satisfying v = v* and tr(,y(y) = 0. Moreover, for any i # j and any
u,v e Tx(R"\ {0})

n+2 2_,2 iXj
(O, 0n) = 7 T, (0, 0) = = Py,
(u, vy = W (™ + Or¥(u, vyo - c(u, X)o(v, X)) » X = (x1,...,xn)

and the Ricci curvature of { , ) is nonnegative.

Proof. The function f is smooth on R" \ {0} and it is easy to show that, for any i # j,

Of P+’ -x7) and *f  oxx
ox? B+ )T Ox0x  p(rm+c)F
Let (e,...,en) be the canonical basis of R". Let us show that ( , ) is definite positive. For any X =

(x1,...,xn) € R"\ {0} and u € Tx(R"\ {0}), we have

n
0"+ 0" ), u) = Z(rz(r" +¢) - exPuf - > xixjuu;
i=1

i#j
n
="+ C)Z u? - c(xquq + ... + Xnun)*
i=1
= (" + OIX|3|ul3 - c(u, X)5.
By virtue of Schwartz inequality

2 212 212
c(u, X)o < c|X[oluls < (r" + o)|X[5|ulo.

This shows that (u, u) = 0 and (u, u) = 0 if and only if u = 0. Then (, ) is a Hessian metric.
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Let us show that det({ , }) = 1. Indeed, the rows (L1, ..., Ln) of {, ) are given by
1

Li=——— (" +ce;j—cx;p) and p=xie1+...+Xnen.
r3m+c)n
So
P + )" det((, ) = det(? (™" + ey — cx1p, ..., P (r" + c)en — cxnp)
n
="+ o)+ Z det(r®(r" + c)e1, ..., (" + c)ei_1, —cxip, r*(r" + C)ejs1, . . ., F2(r" + C)en)
i-1
_ rzn(rn + C)n _ Crzn(rn + C)n—l
o G (A Lt (S I el (L) (o
So tr; y(y) = 0 which completes the proof. O

9 Some examples of left invariant generalized Kahler structures on
some 6-dimensional connected and simply-connected Lie groups

In this section, we give examples of left invariant generalized Kahler structures on some 6-dimensional con-
nected and simply-connected Lie groups by giving the complex isomorphism and the metric on the corre-
sponding Lie algebras.

Our examples are based on the classification of 3-dimensional real Novikov algebras given in [7]. Recall
that a Novikov algebra is a left symmetric algebra such that right multiplications commute.

Let (g,.,( , )o) be a Novikov algebra of dimension 3 endowed with a scalar product. The bracket
[a, b] = a.b — b.a induces on g a Lie algebra structure. Let G be the connected and simply-connected Lie
group associated to (g, [ , ]). Then the left symmetric product and { , )¢ induce on G a left invariant affine-
Riemann structure (V, { , )). We have seen that on @(g) = g x g there are a Lie bracket [ , ], a complex
isomorphism J and a scalar product ( , )¢ given by (10) and (11). Moreover, according to Theorem 2.1, the
Hermitian structure (TG, J1, g1) associated to (G, V, ( , )) is diffeomorphic to (G x g, Jo, go) Where G x g is
the simply-connected Lie group associated to (®(g),[ , lp) and (Jo, go) are the left invariant tensor field
associated to (J, { , )o)-

In Tables 1 and 2, for any 3-dimensional real Novikov algebra given in [7] and identified to R> with its
canonical basis (e1, e, e3), we give its multiplication table and the Lie bracket [ , ] on ®([R?) = R xR? in
the basis (f1, ..., f¢) where f; = (¢;,0) for 1 = 1, 2,3 and f; = (0, ¢;) for j = 4, 5, 6. These 6-dimensional Lie
algebras are labeled N fl (a), Ngl and so on. The metric { , ) is given by its matrix in (eq, e2, e3),

81,1 81,2 81,3
(s )o=1| 81,2 82,2 823
81,3 82,3 833

In Tables 3-8, when we refer to a 6-dimensional Lie algebra in Tables 1 and 2 having a generalized Kahler
structure this means that (J, ( , )¢) are given in the basis (f1, ..., fs) by

_ 0 _13 _ <’>O 0
() e (0,

with the mentioned restrictions on the (g; ;).
The realization of the examples in Tables 3-8 was possible thank to the software Maple.
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Table 1: Three dimensional Novikov algebras and their associated phase Lie algebras.

