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ABSTRACT ARTICLE HISTORY
k-Para-Kahler Lie algebras are a generalization of para-Kahler Lie algebras Received 3 November 2020
(k=1) and constitute a subclass of k-symplectic Lie algebras. In this paper, Revised 21 April 2021
we show that the characterization of para-Kahler Lie algebras as left sym- Communicated by Alberto
metric bialgebras can be generalized to k-para-Kihler Lie algebras leading ~ Fldudue
to the introduction of two new structures which are different but both KEYWORDS
gene:rallze the notion of left symmetric algebra}. This permits also the intro- k-Symplectic Lie algebras;
duction of generalized S-matrices. We determine then all the k-symplectic left symmetric algebras;
Lie algebras of dimension (k+ 1) and all the six dimensional 2-para-Kahler R-matrices
Lie algebras.
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SUBJECT CLASSIFICATION
17B60; 17B99

1. Introduction

The k-symplectic geometry is a generalization of the symplectic geometry which was developed
by A. Awane [3], Awane and Goze [3] and C. Glinther in [9] as an attempt to develop a conveni-
ent geometric framework to study classical field theories (see [11]). A k-symplectic manifold is a
smooth manifold M of dimension (k + 1)n endowed with an involutive vector subbundle E C
TM and a family (6',...,0%) of differential closed 2-forms such that: rank(E) = nk, the family
(0%, ..., 0%) is nondegenerate, i.e., N*_ ker ' = {0} and E is isotropic with respect all the 0'. A left
invariant k-symplectic structure on a connected Lie group G of dimension (k + 1)n is equivalent
to its associated infinitesimal structure, namely, the Lie algebra g of G, a Lie subalgebra h of
dimension nk and a family {0’ € A2g*,i=1,...,k} of closed nondegenerate 2-forms such that
OTh =0 for i=1,..,n. We call (g,b,0',...,0") a k-symplectic Lie algebra. If, in addition, there
exists a subalgebra p C g such that g = hDp and p is isotropic with respect to all the &', we call
(8,b,p,0",...,0%) a k-para-Kihler Lie algebra. This terminology is justified by the fact that when
k=1 we recover the classical notion of para-Kihler Lie algebras (see [1, 5-7]).

The purpose of this paper is to study k-para-Kahler Lie algebras aiming the generalization of
the results obtained in [5, 8] in the case of para-Kahler Lie algebras. In these papers, para-Kahler
Lie algebras were considered as left symmetric bialgebras. Roughly speaking, a para-Kéhler Lie
algebra is built from two structures of left symmetric algebras on a vector space and its dual
which are compatible in some sense. The compatibility condition involves representations of Lie
algebras and 1-cocycles. This leads naturally to the notion of exact para-Kahler Lie algebras

CONTACT H. Abchir @ m.boucetta@uca.ac.ma e Université Hassan Il, Ecole Supérieure de Technologie, Route d’El Jadida
Km 7, B.P. 8012, 20100 Casablanca, Marocco.
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Table 1. Two dimensional 2-left symmetric structures, (a,b) € R.

Name of the 2-LSS

First left symmetric product

Second left symmetric product

by (£ La#])
by,
b1,

b,
b, 00 #1,0#0,
b3 1

by
by
by

€ @16
€ e 1€

€016

€016
€016

€016

€016
€016

€016

€016, =

€ ®16; =

e, e e
e, e

€016

€ @16

= €1,6, 016 = 06y

=e,e 010, =1e

= e1,6016 =€)

=e,e016; =€+ 6

=epe 0161 =(1-1)ej,e;090, =0,
= €1,6,016, =€)

=e,e016; =€ +6

=e),e,018; = —€1,6,01€; = —2¢
= —e,6,016) = —€1,6,016; = —2€)
—e

—e

=e

=6€,61016 =€01€1 =€

=6,016 =€,€1016; =€,016] =€

= 6016 = —€,6101€; =€ 0161 = €

e, =de;
e 820 = dej, e; 8 e, = 1ae, + be

e; e ey = de;, e, ®,e, = de,, e, e,e; = bey,

€; 0,6, :bez

e, =de;

e, =de;

e e 61 = dej, e e,e, = bey, e, e, = aey,

e, ®,e, = be,

e); =de;

®) =de;

e, =de;

e @ 01 = dej, e, e, = be,

e, ®,e1 = 2ae;, e, ® e, = be, + ae,

e ®,6, = dej, e, e,e; = de;, e, e,e, = be, + ae,
e ®,6, = dej, e, ®,e; = de;, e, e,e, = be, + ae;
€1 0,6, — €070 :be1 + ae;

e @0, = e e,e; = aey + be,

e1e,6, = e, e,e; = be, + ae,

€10, = —e, 0,8, = ae; — be,

Table 2. Compatible two dimensional 2-left symmetric and (2 x 2)-left symmetric structures.

Name 2-left symmetric structure Compatible (2 x 2)-left symmetric structure conditions

bby, by, (a#T,0#£)) L;j:<g 7‘LC>,L;;2:(8 f;d),@:(g 2),@;2:(8 2) acR, a=0

bbii by *4,8 = 0,0, € {1,2} a=0,beR

bb, b, *up =00, € {1,2} a#1
L;ﬂ:[;f:(g fc>,L§;1:L§;2:<g 2) a=1

bbs; bz, *4,8 = 0,0, € {1,2} a#0,beR

s b w= (e o) = (g o) =(2 )= (a o) oc"

o« *4,5 =0,0,f € {1,2} a#0,beR
m:(ﬁ; ) i :("‘1 g>,Lg;1:(g; g),L§;2:<bi1 g) a0, beR

o2 *4,8 = 0,0, €{1,2} a#0,beR
b= (o )= (% )= (% )er=(" 9) a-oser

ol o L= ;;L(:C _z>,LE1 :L;f:(:i :E) a€R beER
- = (6= ()
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Table 3. Six dimensional 2-para-Kahler Lie algebras.

