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Abstract. We show that given a finite-dimensional real Lie algebra G acting on a smooth
manifold P then, for any solution of the classical Yang–Baxter equation on G, there is a
canonical Poisson tensor on P and an associated canonical torsion-free and flat contrava-
riant connection. Moreover, we prove that the metacurvature of this contravariant connec-
tion vanishes if the isotropy Lie subalgebras of the action are trivial. Those results permit
to get a large class of smooth manifolds satisfying the necessary conditions, introduced by
Eli Hawkins, to the existence of noncommutative deformations.
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1. Introduction and Main Results

In [7] and [8], Hawkins showed that a deformation of the graded algebra of
differential forms �∗(P) on a smooth manifold P gives arise to a Poisson ten-
sor on P (which characterizes the deformation) and to a torsion-free and flat
contravariant connection whose metacurvature vanishes. Moreover, Hawkins sho-
wed that, on a Riemannian manifold P , if the deformation of �∗(P) comes from
a deformation of a spectral triple describing the Riemannian manifold P then
the Poisson tensor π (which characterizes the deformation) and the Riemannian
metric satisfy the following conditions:

1. The associated metric contravariant connection D is flat.
2. The metacurvature of D vanishes.
3. The Poisson tensor π is compatible with the Riemannian volume ε:

d(iπε)=0.

Recherche menée dans le cadre du Programme Thématique d’Appui à la Recherche Scientifique
PROTARS III.
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The metric contravariant connection associated naturally to any couple of
pseudo-Riemannian metric and Poisson tensor is an analogue of the Levi-Civita
connection. It has appeared first in [3]. The metacurvature, introduced by Hawkins
in [8], is a (2,3)-tensor field (symmetric in the contravariant indices and antisym-
metric in the covariant indices) associated naturally to any torsion-free and flat
contravariant connection.

Throughout this paper, on a smooth manifold, a pseudo-Riemannian metric and
a Poisson tensor satisfying the conditions 1–3 are called compatible in the sense of
Hawkins.

In this paper, we prove two results which provide a method for constructing a
large class of smooth manifolds satisfying the necessary conditions, pointed out by
Hawkins in [7] and [8], to the existence of noncommutative deformations of the
differential graded algebra of differential forms. Let us state those results and des-
cribe this method.

Let G �−→ X (P) be an action of a finite-dimensional real Lie algebra G on a
smooth manifold P , i.e., a morphism of Lie algebras from G to the Lie algebra
of vector fields on P .

Let r ∈∧2G be a solution of the classical Yang–Baxter equation, i.e.,

[r, r ]=0, (1)

where [r, r ]∈G ∧G ∧G is defined by

[r, r ](α,β, γ )=α([r(β), r(γ )])+β([r(γ ), r(α)])+γ ([r(α), r(β)]),

and r :G∗ −→G denotes also the linear map given by α(r(β))=r(α,β). We denote
by πr the Poisson tensor on P image of r by �. Write

r =
∑

i, j

ai j ui ∧u j

and put, for α,β ∈�1(P),

Dr
αβ :=

∑

i, j

ai jα(Ui )LU j β, (2)

where Ui =�(ui ). We get a map Dr :�1(P)×�1(P)−→�1(P) which is a contra-
variant connection associated to the Poisson tensor πr .

THEOREM 1.1. Let G �−→ X (P) be an action of a Lie algebra G on a smooth
manifold P and let r ∈∧2G be a solution of the classical Yang–Baxter equation such
that Imr is an unimodular Lie algebra. Then, for any volume form ε on P such that
L�(u)ε =0 for each u ∈ Imr, πr is compatible with ε, i.e.,

d(iπr ε)=0.
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THEOREM 1.2. Let G �−→ X (P) be an action of a Lie algebra G on a smooth
manifold P and let r ∈∧2G be a solution of the classical Yang–Baxter equation.

1. The map Dr : �1(P) × �1(P) −→ �1(P) given by (2) depends only on r and
� and defines a torsion-free and flat contravariant connection associated to the
Poisson tensor πr .

2. If P is a pseudo-Riemannian manifold and, for any u ∈ Imr, �(u) is a Killing
vector field, then Dr is the metric contravariant connection associated to the
metric and πr .