Left symmetric product on R

er*e =aej,e;*er=(1+a)ey,er*e3=(1+a)es,er®e; =aer,e3®e; =aes.

Lie brackets on N{(a)

(f1, 2] = f2, [f1, f3] = f5, [f1, ful = afs, [f1, 5] = (1 + a)fs, [f1, f6] = (1 + a)fs,
[fz’f4] = afS’ [f3)f4] = afG-

Left symmetric product on R?

ey e =—-€1+e,e,0e; =—-€,63%€] =—-€3.

Lie brackets on N5

[fI’fZ] =f2! [fl’f?)] =f3! [fl’f4] = _f4+f5’ s [fZ’fll] = _fS’ [f3rf4] = _f6'

Left symmetric product on R?

e1 e =dae;,e1 %€ =ae; +e3,e1%e3 =ae2+(1+a)e3,e2 ® e =aep,e3®eq =daes.

Lie brackets on Ngg(a)

[f1, 2] = f3, [f1, f3] = afa + f3, [f1, fal = afs, [f1, f5] = afs + fe,
[f1, fel = afs + (1 + a)fe, [f2, ful = afs, [f3, fa] = afe.

Left symmetric product on R?

e1%ei=ae;+er, e %er=aer+ez, e ®e;=(a+a’)es+(1+aes,
e, ®e; =aey,es3 ®e; =daes.

uz+a
Lie brackets on N3*  (a)

(1, 2] = f5, [f1, f3] = (a + a®)fo + f3, [f1, ful = afa + fs, [f1, fs] = afs + fe,
[f1, fel = (a+ adfs + (1 + a)fs, [f2, fal = afs, [f3, f4] = afe.

Left symmetric product on R?

1 8 7 7
e1®e;=—-3e;,e1%e=3e;-8e3z,e1%e3 = 56, - 3€3,
eryeer=5e;-9e3,e30e1 =3 - Pes.

2

9
Lie brackets on N3

(1, 2] = f3, [f1. f3] = =52 + f3, [frs ful = =3 fas [f1, f5] = §fs — 8fes
(1, fel = 3fs = 2fe, [f2, ful = 8fs = Ofe, [fs, ful = fs — B fe.

Left symmetric product on R>

1 8 7 7
ej®e;=-3e1+e,e1%e =36, -8esz,e1%e3=g56e; - 363,

e, ee; = %62—963,83 ®eq =€2—1T0€3.

_2
9
Lie brackets on N;?

(1, f2) = f3, [f1, f3] = =3f2 + f3, [f1, fal = =3 fa + €5, [f1, fs] = §f5 - 8f,
(1, fel = &fs = 56, (2, fu) = §fs — e, [fs, ful = f5 — Yfe-

Left symmetric product on R

e1 s ey =3ae; - (3a’ + La)ey, e1 o 3 = 6ae; + (1-9a)es, e1 * e3 = (a- 3)es +e3,
e, ® e, =6ae,-9aes,e; ® e, =-3e, +9e3,e; ®e3 =—-e; +3es3,
es3ee) =qey,e3%e, =—-€+3e3,e3%€3 = —%62 + e3.

_2
Lie brackets on ngzg (a)

[f1, 2] = f5, [f1, fal = 3afs - Ba® + La)fs, [f1, fs] = 6afs + (1 - 9a)fs,
(1. f3] = =3f2 + f3, [f1. fel = (@ = §)fs + fe, [f2. fal = 6afs — 9afs, [f2, fs] = =3fs + fe,
(2, fe) = ~f5 + 3fe, [fs, ful = afs, [f3, f5] = ~f5 + 3¢, (3. fo] = =3 f5 + fe.