Structure Associated 2-para-Kahler Lie algebra Conditions
bb, , [f.6] = —f,[f,fa]) = —afy, [, 5] = 63, [f5,fa] = —afs, a eR,
[ el] = e, [ €] = —c(afy — fa), [fa, e1] = —aey, [fa, €3] = —d(af, —fy).
bb, [, 6] = =f,[f,f)] = =bf, [f.6] = f, [f, fa] = —bf, + fu, [f3,fa] = —bF, beR
[f2: e1] = —€, [fz, 92} = —€y, [f4, €1] = *b€1, [f4, ez] = 7be2.
bb, [f.6) = —h,[f.a) = —af, [h, 6] =616 = —alfi +6) + 5+ 14, a#1
[f3,f4] = —af;, [f2,€1] = —e —ey [leez] = —€, [f4, 61] = —a(e; + ez), [f4,€‘2] = —ae;.
bl =—fh.fa)l =—h LGl =66k =—H—fH+f+1, ceR
[6.f] = —f, [ 6] = —elfe @) Fﬁlfﬂ(&_—f‘(ﬁ_—eﬁz&) —ey[fael] = —er — ey,

bbs [f.6] =f,[h.6] = —afi, [fi, ) = —af, + 6, [f, 3] = —bfy, a#0,beR

[, fa] = —bfy +1fa, [, fa] = bfs — afy, [f1,e1] = —ea [f2,€2] = €3,

[f3,€1] = —ae; — bez, [f4,€2] = —ae; — beZ.
bb, [f.6] =f,[fH,G] =6,[H K] = —af, [ )] = —a(fi + £) + 5+ 14, aeR
[,fy] = afs, [fr,e1] = —ey, [fa, 1] = —c(afy — ;) — ey, [, 2] = —e3,
[fs,e1] = —aey, [fa, e1] = —ac(afy — f3) — aey, [fa, €3] = —ae;.
cc} [fi.fa] = —2af,, [, fs] = —bfy — af, + £, [f3,fa] = —2af;, [, e1] = —ey, a£0,beR
[fa, e1] = —2ae; — bey, [fy, €3] = —ae,.
[f.fa] = —bfi + 3, [fi,e1] = iy + gifs, [fo e1] = Gofi + gofs — €3, beR
[ e1] = baify + bgifs, [fa, e1] = dofy + hfs — be,.
CC% [f],f4] = 7Gf-|, [fz,fg] = 7af1, [fz,f4] = 7bf-| — sz + f3, [fz,el] = —€y, [f3,€1] = —aep 0750, beR
f4, 61] = —ae; — bez, [f4,€2] = —dae;.
. fa) = —bfi + £, [, e1] = afi + gifs, [fo, e1] = &fi + gofs — ey, beR
[f3,€1] = baify + bgifs, [f4,91] = dfy + hf; — be;,.

CC; [ﬂ,fg] = 70)(1 — bfz + f4, [f-|,f4] = 7bf1 — afz -+ f3, [fz,f3] = 7bf1 — af2 + f3, aceR beR

[fo,fa] = —afy — bfy +fa, [fr,e] = —c(h + o — s — 1) — ey, [fr,e) = —c(h+h—fr — ;) — ey,
fel=—<ch+h—-f—-1fi) —e,lhe]=—cfi +H—F—f)—e
el =—c(fi+fH —f —f1) —ae; —bey, [f3,e] = —c(fh + L — 5 — fy) — be; — aey,
faer] = —c(f +f, —f; — fy) — be; —aey, [fa, &) = —c(fi + f, — 3 — f4) — ae; — be,.

b =span{fi,f,fs,fs}, 0" = fi net +ffnes and 07 =fi nel +ffne}

(when one 1-cocycle is a coboundary). Exact para-Kahler Lie algebras are defined from S-matrices
in the same way as exact Lie bialgebras are defined by R-matrices.

In this paper, we show that a k-para-Kahler Lie algebra is build from two new algebraic struc-
tures compatible in some sense (see Theorems 2.1 and 2.2). We call them k-left symmetric alge-
bra and (k X k)-left symmetric algebra (see Definitions 2.2 and 2.3). As for k=1 the
compatibility condition involves representations and 1-cocycles and we have naturally the notion
of exact k-para-Kahler Lie algebras leading to what we call Sy-matrices (see Theorem 3.1). The
notions of k-left symmetric algebra and (k X k)-left symmetric algebra are new and both general-
ize the notion of left symmetric algebras. We think that these two structures are interesting in
their own right. In Proposition 2.3, we give a natural way to build examples of k-left symmetric
algebras. We give also all 2-left symmetric algebras in dimension 2 (see Table 1) and we deduce
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all the six dimensional 2-para-Kahler Lie algebras (see Table 3). Our study permits also the deter-
mination of all the k-symplectic Lie algebras of dimension (k + 1) (see Theorems 4.1 and 4.2).

Section 2 is devoted to the characterization of k-para-Kahler Lie algebras by means of the two
new notions of k-left symmetric algebra and (k x k)-left symmetric algebras. In Section 3, we
study exact k-para-Kahler Lie algebras and we introduce the notion of S;-matrix. Section 4 is
devoted to the determination of the k-symplectic Lie algebras of dimension (k+ 1). In Section 5,
we give all the 2-left symmetric algebras of dimension 2 and all the six dimensional 2-para-
Kahler Lie algebras.

1.1. Convention

Through-out this paper, we will deal with many representations of Lie algebras. If p:g —
End(V) is a representation of a Lie algebra, we denote by u* : g — End(V*) its dual representa-
tion given by

<)@y === =<pux)y) =, xyeV,yeV.

However, for any endomorphism F between two vector spaces, we denote by F” its dual.

2. Characterization of k-para-Kahler Lie algebras

A k-symplectic Lie algebra is a real Lie algebra g of dimension nk + n with a subalgebra b of
dimension nk and a family (0%, ..., 0X) of 2-forms satisfying:

(i)  The family (0', ..., 0%) is nondegenerate, i.e., Nf_ ker0’ = {0}, ‘
(i) fori=1,...k 0"is closed, ie, d0'(u, v, w) := 0'([u, v}, w) + O'([v, W], u) + O'([w, u],v) = 0,
(iii) b is totally isotropic with respect to (6',...,0%), ie, 0'(u,v) =0 for any u,ve b and
fori=1,..k.

According to [4, Theorem 3.1], there exists a basis B* = (o, wi)lgpgk,1gign of g* such that for
any o € {1,...,k},

n
0 = Zw‘“"/\a)i and b = kero' N ... Nkero".
i=1
Let (epi.€i);<per, 1<i<n De the dual basis of B*. Then the Vect(])(r subspace span{ey,...,e,} is a
supplement of b and it is totally isotropic with respect to (6", ...,0%). Thus b has an isotropic sup-
plement. We introduce now the main object of this article.

Definition 2.1. Let (g, 91,...,0",[]) be a k-symplectic Lie algebra. We call it k-para-Kahler if §
admits an isotropic supplement which is a Lie subalgebra.

When k=1, we recover the well-known notion of par-Kéhler Lie algebras (see [8]). We pro-
ceed now to the study of k-para-Kidhler Lie algebras aiming the generalization of the results
obtained for k=1 in [8].

Let (g,[,],0',...,0% ) be a k-para-Kahler Lie algebra and p an isotropic Lie subalgebra supple-
ment of b.

The linear map © : h — (g/h)" x --- x (g/h)", hr— (O1(h), ..., Ok(h)) where, for any p € g,

0, (h)([p]) = 0"(h.p)

is well-defined, injective and for dimensional reasons it is an isomorphism. For any o €
{1,...,k}, the vector subspace h” of hj given by
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b = {h € b,04(h) =0, =1,...k f # a}.

has dimension n and h = @*_ p*.
The Lie subalgebra f carries a product given by

O, (hy @ hy)([p]) = —0"(hy, [h1, p]), (1)

for any hy,h, € b, for any p € g and for any o = 1,...,k,
We have g = h D p and, for any p € p and h € b, the Lie bracket [p, h] can be written

[p:h] = —[h,p] = ¢,(h) — du(p)s )

where ¢,(h) € b and ¢,(p) € p.
For any o € {1,...,k}, we define i, : §* — p* by putting
i(h)(p) = 0*(h, p).