3. If the isotropy subalgebras of the restriction of � to Imr are trivial, then the
metacurvature of Dr vanishes.

There are some interesting implications of Theorems 1.1 and 1.2:

1. Let G be a Lie group, G its Lie algebra and let G �−→X (G) be the action of
G on G by left invariant vector fields. For any α ∈ G∗, let αl denote the left
invariant differential 1-form on G associated to α. For any solution r of the
classical Yang–Baxter equation, one can check easily that Dr is given by

Dr
αl β

l =−(ad∗
r(α)β)l .

Moreover, if Imr is unimodular then, for any right invariant pseudo-
Riemannian metric g on G, the left invariant Poisson tensor πr is compatible
with g in the sense of Hawkins.

2. Let (G,ω) be an unimodular Lie group endowed with a left invariant symplec-
tic form. The symplectic form defines on the Lie algebra of G an invertible
solution of the classical Yang–Baxter equation. Hence, given any locally free
action by isometries of G on a pseudo-Riemannian manifold P , there exists
on P a Poisson tensor which is compatible with the metric in the sense of
Hawkins.

3. A symplectic nilmanifold is the quotient of a nilpotent Lie group endowed
with a left invariant symplectic form by a discrete co-compact subgroup (see
[1]), so on any symplectic nilmanifold there exists a Poisson tensor and an
associated torsion-free and flat contravariant connection whose metacurvature
vanishes. Nilpotent Lie groups admitting left invariant symplectic forms were
classified by Medina and Revoy [10].

4. The affine group K n ×GL(K n) (K = IR or |C) admits many left invariant sym-
plectic forms (see [2]) which implies that its Lie algebra carries many invertible
solutions of (1). So any locally free action of the affine group on a manifold
gives arise to a Poisson tensor with an associated nontrivial torsion-free and
flat contravariant connection whose metacurvature vanishes.

5. Let G be a Lie group with a bi-invariant pseudo-Riemannian metric and r
an unimodular solution of the classical Yang–Baxter equation. For any dis-
crete co-compact subgroup 	 of G, G acts on the compact manifold P :=G/	
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by isometries, so we get a Poisson tensor on the compact pseudo-Riemannian
manifold P compatible with the pseudo-Riemannian metric in the sense of
Hawkins.
A connected Lie group G admits a bi-invariant Riemannian metric if and only
if it is isomorphic to the cartesian product of a compact group and a com-
mutative group (see [11]). Any solution r of (1) on the Lie algebra of G is
such that Imr is abelian. So any triple (G,	, S), where G is a Lie group with
a bi-invariant Riemannian metric, 	 is a discrete and co-compact subgroup
of G and S an abelian even dimensional subalgebra of the Lie algebra of G,
gives arise to a compact Riemannian manifold with a Poisson tensor compa-
tible with the metric in the sense of Hawkins.
We give now an example of a compact Lorentzian manifold with a Pois-
son tensor compatible with the Lorentzian metric in the sense of Hawkins
and such that the Poisson tensor cannot be constructed locally by commu-
ting Killing vector fields. This shows that Theorem 6.6 in [8] is not true if the
metric is Lorentzian.
Our example involves the oscillator groups introduced by Medina and Revoy
(see [9]) as the only noncommutative simply connected solvable Lie groups
which have a bi-invariant Lorentzian metric. Their discrete co-compact sub-
groups where classified in [9].
For λ= (λ1, λ2)∈ IR2 such that 0 <λ1 ≤λ2, the oscillator group of dimension
6 is the Lie group Gλ with underlying manifold IR× IR× |C2 and product

(t, s, z1, z2)× (t ′, s′, z′
1, z′

2)=
=

(
t + t ′, s + s′ + 1

2

(
Im(z̄1exp(ı tλ1)z

′
1)+

+ Im(z̄2exp(ı tλ2)z
′
2)

)
, z1 + exp(ı tλ1)z

′
1, z2 + exp(ı tλ2)z

′
2

)
.

The associated Lie algebra is

Gλ :=vect{e−1, e0, e1, e2, ě1, ě2}
with brackets

[e−1, e j ]=λ j ě j , [e j , ě j ]= e0, [e−1, ě j ]=−λ j e j

and the unspecified brackets are either zero or given by antisymmetry.
For x ∈Gλ, let

x = x−1e−1 + x0e0 + x1e1 + x2e2 + x̌1ě1 + x̌2ě2.