Left symmetric product on R

2 8 2 4 4
€1 %€ =-3€1 5762+ 3€3,€1%°€ =—3€2 +3e3,e1%e3 = —géx tes,
ey 01 =-%er+2e3,e0e; =-3e;+9e3, e, 0 €3 = —e; + 3e3,

es3®e; = —%32,93 *e;=-€y+3e3,e3%e3 = —%ez +e3,

2
2
Lie blacketS (0] N6

(1, f2) = 5, [f1, f3] = =5f2 + f3, [f1, fal = =54 — & fs + 36, [f1, fs] = =3f5 + 3f,
(1, fo) = =35 + fe. [f2, fu] = =35 + 2f¢, [f2, f5] = =3f5 + Y6, [f2, fe) = f5 + 3fes
(fs: fal = =3f5., [f3. fs] = ~f5 + 3fe, (3. fol = =35 + fo»

Left symmetric product on R

2 11 4 4
e1%e =-3€1-537€,+€3,€1 %€ =-3€3 +3e3,e1%e3 = —géz te3,
ey 0 =-%e;+2e3,e10e, =-3e;,+9e3, e, * €3 = —e; + 3e3,

es3®e; = —%92,93 se;=-e;+3e3,e30e3=-3e;+e3,

2

9
Lie brackets on N3?

(1, 2] = f3, [f1, 3] = =5f2 + f3, [f1. fal = =54 — 35S + o, [f1, f5] = —5f5 + 3fe,
(1, fo) = =35 + fe, [f2s fu] = =35 + 2f, [f2, f5] = =3f5 + Y6, [f2, fe) = f5 + 3fes
[f3, fal = =3f5, [f3. fs] = ~f5 + 3fe, (5. fo] = =315 + fo»
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Table 2: Three dimensional Novikov algebras and their associated phase Lie algebras (Continued).

Left symmetric product on R> | e; e e; = aej,e; 0 e, = (1+a)es,e; o e; =(1+a)es, e, »e; =aes,es e, =aes.

(f1, f2] = f3, [f1, f3] = f3, [f1, ful = afs, [f1, f5] = (1 + afs, [f1, fe] = (1 + a)fs,
[f2, fu] = afs, [f3, fu] = afe.

0
Lie brackets on Ng*(a)

Left symmetric product on R> | e; e e; = —e; + €3, €2 91 = —e3, €3 ® €1 = —e3,

Lie brackets on N2 1. f2] = F5. [f1a 31 = £, U1 fal = ~Fa + foo [f2. ful = ~Fo. 5. ful = e,

Left symmetric product on R3 e1®e; =dej,e;*e, =de, +es, e *e3=(1+a)es,

e)®ey =aey,e)®e; =—-e)+es,e3®e; =daes

[f1, 2] = f3, [f1, f3] = f3, [f1, fa] = afa, [f1, f5] = afs + fe,
[f1,fel = A+ afe, [f2, ful = afs, [f2, fs] = —f5 + fe, [f3, fu] = afe.

0
Lie brackets on N{3(a)

Left symmetric productonR? | e, e e; = —e; + e3,e1%e;=-e,+e3,e,%e;=-€,8,%€, =-€)+e3,e3%¢e, =—-€3

[f1, ol = f3, [f1, f3] = f3, [f1, fal = =fu + f5, [f1, fs) = =f5 + fe,
(f2, ful = ~fs, [f2, f5] = fs + fe, [f3, ful = —fe.

0
Lie brackets on Nj3

Left symmetric productonR> | e, ee; =e5,e;0e, = (1 + a)es, e, ® e, = aes,

Lie brackets on N{”(a) (f1, 2] = f3, [f1, ful = f5, [f1, f5] = (L + a)fe, [f2, ful = afs
Left symmetric producton R® | e; e e; = ae;, e1 9 e, = e3,e, 0 €5 = e3,
Lie brackets on N3 (a) [f1, f2] = f3, [f1, ful = afe, [f1, f5] = fo, [f2, f5] = fs

Left symmetric product on R> e1*eL=e3,61%€,=€1,6,%€,=€1-€3,8,%€,=0€5,8,%€3=0€3,83%€, =¢€3

(f1, f2] = f3,[f1, ful = fo, [f1, f5] = fu, [f2, fal = fa = fe, [f2, f5] = fs,
[f2, fel = fe, [f3, f5] = fe.