It is obvious that i, is injective and since dim h* = dimp it is bijective. Thus il : p — (h*)" is
an isomorphism. For any f € {1,...,k} and for any p,q € p, the map h— — 0%(g,[p,h]) is an
element of (h*)" and its image by (i7)~" is an element of p we denote by p*, sq. Thus, for any
o, f € {1,...,k}, we have a product %, :p X p — p,(p,q) — p* 4 pq where, for any h € b7,

0"(px 2,59 1) = —0" (q, [p, h]). (3)

Finally, for any o, € {1,...,k}, we endow p* with the product e,z obtained by putting, for
any a,b € p*,

aeofib=ig(i,'(a) e iy'(b)). (4)

The formulas (1), (3) and (4) define, respectively, a product on h, a family of products on p
and a family of products on p* which depend on (0, ..., Qk), the Lie bracket and p. We will use
these products to describe the k-symplectic Lie algebra in a useful way. Let us give now the prop-
erties of these products. Recall that a left symmetric algebra is an algebra (A, e) such that for any
a,b,c € A,

ass(a,b,c) = ass(b,a,c) where ass(a,b,c) = (aeb)ec—ae(bec).
Proposition 2.1. We have:

1. (h,e) is a left symmetric algebra, the product e is Lie-admissible, i.., for any
u,veh [u,v=uev—veu, and for any a = 1,....k, h e h* C h*.
2. Forany o, € {1,....k} with a # 5 and for any p1,p> € p, we have

[P1>P2] = P1*a,aP2 — P2 X a,aP1> P1 X 0, pP2 = P2 * 4, pP1-
3. Forany o, 5,7, 8,3 = e, and if we denote e,3 = o,, we have, for any a,b,c € p*,
ae,(begc) — (ae,b)esc = beg(ae,c) — (bega)e,c. (5)
In particular, e, is a left symmetric product on p*.

Proof.
1. We have

O, (1 @ ha)([p]) — ©s(hy  h1)([p]) = 0% (s, 2, p1) — 0% (s 1, p))
= 0"([h1, hal, p) = ©,([h1, ha)([p])



6 H. ABCHIR ET AL.

and hence e is Lie-admissible. On the other hand,

O, ([l ha] @ h3)(p]) = —0%(hs, [l hal, p])
= —0"(hs, [, [h2, p]]) — 07 (hs, [ha, [p, I ]])
= O,(hy @ (hy ® h3))([p]) — Ou(hy @ (hy ® h3))([p])-

So
[hbhﬂ eh3=nh e (hz L4 ha) —hye (hl L4 h3)-

This shows that e is left symmetric. It is obvious that h e h* C h*.

2. Now consider o, f € {1,....k},p,q € p and h € h* then
0 = 0"([p.q). h) + 0" ([q. ], p) + 0" ([h.p], q)
= 0/([p.q),, h) + 0% (q % pps ) — 0% (p % s ).
So if o £ ff e get pky pq = G pp and if & = ff we get
[p.4], =P*wuqd = G* P

3. Foranya,becp*andanyqep,
<aeub,q = =< ig(i;'(a) o ig' (b)), q -
= 0"(i," (a) 0 i5' (b),q)
. —em (), [i;" (a).q])
22, gy (a) -
=<ae,bq>.
We have
aey(beyc)— (ae,b)epc=ae,g(bepgsc) — (ae,pb) e pe
= ig i (a) o (5" (6) o i5"(€))] — ip[(G;" (@) @ 15" (8))

bejs(ae,c)— (bepa)e,c=bepgs(ae,pc)— (bep,a)e,sc

= ig i (b) » (i (a) ® i5"(0))] — ig | (5 (1) » ;" (@)

Hence the two expressions are equal due to item 1. This completes the proof.

We consider ®(p,k) = pD (p*)* and we endow (p*)* with the product o given by

k
(a1, ....ax) o (by, ..., bx (Z%‘ by, . Eaaoabk>.
a=1

We define ¢ : (p*) @ p* — p* and ¢ : p ® p* — p by

k
q’)((al, m,ak)’b) = d)(ﬂ],m,ak)b = ZLZ,b,

V(@ (1)) = Wg(procapi) = D (L P L1 ).

a=1

(6)

(7)
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where L% :p* — p*,b—ae,b and LZ’” ip = P, p—qxypp, and we endow ®(p,k) with the
bracket [,],

labl,=aob—boa, ifabe (p*)
p.q), = [p-q ifp.gep (8)
[@.p], = ¢,(p) —Vpa, ifac (p*)pep

where
<bdy(p) == — < ¢bp= and < Ya, (P10 pr) = — <A Y, (P1 - pi) S
Finally, we define also a family of 2-forms p* on ®(p, k), =1, ...,k by

p*(p+ (ar,..ar),q+ (b1, .., by)) =< Ay g = — < by, p = . 9)

Theorem 2.1. Let (g, [,],01, 0K b,p) be a k-para-Kahler Lie algebra. Then F : g — ®(p, k), (hy +
o+ i+ p) = (pyit(M), ..., ik(hi)) is a linear isomorphism which sends the Lie bracket on g to [.],
and the 0” to the p* and hence (®(p,k),[.],, (0K, p',..., p¥) is a k-para-Kahler Lie algebra.

Proof. It is obvious that F is an isomorphism. Let us show that F sends [,] to [.], and the 6 to
the p*. Let h, € h” and hy € h?. Then
F([hy hg]) = F(h, @ hg) — F(hg e h,)

4) L1y, ) 1T )
= F(ig" [iz(hs) ® uip(hp)]) — (i, " [ip(hp) @ pia(ha)])

© F(h,) o F(hy) — F(hg) o F(hy).

It is obvious from (2) and Proposition 2.1 that, for any p,q € p, F([p,q]) = [F(p).F(q)],. Let

h=h +..+h €bhand p €p. We have

k
F([h.p]) = Y _F([hsp))

. ‘
= > F(haply) = D_F(lp sl
k k
DS () = 3 (1($y (h))s o ik (1))

=1 =1

We use here the convention that i,(hg) = 0 when hy € bh? and o # B. For any a € p* and f €
{1,...,k}, we have

= — <iy(hy) ®qa,p >~
== a, (L) P = -
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Thus ¢, (p) = (L;;(hx)x)*p. On the other hand, for any g € p,
=< ip(p(ha))sq = = 0" ([hsn pl. )

DO (p x5 1)
= — < iy(hs), prapq -
< (L3P (ix(ha))s q > -
Thus ig(¢,(h)) = (Ly'") (ix(hs)). Therefore

k k
(Ipl) = 31, (P) = D 10y (he)s oty )
k k
= D W) P = 2o (W) ol (L) (i)

#n) (F()) = W) (F(R))
and we get that F([h, p]) = [F(h),F(p)],. To conclude, one can check easily that F sends 0" to p*.