The nondegenerate symmetric form

kλ(x, x) :=2x−1x0 +
2∑

j=1

1
λ j

(x2
j + x̌2

j )
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satisfies

kλ([x, y], z)+kλ(y, [x, z])=0, for any x, y, z ∈Gλ

and hence defines a Lorentzian bi-invariant metric on Gλ.
Consider now r ∈∧2Gλ given by

r = e0 ∧ e1 + e2 ∧ ě1.

It is easy the check that, for any α,β ∈G∗
λ ,

[r(α), r(β)]= (α(e0)β(e2)−α(e2)β(e0)) e0,

and deduce that [r, r ]=0. Note that I mr is a nilpotent Lie algebra and hence
unimodular.
Let πr denote the left invariant Poisson tensor on Gλ associated to r . The
contravariant connection Dr is given by

Dr
αl β

l =−(ad∗
r(α)β)l ,

where α,β ∈G∗
λ and αl is the left invariant 1-form on Gλ associated to α.

A direct calculation gives

ad∗
r(α)β = (

λ1α(e2)β(e1)−λ1α(e0)β(ě1)+λ2α(ě1)β(ě2)
)

e∗
−1 −

−α(e2)β(e0)e
∗
1 +α(e0)β(e0)ě

∗
1 −α(ě1)β(e0)ě

∗
2 .

Now, for any α,β, γ ∈G∗
λ , we have

Dr
αl πr (β

l , γ l)=πr#.πr (α
l , βl)−πr (Dr

αl β
l , γ l)−πr (β

l ,Dr
αl γ

l)=
= r(ad∗

r(α)β, γ )+ r(β,ad∗
r(α)γ )=

=α(e0) (β(e2)γ (e0)−β(e0)γ (e2)) ,

and hence Drπr �=0.
The subgroup

	 := {(t, s, z1, z2)∈ Gλ /t, s, Re(zi ), Im(zi )∈ZZ}
is a discrete co-compact subgroups of Gλ if and only if the set {λ1, λ2} gene-
rates a discrete subgroup of (IR,+) (see [9]). The bi-invariant Lorentzian
metric on Gλ defines a Lorentzian metric on P := Gλ/	 and we get an action
of Gλ on P by isometries. According to Theorems 1.1 and 1.2, we get a Pois-
son tensor on P which is compatible with the Lorentzian metric. According
to the calculation above, this Poisson tensor is not parallel with respect to
the metric contravariant connection and hence it cannot be constructed locally
from commuting Killing vectors fields.

Section 2 is devoted to a complete proof of Theorems 1.1 and 1.2.
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Notations. For a smooth manifold P , C∞(P) will denote the space of smooth
functions on P , �(P, V ) will denote the space of smooth sections of a vector
bundle, �p(P) :=�(P,∧pT ∗ P) and X p(P) :=�(P,∧pT P). Lower case Greek cha-
racters α,β, γ will mostly denote 1-forms. However, π will denote a Poison bivec-
tor field and ω will denote a symplectic form.

For a smooth manifold P with a Poisson tensor π , π# :T ∗ P −→ T P will denote
the anchor map given by β(π#(α))=π(α,β), and [ , ]π will denote the Koszul bra-
cket given by

[α,β]π = Lπ#(α)β − Lπ#(β)α −d(π(α,β)).

We will denote by Preg the dense open set where the rank of π is locally constant.

2. Proofs of Theorems 1.1 and 1.2

2.1. PRELIMINARIES

Contravariant connections associated to a Poisson structure have recently turned
out to be useful in several areas of Poisson geometry. Contravariant connections
were defined by Vaismann [13] and were analyzed in detail by Fernandes [5]. This
notion appears extensively in the context of noncommutative deformations see
[7,8] and [12]. One can consult [5] for a detailed study of contravariant connec-
tions.

In this subsection, we recall the definition of the metacurvature of a flat and
torsion-free contravariant connection D, and we give a necessary and sufficient
condition to the vanishing of the metacurvature in the case where D is an
F-connection (see [5]). Finally, we recall the interpretation of a solution of the
Yang–Baxter equation as a symplectic Lie algebra. This interpretation appeared
first in [4].