Lie brackets on N5

Left symmetric productonR> | e; e e, =e1,e,0e1 = €1 — e3,e,%€,=€5,6,%€3=6€3,63%€, =e€3

(f1, 2] = f3,[f1, f5] = fu, (2, ful = fa = fo, [f2, 5] = f5,
[f2, f6l = fe, [f3, f5] = fe.

Lie brackets on Nj°

Left symmetric productonR> | e; e e, = les,ey0e =-1les.

Lie brackets on N¥° [F1, ol = f3, [fr, fs] = 36, [fa, ful = = 3fs-

Left symmetric product on R> ej®e; =de;,e1%e)=ae,+e3,e1%e3=e,+aes,e;®e =dey,e3®e =daes

(f1, 2] = f3, [f1, f3] = f2, [f1, fa] = afa, [f1, f5] = afs + fe,
[f1,fel = f5 + afs, [f2, fa] = afs, [f3, fa] = afs.

Lie brackets on N{(a)

Left symmetric product on R> ej®e;=ej+e3,e1%e;=e,+e3,e1%°e3=e,+e€3,8,%€, =€,3%€1 = €3

[f1, 2] = f3, [f1, 3] = o, [f1s fal = fa + fo, [f1, f5] = f5 + e
[f1,fel = fs5 + fe, [f2, fal = f5, [f3, fal = f.

Lie brackets on N§*

Left symmetric product on R> | e; e e, = aej, e ® ey = aey + e3,e1%€3=-6,+0aes, e;®e; =aer,e3®e, =daes

[fl’fZ] =f3a [f1’f3] = _fZa [fl:f4] = af4, [flafS] = afS +f6’
[f1, fel = —fs + afe, [f2, ful = afs, [f3, fu] = afs.

Lie brackets on N{*(a)




48 =— Mohamed Boucetta DE GRUYTER

Table 3: Examples of Kahler Lie algebras.

The Lie algebra

Conditions on the Hermitian metric

N{'(a)

2
a=-2,812=813=0,0<81,1,0<833, > <822

Ngg(a) a=-2,2=0,813=0,82,3=822,0<822,822 <833, —% < g1,1}
[a=-1,a<0,81,,=81,3=0,822=-%2,8,3=542,0<g11,0< g2, 0 < -]

Ngg(a) [a=-2,812=0,813=0,823=833,0<81,1,0<823,82,3 <82,2]

Nfg(a) [a=-2,812=2822-2823,813=0,833=823,0<823,823<82,2,482,2 4823 <81,1]

N (a) [a=0,81,2=0,813=0,822=833,823=0,0<g1,1,0<g2]

Table 4: Examples of Gauduchon Lie algebras.

The Lie algebra Conditions on the Hermitian metric
N{'(a) [a=-2,(g1,2,81,3) # (0,0)] or [a = 3]
N% (a) [a=-1]or[a=-2]
pA
9
N2 (a) la=-3]or[a=-3]

N

2
9 9 0 0
N2, N> ,Ng?, Nj: | Always

N%(a), N (a), N¥°

Ngg(a) [a=-1]or[a=-2]
N%(a) [a=-1]

N%(a), N (a) [a = 0]

Table 5: Examples of infinitely balanced Lie algebras.

The Lie algebra

Conditions on the Hermitian metric

2
N3 (a) [gz,a =0,82,2=833,0<833,a< —gil‘Z(gg;i;g”),gl,l = — SRl Bty B
NZ® Always
2
N$(a), N¥(@) | [a=0,812=0,813=0,0<811,0<833, %2 <g5,]
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Table 6: Examples of balanced non Kahler Lie algebras.