To study the converse, we introduce two algebraic structures which appeared naturally in our
study above.

Definition 2.2. A k-left symmetric algebra is a real vector space A endowed with k left symmet-
ric products e, ..., ® such that one of the following equivalent assertions hold:

1. Forany o, f € {1,....k} and for any a,b,c € A,
ae,(bepgc)— (ae,b)egc=Dbep(ae,c)— (besa)e,c. (10)
2. (A o) is a left symmetric algebra where o is given by
(ai, ...,ax) o (by, ..., bg <Za“o by, ..., Xk:aaoxbk>. (11)
In this case the map ¢ : ArxA— A given by . -
d((ar, . ar),b) = Pay, apb = ZLZJ’ (12)
=1

defines a representation of the Lie algebra (AF,[,]) in A where [a,b] =aob—"boa.

Indeed, the two relations (10) and (11) are equivalent. In fact, for any a,b,c € A* we have

k k
(aob)oc:<2ayob Zaao bk)

=1
Kk k Kk k

(ZZ a, e ,bg)egcy,...., ZZ a, e ,bp) 5@),
o=1 =1 oa=1 f=1

f=1 p=1

k k
o(boc)=ao (Z(bﬁ ®4C1)s e Z(bﬁ . ﬁck))
(ZZ““ b/; /;Cl ZZ““ b/; BCk )

o=1 =1 a=1 f=1
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Then

ko k
ass(a,b,c) = (Z [(ax ®,bg) ® gcy
p=1

=1

k
Z a, e, b/; ® pCk — Ay ® (blf ﬁck)])

a=1 f=1

M»

—a, ® b/; ° /;Cl ,

where ass(a,b,¢c) = (aob) oc—ao (boc). Similarly, we have

k

kok k
ass(b,a,c)= (ZZ [(bpepay)e,ci—bgep(aye,ct)] ZZ [(bgepas) ack_b/f‘/f(aa‘ack)]>

u=1 f=1 a=1 =1

But o is left symmetrlc if and only if, for any o, f € {1,...,k} and any a = (0, ..., 4y, ...,0),b =
(0,..., by, ...,0) and ¢ € A", ass(a, b, c) = ass(b, a, ¢) which gives the equivalence. Moreover, if (10)
or (11) holds then, for any a,b € A* and any ¢ € A, we have

$(a.bl.c) = d(ao b,c) — d(boac)

(d((ay @ 4b1,....ay @ ,bk), c) — d((by @ 4a1, ..., by @ yax), c))

B B
(La,( O,b/gc - Lb, oxa,gC)

(L (Lhe) — L4, (L))

a,’ b/s
l

1(e).
This shows that ¢ defines a representation of the Lie algebra (A%, [,]) in A.

[
M~

]
Il
—_

[
M~
M~

]
Il
-
T
-

A
Iz
-
M*

]
I
—_
=
Il
—

lﬁ
»

Definition 2.3. A (k x k)-left symmetric algebra is a vector space B endowed with a k x k-matrix
(*5,8) 1<y, p<x Of products such that:
1. For any o, ff and for any p,q € B,

P*aaq — % aap =P*ppq — q* P = [P>q)-

2., p are commutative when o # f3,
3. the map ¢ : B® B* — B given by

, k,
Lot L\ /py .
Y(q (P10 Pk)) = Yg(prspi) = | : =0 (L" o L )
LYk LR ) \ =1

(13)
satisfies

Vipg = [V ¥q)- (14)
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We will show now that if B is (k x k)-left symmetric algebra then, for any o = 1,....,k, x4, is
Lie admissible. In order to do so, we will use the Bianchi identity. Indeed, let (A, x) be an alge-
bra and [,] the associated bracket given by [a,b] = a x b — b x a. The curvature of x is given by

R(a, b) = L[a, b — [La’Lb])

where L,b = a * b. The Bianchi identity is given by
J; R(a, b)c :{) [[a, b], cl,
a,b,c a,b,c

where § denotes the cyclic sum. Thus * is Lie admissible if and only if § R(a, b)c = 0.
Proposition 2.2. Let B be (k x k)-left symmetric algebra. Then, the relation (14) is equivalent to

- B B B B

oy Ly o, LY o,
L[P)Q]_;[LP oLy" =Ly oL, ]’ (15)

=1

for any p,q € p and any o,7. Moreover, %, , is Lie admissible and [,] is a Lie bracket and hence

is a representation of the Lie algebra (B, [,]).

Proof. The fact that (14) is equivalent to (15) can be deduced by a direct computation from (13).
Indeed, for « = 1, ...,k and for any p,q,p, € p,

V([ ) (0,.-,0,,,0, ...,0)) = (Lﬁ;}q]pl, ...,LE;’kq]p“),
Uy 0 Yg((0, 00,9, 0,..1,0)) = ¥ (Lfi"lpa,‘..,Lg’k )

(L‘g’l © Lg)ﬁpxl sy Ll/j)k o Lg’ﬁp&)a

)

- T~

Yy 0,((0,...,0,p5,0,...,0))

(L 0 L p o LfF 0 L, ).
1

=
I

where (0, ...,0,p,,0, ...,0) € p* with p, its a-component and zero elsewhere. Thus, the equivalence
of (14) and (15) follows.

Now we will use the Bianchi identity to show that %, , is Lie admissible. Indeed, by virtue of
(15), the curvature of %, , is given by

k
R(poq)r = Liyr = [ L[ (0 = 3 [ Lyfr 1" oLyl
aFf=1

One can deduce easily that

Example 1.

1. Note that the notions of 1-left symmetric algebra and (1 x 1)-left symmetric algebra are the
same and correspond to the classical notion of left symmetric algebra.

2. If (A, e) is a left-symmetric algebra, then (A, e = o,.., 0, = ) is a k-left symmet-
ric algebra.
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3. If ey,..., & are left symmetric products on B such that ae,b —be,a=aegh—bepga for
any o, f then (B, (%4,p5);<,<p<p) is (k X k)-left symmetric algebra where *,5 =0 if « # f8
and *,, = e,

It turns out that as a para-Kahler Lie algebra is built from two compatible left symmetric alge-
bras (see [5, 8]), a k-para-Kéhler Lie algebras is built from a k-left symmetric algebra and a
(k x k)-left symmetric algebra compatible in some sense.

Let p be a vector space of dimension n such that:

1. p carries a structure ([],, (% 55),<, g<i) Of (k X k)-left symmetric algebra,
2. p* carries a structure (e, o ® k) of k-left symmetric algebra.
Define on ®(p, k) = p® (p*)* the bracket

[a,h]:aob—boa,[,q]:[p,q]p and [a,p]:d)Z(p)—lﬁ;a, a,be(p ),p,qep, (16)

and the family (p!, ..., p¥) of 2-forms given by (9).

The vector space (p*)* has a structure of Lie algebra [,] and ¢ is a representation of this Lie
algebra and p has a structure of Lie algebra [ ], and 1,0 is a representat1on of this Lie algebra struc-
ture. We denote by ¢” :p — p*@p and Y’ : (p ) — (p*) ® (p* ) the dual of ¢ : (p ) Qp* —
p*and ¢ :p@pk — p.

The following theorem is a generalization of a result first obtained in [5, Theorem 4.1] and
recovered in [8, Proposition 3.3].

Theorem 2.2. (®(p,k),[,]) is a Lie algebra if and only if

1. ¢":p—p*@ypisa I-cocycle of (p, [1,) with respect to the representation Y ® ad, i.e.,
¢" ([pa),) ((a1-201),0)=¢" (p) ((a1,....ax)ady)+ ¢ (p) (W (a1,....a1),0)— " () ((a1....ax),ad, b)

_¢ ( )(lp (al» ’ak),b).

2. YT () = (p) @ (0°)F is a 1-cocycle of ((p*)*,[,]) with respect to the representation ¢ © ad
and [,] is given by [a,b] =aob—boa, ie,

U ([a.0) (0> (q1s-q0)) =¥ (a) (pady (1se-nqi)) +¥ 7 (2) (D05 (G15--0qk) ) — YT (B) (prad (G1s--2qk))

YT (b)(Gops (1K)

In this case (®(p,k),[,], (0°)5 p"... p¥) is a k-para-Kihler Lie algebra. Moreover, all k-para-
Kahler Lie algebras are obtained in this way.

Proof. We will show that the bracket given by (16) satisfies the Jacobi identity if and only if the
equations in the statement of the theorem hold. Note first that since the bracket on p and (p* )k
are Lie brackets then the bracket given by (16) satisfies the Jacobi identity for any p,q,r € p and
any a,b,c € (p*)*. Let a € (p*)* and p,q € p. We have

[1p-q)a] = ¥y, q @ — da(pal,):
[@a)pp) = [V p| ~ [020:0] = 0.0 — Vyba — [#ia.],,
([@.p]:q) = V¥pa — bj0a + [d2p.4) -
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According to Proposition 2.2, i/ is a representation and so is " and hence
J(p-q-a) :=([p-q)-a] + [[4-a].p] + [[a:P). 4] = by aP — by — Pa(p.d),) + [bapoa], — [d2ap], €p.
Now, for any b € p*, we have
<bJ(p.g.a) = =— < (hya:b).p = + < d(Y,a,b).9 = + < d(a.b), [p.q], = + < b [dp.q] , -
—=<b,[diap], -
=— < (¥,a.0),¢" (p) = + < (Y,a.b),0" (q) = + =< (a,b),¢" ([p.q),) = + < ad;b, pyp -
—<ad,b,¢,q -
=— =< (¥a.0),¢" (p) = + < (Y,a.b),¢" (q) = + =< (a.b), " ([p.q],) »
— < (a,ad;b),¢" (p) - + < (a,ad,;b),¢" (q) > .
The vanishing of J(p,q,a) gives the first relation in the theorem. A similar computation gives
the second relation. O

A (k x k)-left symmetric algebra structure on p and a k-left symmetric left algebra structure
on p* are called compatible if they satisfy the conditions of Theorem 2.2.

Example 2.

1. Any k-left symmetric algebra structure on p* is compatible with the trivial (k x k)-left sym-
metric algebra structure on p.

2. Any (k x k)-left symmetric algebra structure on p is compatible with the trivial k-left sym-
metric algebra structure on p*.

We end this section by giving a way of building k-left symmetric algebras. The following is a
generalization of a construction given by S. Gelfand.

Proposition 2.3. Let (A,.) be a commutative associative algebra and D,;, D, two derivations of
(A,.) which commute. Then the two products
ae b=aDb and ae,b=aD)b

are left symmetric and compatible in the sense of (10).

Proof. We have, for any a,b € A, the left multiplication of e; is sz =L, oD,;, where L, is the
left multiplication of the product on A. By virtue of (10), e, and e, are compatible if and only
if
Q:=[Lso Dy, Ly 0 D] = Lap,p © Dy + Lyp,a © Dy = 0.
Let us compute:
Q=[LsoD,Ly0D;] —Lyp,p 0Dy + Lyp,e 0 Dy

=L,oDjolyoD; —LyoDyol,0Dy —L,0Llpo0D; +LyoLp,, 0D

=L,0Di0ly0D; —LyoDyoL,0D; — 1L, 0[Dy,Ly] 0 Dy + Ly o [Dy, L] 0 Dy

=L,olyoDjoD;, —LyoLl,0D; 0D

=Ly o[D,Dy] =0

which completes the proof. O
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Example 3. We consider R* endowed with the associative commutative product
€1.e; — e€1,€1.ep — €3.€] — €3,€1.63 — €3.6] — €3,€]1.64 — €4.€] — €4.

We consider the two derivations

000 0 000 0
010 0 00 ab
Di=1y o 1 ol @ D2=15 4 o
000 1 000 0

These two derivations commute and, according to Proposition 2.3, they define a 2-left sym-
metric structure on R* by

e ®1¢;=¢;,i=2,3,4, e ®e3 =ae, and e e®,e4 = be, + ces.

3. Exact k-para-Kahler Lie algebras

In this section, we start with a k-left symmetric algebra structure on p* and we look for a com-
patible (k x k)-left symmetric algebra structure on p such that /" is a coboundary leading to the
generalization of the results obtained in the case k=1 in [5, 8].

Let p be a vector space of dimension n. Suppose that p* is endowed with a k-left symmetric
algebra structure (e ,..., #¢) and we consider ¢ : (p*)k X p* — p* the associated representation
given by

k k
$(ap)=Lp= Lip=> a,e.p, a=(a,..a) € (p)pep
a=1 a=1

The left symmetric product on (p*)* is given by
aob=1L,b=(p(a,by),...p(abx)) and [a,b]=aob—boa.
Let r € p* ® (p*)* and we define y : p @ (p)* — p¥ by