The Lie algebra

Conditions on the Hermitian metric

2 2
a=-1,a=0,g1,=5252,0<g33, 82 <g11, 82 < gz,z]

93 83,3 g 83,3
NZZ(a) [ 833 822 82 5
a=-1,81,2=813=0,(822,82,3) # (=232, °5%),0 < 81,1,0 < 833, T < gz,z} )
1
3 [a=-3,81,1=281,3,81,2=281,3,823=3813,833 =81,3,0<81,3,1081,3 < 82.2]
N2 (a) 1
> [a=-3,811=2813,81,2=3813,823=3813,833=813,0<813,981,3 < 82,2
0 2
Ng*(a) [a =-2,81,=0,81,3=0,82,3#833,0<81,1,0<g33, 22 < gz,z]
QO g132
Ny3(a) [a =-1,81,2=813,823=833,0<833,833 <822, G5 < g1,1]
0 [ 2 2 2 2 2
g _ 8138, _ 8118),3833-81,183,3°~813°8>3+81,5°83,3+82,5°85, g,
N%: 812 = 1;3’323,g2,2— 1,182,383,3-81,183.3 g13,33223 13 833%823 833 ()< g33,833< 82,3, g13,33 <g1,1}
g [ a - a’g,,%-2a 48157
N3 (a) 81,3=823=0,81,1 = -E228281289 0 21,0<g),,0<g33, BB < gy
NZ Always

N{“(a), N{*(a)

2
[a =0,81,2=0,813=0,0<81,1,0<833, 22 <82

Table 7: Examples of pluriclosed non Kahler Lie algebras.

The Lie algebra | Conditions on the Hermitian metric
Ni' (@) [a=-2,(g1,2,813) #(0,0)] or[a = -1].
N Always

{a =-2,a=-2,813=0,833=-52+8,3,0<823,8,,<382,3

2

{a €{-3,-1},813=0,825 = 7822, 83,3 = ~082,2, 0 < 20, A < — 2280 &2 < g1,1]
Nggzm(a) {a = _%,g3,3 = _%gz,z +82,3,81,2=0,0<823,822<3823, %g2,3 <g22,- #jggj;w < gl,l]
Ng;% [gz,z = %(gZ,B - 833),81,2=0,0<823,822<3823,3 823 <822, % < gl’l]
Ngg(a), Ngé’ [a €{-1,-2},813=0,823=833,0<81,2,0<833,81,2 < 83.3,83.3 < 82,2, % < gl,l}

{a =-1,812=81,3+822 823,833 = 82,3, 0 < 833,833 < §2,2, E2782EH < g1,1]
Nf% {gl,z =81,3+82,2-82,3,833=823,0<833,83,3 <822 %W < g1,1]
N (a) [a=1]
N{*(a) {a =0,82,2=833,823=0,0<g,, %ﬁmz < gl,l]
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Table 8: Examples of Calabi-Yau with torsion Lie algebras which are not infinitely balanced

The Lie algebra | Conditions on the Hermitian metric
g 2
Ni' (@) { =2,81,,=0,813=0,0<81,1,0<g3;3, 2 <g2,2]
2 4o+ 2
{a =la=2,81,,=-"552,8,3=0,0<8,5,0<833, GBz2v8ra)ns gz'zgi'z3)gl'3 < g1,1]
2
N (@) {a =1,81,2=0,813=0,0<81,1,0<g3;3, 2 < gz,z]
2 2
{a =1,0=2,81,=0,823=282,,0<82,0,81,3< -3 82,2, 482, <833, ~ghgs < g1,1]
1 1 3817
{a =1L, a=2,81,3="-81,2,822="3(823-833),0<833,823 < 3833, 83,3 < 823, ~ 75 < g1,1]
1 3810°4812823-2823° 1 1
-2 {a =3,81,2=0,81,1= Wy&,s =-3823,833=73823,0<823,3823<82,2,
N%: (a) 3 ' '
5 4 82,282,3 <g
3 £2,23-9822282,3+27 822823227 82,33 1,1
0 2
Ng*(a) {a =1,81,2=0,813=0,0<g33, £ < gz,Z]
[a=1,81,1=-81,2,81,3=0,82,3=833,0<823,81,2<0,-81,2 + 82,3 < 82,2]
0 2
g _ _ _812833-813°-8138, _ 81283-812833+8138, 81382,
Nlé(a) {(1— 1,811=- 12833 g13'33 1.3 23;g2,2 = 812823 1g21';3 1.3 23,0<g3,3,g1,2 < 1;3'323’
813<0,833<-2813-vV2\/8132,833 813 < g2,3}
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