< a(p,u) == ~x(d,p,u) —r(p,adyu), pepucyptac )
If we define r : p — (p*)* by < r(p), u == r(p,u), we get
< a,(p,u) == La(r)(p,u)+ < a, Ly, u -, (17)
where
La(r)(pu) = —x(Lop u) — x(p, Lou).
Note that

k

k k
r(p,u) = Z r(p, (0, ..., Uy, ..., 0)) = Zr“(p, Uy) = Z (ax (P> ) + $2(ps 1)),

a=1 a=1

where r, = a, +s, € p* ® p*,a, its skew-symmetric part and s, its symmetric part. On the other
hand, we define the family of products %, 3 on p by

k k
v(p,u) = an(p, (0, ..., Uy, ..., 0)) = Z(p*a)lua,...,p*a,kua).
a=1 =1

Let us see now under which conditions i defines a (k x k)-left symmetric algebra structure on
p such that ¢” is a 1-cocycle of (p, [],) with respect to the representation  ® ad.
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Let us start by studying under which conditions the family of products *, s is adapted to
our purpose.
Proposition 3.1. For any o, § € {1,...,k} with a # f§ and for any p € p* and p,q € p,
< ppraad == L) (P @)+ < pLipyq = and < p,pxypq == 1)) (p.q).
Thus * 4 g is commutative when o # f if and only ifL{f(a“) =0 and
= PPp*opq = Lg(sm)(P’ q)-

Moreover, [p.ql, = p*u,49 — q*o,qp is independent of o if and only if L(a,) = Lg(aﬁ) for any
o, B. In this case

< p[p.q), == 2L,(a.)(p:9)+ < pLy(yq — Ligp >~
p

Proof. For any o € {1,...,k} and p € p*, we define p* € (p*)* by p? = pdiy, where 6 denotes the
Kronecker symbol.
Put

k
Yo h) =D YD (0 s s 0)) =D (P g 1has s ¥ k)

We have, for any p € p* and p,q € p and o, f € {1,....k}
< ppxapq === pP W(p.q") == L(r)(p,q")+ < pﬁ,L;‘(p)q“ -
But < p, Lipq" == 0up < p,L;,)q - and
Lo (1) (P, ") = —r((L))'Pq") — x(p. Lypq") = —1a((L)) P2 9) — ra(p: (L)) q).

Thus
= ppraaq == Lo(1) (P 9)+ < p, Ly q -
and if o # f3,
< psprapg == Lh(r)(p,q).
So we get

< p[p.q], == 2L} (@) (P, )+ < p. Liyq — Ly = p €0°p,q € .

So we must have L7(a,) = Lﬁ(aﬂ) for any o, . Thus *, 5 is commutative when o # f if and
only if Lﬁ(av{) =0 and

= PPKopq = Lg(szx)(f” q)-

We suppose that, for any o, f € {1,...,k} with « # f and for any p € (p),
Lf@,) =0 and L(a,) =L/(ap).
So we get
k
ZL (ag)(p Z L, (a,)(p

So
< ps[p.q], == 2L(a)(p.p, )+ < Lipd — Lypp = >p €PPG € P (18)
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where L(a) € p ® p* @ p* is given by
L(@)(p,p.q) = LZ(ag{)(p, q), a=1,.,k (19)

The second step is to see under which conditions ¥ defines a (k x k)-left symmetric algebra
structure on p and ¢” is a 1-cocycle of (p, [],) with respect to the representation Y ® ad, i.e.,

P:=<ay(jp.q],u) = — <ay(p.Y(qu) - + < a (g y(p,u) =
Q:=¢'([p.ql,)(ap) — ¢" (p)(a,ad;p) — & (p)(Wya.p) + & (@) (@ adyp) + ¢ (9) (Ypa, p) = 0

for any a € (p*)*,u € p* and p,q € p,p € p* and
Ypa = —(La(r)) (p) + Leya = —(La(r)) (p) +x(p) ca and ¢"(p)(a,p) =< Lap.p = .
Let us compute Q.

Q= ¢"([p.q),)(@p) — ¢"(p)(@adyp) — ¢ (p)(¥ya p) + ¢" () (@ adyp) + &" (q) (¥4 p)
== Lap, [P ], > — < Laadyp,p = + < L, (1) (P> P = — =< Le(goals P =
+ < Laad;p,q = — <LLeypmqg =+ =< L,@)Oap,q -

Then

Q = 2L(a)(Lap, p,q)— < Lap, Ly = + < Lap, Lj@q -—=<plq L;p]
+<L(L(r PP>‘—<Lq)oaPP>‘—<L( pq>'+<Lr(poapq>'
+=<p[pleg], -

= 2L(a)(Lap, p>q) + 2L(a)(p; p, Lyq) + 2L(a)(p, L;p, q)
+ < p,L; )aq> <p,L Lqp> <p,L* p>+<p,L*< 04 =

—|—-<p,L*L* p>—<p,L*L*( q-
—=<pL @P =+ <P Lol = + <P L) = — = P Lipead -
=2L(a )( aP,P’ q) +2L(a )(P,P’ aq) +2L(a)(p, L;p, q)+ < p, A(p, q) — A(q:p) >

where
A(p,q) = Ly Laqd + L pd — Ll + Lt ) (09 — Le(p)oad:
But
r(Lyp) + (La(x)) (p) = aox(p) (20)
and hence
A(p.q) = [Lf@),LZ} q-— L’[‘r(p))a]q =0.
Finally,

Q = 2L(a)(Lap, p,q) + 2L(a)(p, p, L;q) + 2L(a)(p, L;p, q)-
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Now let us compute P. We split it in three parts.
Py =< aﬂﬁ([P”ﬂp)U) >
= La(r)([p.q),, w)+ < a Ly, ] U =
= —r(Lg[p.ql»u) — ¥([p.q], Lo+ < @ Ly gyt =
Py =—<ay(py(gu) -

u)
=-=(L ())(p) V(g u) = + <x(p)oa (g u) >~
u)—

= =L, (p) (1) (1) = < La(x) (), Ly () = +Le(p)oa(r) (g u)+ < x(p) 0 @, Lygyu -
(20

) * * *
= _Lﬂol‘@)(r) (q’ M) + Ll'(LZP) (I') (q’ u) - Lﬂ (r> (p’ Lr(q)u) - r(Lr(p)oaq’ M) - l‘(q, Lr(p)ouu)
- <a, L:(P) o L:(q>u -

So

Py = —r(L[p.q),, 1) — x([p.q), Lyt)+ < @ Ly, gyt =

[p-4],)
P, =x(L, aor(p) P> U u) +r(q, L:or(p)u) - r(Li(LZp)q’ u) —r(q, L:(LZp)u)
+r(Lop L) + (0 LoLy 1) — 1(Lgp)0ads 1) — 1(g Ly p)oqt) = < @ Ly © Ly yu
= E(L, 8 ) + 5@ L, 0) — F(Ligzp00) — rlg L:@,,)u)
+r(Lop Ly yu) +x(p, Loy u)— < a, Ly, oLy u
Py =< a,y(q. ¥ (p,u)) >~
= —r(L’[‘a)r(qﬂp, u) — r(p, Lﬁ[‘a,r(q)]u) + r(Lj<qu>p, u) + r(p, L;‘(qu)u)
—r(Lyq Ly,u) —x(q, LZL:(P)u)—I— <a Ly, oLy, u-
Thus if we put A(r)(p,q) = x([p.q],) — [r(p),x(q)] then
P = —r(L;[p, ql, u) —r([p, q]p,LZu)nL =Ly gt >
+r(L for(p)] P u) — (g, Ly Lou) — 1(Lyg )95 1) — £(qs Lyppyu)
+r(Lop, Lygu) — (Lfa,,(q)]l” u) +r(p, Ly o Lyu) + T(Lﬁ(L;q)P’ u) +r(p, Ly 1)
—1(Leg Lypyu)
=r(s,u) - r([p, ql, L)+ < a Ly g = +1(ps Ly © Lou) — x(g, Ly L)
+r(Lep L) = 1(q Ly ) + 00, Ly gy t) — 1(Logs Ly 1),
with
= -Li[p. q), + Lfa,r@)]q - qu,r(q)]p ~Liwpd + L b
Let us simplify the part of P given by
T = —r([p, q]p,LZu) +1(p, Ly, o Lyu) — x(q Ly Lo+ < @, Ly ¥ >



We have
T = —r([p.q],, Lou) +

== [a,A(0)(p,q)] u
On the other hand,

r(p, L:(L:q)u) —r(LygL; )
So

=<r(p),L

P=rx(s,u)+ < [a,

From (18), we have

< p,[p.q], == 2L(a)(p,p,q)+ < p, L

r(p, L:(q)
=—= r([p,q]p),LZu -—=
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o Lou) = x(q, Ly Law)+ < @ Ly gt -
[r(q).x(p)], L = + < @, Ly ey g4 >

ot = — < r(Lyq), Liyu === [r(p),r(Liq)] u >

A()(p,q)]u =+ < [r(p),r(Lg)]u = — < [r(q), r(Lip)] u -

rd— Ll =P €EPP g € p.

where L(a) is given by (19). Let us simplify the expression of s. We have

—Li[p.q], =2L(a)(Ls ® .p.q) —
[q’ sz] p - L:(Q)

L =

Z r(pq+L*L* )P
Lop +2L(a)( e, Lep, q),

Li:gp = — [P Laq] + Ly Lag +2L(a) (e, p, L3q).

So
s =2L(a)(Ls @ ,p,q) +2L(a)(®,L;p,q) +2L(a) (e, p, Liq) — [Lop.q), —
So, we get
P =< [a,A(r)(p,q)] +x(P(a)(L(a)) — A(r)(Lip: q) — A(r)(p, Liq), u
where

< p,P(a)(L(a)) == 2L(a)(Lap, p,q) + 2L(a)(p, Lp, q) + 2L(a) (p, p, Loq)-

So far, we have proved the following theorem.

Theorem 3.1. Let p be a vector space of dimension n such that p* is endowed with a k-left symmet-
L8k +ag) € p° @ (p°)F such that, for any o #

ric algebra structure (o, ...
p and for any p € p*,

Li(ag) =0 and Li(a,) = Lf(ay) =

Then  given by (17) defmes a (k x k)-left symmetric structure on p compatible with the k-left

,.k) andrf(leral,.

L(a)(p, - .)-

symmetric structure of (p*)* if and only if, for any a € (p*)* and p,q € p,

[a, A(r)(p:q)] +

and, for any a € (p*)k,p EPLP.qED,
L(a)(Lap; p,q) +

An important consequence of this theorem is the introduction of the generalization of S-matri-

ces (see [5, 8]).

Lo(A(r))(p.q) = 0

A(r)(p,q) = x(jp.q],) — [r(p).x(q)]

L(a)(p.Lyp.q) + L(a) (p.p: Liq) = .

L],
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Definition 3.1. Let r = (r',...,r*) be a family of symmetric elements of A ® A where A has a
structure of k-left symmetric algebra (ei,..., e;). We call r a Si-matrix if, for any
a=1,..,kpqe A",

k
Cllpal) =D [P o) e pr(a) - (@) e p(p)],

where

Example 4.
1. Let (A, o) be a left symmetric algebra and r € A ® A be a classical S-matrix, i.e., r satisfies

r(Lipd — L) =(p) © r(a) ~x(q) © x(p),

for any p,q € A" (see [5, 8]). For any k > 1, endow A with the k-left symmetric structure given
by e, =pu, e, where u, € R. Then r* = (r,...,r) is a S -matrix.

2. Consider the 2-left symmetric on R* given in Example 3, then one can check by a direct
computation that, for r, 4,155,154 4,81.1,512 € R,
I'l = T2)4€2 ® €4 —+ 1’2,262 ® (%) —+ 7’4’464 ® €4 and 1'2 = 51,161 [029] 4] —+ 51)261 O] (%)
constitute a S,-matrix on R* (® is the symmetric product).

Let (p*, ®1,..., ®;) be a k-left symmetric algebra and r = (r!,..,r*) € p* ® (p*)k. Wecalra
quasi-Sy-matrix if, for any «,  and for any p € p*,a € (p ) D> q € p,

Ly (ag) = 0, [@,A(r)(p, q)] + La(A(r))(p,9) =0, A(r)(pq) = ([p.q],) — [r(p) x(q)].

According to Theorem 22, (®(p,k) = (p*)*®p, (p*)5[]50"....,0°) is a k-para-Kahler Lie
algebra where

[a+p,b+q]‘={[a,b]+w;b—t/f;‘a}+{¢Zq—¢2§p+[p‘q] } abe () .pqep

and
k

[a,b]:aobfboa,aob:Z(aao“bl,...,aao“bk),
< ppip == Z*““ 2P > s

lppa - r(d)ap) [ (p)’a]’

], = by — Pr(P = Z[ £ (7) q—(f,g,,))*p,

0'(a+p,b+q) <a,,q>—<b,,p>.

Note also that ®(p, k) has another Lie algebra structure, namely,
la+p.b+q” = [a.b] + ¢q — dpp-
We consider now the bracket on ®(p, k) given by
[a+pb+q"" =la+pb+q + AP q)
It can be verified that both [,]” and [|”" are Lie brackets on ®(p, k).
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Theorem 3.2. The linear map K : (®(p, k), []”") — (®(p, k), [.]").a +p—a—rx(p) +p is an iso-
morphism of Lie algebras.

Proof. Tt is clear that K is bijective and that for any a,b € (p*)¥,K([a,b]”") = [K(a),K(b)]". Now
for any p,q € p,

K([p.q") = Ax)(p,q),
[K(p).K(q)]" = [p—r(p).qa—rx(q)]
= [p.q), = ¥,x(q) +¥r(p) — brpyd + Prpp + [£(p)x(q)]

= —r(d1gp) = [r@)x(@)] +x(d7a) + [r(@)x(p)] + [x(p)x(q)]
= A()(p.q).
On the other hand,
K([a.p]"") = K(dop) = $ap — 1($0p)

[K(a).K(p)]" = [a.p— ()]’
= —[ar@p)] + ¢op - w;
= —[ar@)] + ¢op — x(¢2p) — [r(p). 4]
= ¢ap —x(¢ep).
This completes the proof. O

Proposition 3.2 . Let (p*, ®1,..., @) be a k-left symmetric Lie algebra and r = (ry,...,xx) be a
quasi-Sy-matrix. Then (®(p,k),[]”%, (p*)*, 0%, ..., 6%) is a k-para-Kahler Lie algebra where

Ou(a+p,b+q) =0(atpb+q)—2s(p,q),

where s; is the symmetric part of ¥;.

4. k-Symplectic Lie algebras of dimension (k + 1)

In [3], there is a study of k-symplectic Lie algebras of dimension (k + 1). In this section, by using
Theorem 2.2, we give a description of these Lie algebras which completes the results obtained in [3].

Let (g,b,0",...,0%) be a k-symplectic Lie algebra of dimension (k + 1). Since h has codimen-
sion 1 then g is indeed a k-para-Kahler Lie algebra and according to Theorem 2.2, there exists a
basis (fi,....fve) of g and (ay,...,ar) € RF such that (fi,....fy) is a basis of h and for any
Lj=1,..,k

[fl,]ﬂ = afi — affs, [e.fi] = aie + D(f),0' =fine' (22)

where D : h — b is a linear endomorphism. This bracket must satisfy the Jacobi identity. We will
solve the obtained equations in what follows. We distinguish two cases: k=2 and k > 3. Note
first that if we define £ € b by £(f;) = a; the bracket above satisfies

[x.y] = (x)y — €(y)x and [e,x] = {(x)e + D(x) (23)
for any x,y € hh and one can see easily that the Jacobi identity is equivalent to
{(y)D(x) = £(x)D(y) + £(D(y))x = £(D(x))y = 0 (24)

for any x,y € b.
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Let wus start with the case k=2. We consider sl(2, R) with its basis
0 1 0 0

{h=(y 2pe=(§ =] ()} wher

hg) =2g [hf] = —2f and [gf] =h.

x 0 vy
We consider the Lie algebra sol = (0 —x z) %, 9,z€ R
0O 0 O

In the basis

we have

[ur, up] = ta, [ur, us] = —us  and  [up, u3] = 0.

Theorem 4.1. Let (g, b, 0", 0%) be a 2-symplectic Lie algebra of dimension 3. Then one of the follow-
ing situations holds:

1. b is an abelian ideal and there exists a basis (e, f, g) of g and D an endomorphism of by such
that [h,e] = D(h) for any h € §,0" = &* Af* and 0> = e* A g".

2. (g,b,0%0%) is isomorphic to (sl(2, R).hy.p',p°) with by = span{h,g}, p! = h* Af* + bg* Af*
and p* = g* Af*.

3. (g,h,0',0%) is isomorphic to (sol, by, p',p?) with by = span{uy, up}, p; = ul Aul + bul A
and 0* = cut A + ui Auj for some bc € R .

Proof. According to what was said above, g = ) ® Re and there exists a basis (f}, f5) of h, a lin-
ear endomorphism D : h — b and £ € h” such that

Ufi) = a,l(fr) = as, 6" =fne" and 0? =fne'

and the Lie bracket is given by (23) and ¢ and D satisfy (24).

If £ = 0 then this equation is satisfied and g is an almost abelian algebra.

If ¢ # 0 we can suppose that a; # 0. Put g = ayfi — a1f2 € ker/ and the Eq. (24) is equivalent
to

a1D(g2) + ¢(D(f1))g — ¢(D(g2))f = 0.

Put D(f;) = difi + dng and D(g) = dipfi + dapge then the equation above is equivalent to

diy = —dp. So in the basis (f1,£,€), we have
[e.fi] = are+dufi + dag, [6:82] = difi —dng and [fi,@] =an
and
0' =firne" +axgi ne® and 07 = —a gl Ae’.

We distinguish two cases:

o dj, # 0. If we put

2
ha 5 = — J1» s T T 1 2 - -
(h.g.f) <a1f1 & a1d12<e+ o f1+a1g2>>

we get the desired isomorphism between g and sl(2, R) .
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e d; =0. If we put

1 d
(u, usu3) = | ———e g me+dufi + igz
du 2
we get the desired isomorphism between g and sol. .

Theorem 4.2. Let (g,h,0", ...,0) be a k-symplectic Lie algebra such that dimbh = k > 3. Then one
of the following situation holds:

1. b is an abelian ideal and there exists a basis (e,fi,....fx) of g and an endomorphism D of b
such that § = span{fi,....f}, [&,h] = D(h) for any h € § and, for 0. =1,...,k, 0" = f ne*.

2. There exists (fi,.... fv-€) a basis of g, a family of constants (a, ...,a) € R¥, a #0, (b, ...,by)
€ R*! and ). € R such that b = span{fy, ..., fc},

k
lefl*/\e*—g aff ne" and 0 =aff e’ i=2,..,k

i=2

and the non vanishing Lie brackets are given by

k
[e.fi] = are+ Afi + Zb;f;, le.fi] = —Af, [f1.fi] = arfisi=2,.., k.
=2

These Lie algebras are solvable nonunimodular.
Proof. According to what was said above, g= f) @ Re and there exists a basis (fi,....fx) of h, a
homomorphism D : h — § and £ € h* such that
(f)=a and O =f ne', i=1,..,k

and the Lie bracket is given by (23) where ¢ and D satisfy (24).
If ¢ = 0 then this equation is satisfied and g is an almost abelian algebra.
Suppose that £ # 0 and we can suppose a; # 0. Then for x, y € ker/

{D())x — U(D(x))y = 0
and hence ker ¢ is invariant by D. If we take x € ker £ and y ¢ ker ¢ then

{(»)D(x) + £(D(y))x = 0

and hence

If we choose y, such that £(y,) # 0, we get
D(yy) = Ayo +x0 and D(x) = —Ax,x,xo € kerl.
Put g; = f; and for i = 2,...,k, we put g; = a1f; — a;fi € kerl. Thus
k k
D(g1) =g + Z bigi,0' =g ne — Zaig;‘ ~e" and D(g) = —4g, 0 = ag Ae’,

i=2 i=2
i=2,...k

and the Lie brackets are
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k

[6:81] = are + g1+ Z bigi, [e:&i] = —gi> 181,&i] = 18> [€1-&] = 0,1, = 2, ok
=2

This completes the proof. O

5. Six-dimensional 2-para-Kahler Lie algebras

In this section, by using Theorem 2.2, we give all six dimensional 2-para-Kahler Lie algebras. We
proceed as follows:

1. In Table 1, we determine all 2-left symmetric algebras by a direct computation using the clas-
sification of real two-dimensional left symmetric algebras given in [10].

2. In Table 2, we give for each 2-left symmetric algebra in Table 1 its compatible 2 x 2-left sym-
metric algebras.

3. In Table 3, we give for each couple of compatible structures in Table 2 the corresponding 2-
para-Kahler Lie algebra.

4. All our computations were checked by using the software Maple.
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