Let (P, π) be a Poisson manifold and V
p−→ P a vector bundle over P . A

contravariant connection on V with respect to π is a map D :�1(P)×�(P, V )−→
�(P, V ), (α, s) 	→Dαs satisfying the following properties:

1. Dαs is linear over C∞(P) in α:

D f α+hβs = f Dαs +hDβs, f, g ∈C∞(P);
2. Dαs is linear over IR in s:

Dα(as1 +bs2)=aDαs1 +bDαs2, a,b ∈ IR;
3. D satisfies the following product rule:

Dα( f s)= f Dαs +π#(α)( f )s, f ∈C∞(P).

The curvature of a contravariant connection D is formally identical to the usual
definition
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K (α,β)=DαDβ −DβDα −D[α,β]π .

The connection D is called flat if K vanishes identically.
A contravariant connection D is called an F-connection if its satisfies the follo-

wing properties

π#(α)=0 ⇒ Dα =0.

We call D un F reg-connection if the restriction of D to Preg is an F-connection.
If V = T ∗ P , one can define the torsion T of D by

T (α,β)=Dαβ −Dβα −[α,β]π .

Let us define now an interesting class of contravariant connections, namely
contravariant connection associated naturally to a Poisson tensor and a pseudo-
Riemannian metric.

Let (P,<,>) be a pseudo-Riemannian manifold and π a Poisson tensor on P .
The metric contravariant connection associated to (π,<,>) is the unique

contravariant connection D such that:

1. the metric <,> is parallel with respect to D, i.e.,

π#(α).<β, γ >=<Dαβ, γ >+<β,Dαγ >;
2. D is torsion-free.

The connection D is the contravariant analogue of the Levi-Civita connection, so
one can define it by the Koszul formula:

2<Dαβ, γ >=π#(α).<β, γ >+π#(β).<α, γ >−π#(γ ).<α,β >+
+< [γ,α]π , β >+< [γ,β]π ,α >+< [α,β]π , γ > . (3)

We continue recalling briefly the definition of the metacurvature introduced by
Hawkins in [8].

Let (P, π) be a Poisson manifold and D a torsion-free and flat contravariant
connection with respect to π . In [8], Hawkins showed that such a connection
defines a bracket { , } on the space of differential forms �∗(P) such that:

1. { , } is IR-bilinear, degree 0 and antisymmetric, i.e.,

{σ,ρ}=−(−1)degσdegρ{ρ,σ }.
2. The differential d is a derivation with respect to { , }, i.e.,

d{σ,ρ}={dσ,ρ}+ (−1)degσ {σ,dρ}.
3. { , } satisfies the product rule

{σ,ρ ∧λ}={σ,ρ}∧λ+ (−1)degσdegρρ ∧{σ,λ}.
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4. For any f, h ∈C∞(P) and for any σ ∈�∗(P) the bracket { f, g} coincides with
the initial Poisson bracket and

{ f, σ }=Dd f σ.

Hawkins called this bracket a generalized Poisson bracket and showed that there
exists a (2,3)-tensor M such that the following assertions are equivalent:

1. The generalized Poisson bracket satisfies the graded Jacobi identity

{{σ,ρ}, λ}={σ, {ρ,λ}}− (−1)degσdegρ{ρ, {σ,λ}}.
2. The tensor M vanishes identically.

M is called the metacurvature and is given by

M(d f, α, β)={ f, {α,β}}−{{ f, α}, β}−{{ f, β}, α}. (4)

It would be helpful if one can wrote down a full global formula for Hawkin’s
generalized Poisson bracket of two 1-forms. Let α and β be two 1-forms on a
Poisson manifold P endowed with a torsion-free and flat contravariant connection
D. Suppose that β = gd f where f, g ∈C∞(P). Then, we have

{α, f dg}={α, f }∧dg + f {α,dg}
=−Dd f α ∧dg + f

(
dDdgα −Ddgdα

)

=−D f dgdα +dD f dgα −Dd f α ∧dg −d f ∧Ddgα

=−D f dgdα +dD f dgα −Dα(d f ∧dg)−[d f, α]π ∧dg −d f ∧[dg, α]π
=−D f dgdα −Dα(d( f dg))+dD f dgα −[d f, α]π ∧dg −d f ∧[dg, α]π .

This computation shows that a global formula, if it exists, will involve both the
contravariant connection and the Poisson tensor. However, Hawkins pointed out
in [8, p. 9], that for any parallel 1-form α and any 1-form β, the generalized Pois-
son bracket of α and β is given by

{α,β}=−Dβdα. (5)

Thus, one can deduce from (4) that for any parallel 1-forms α, γ and for any
1-form β,

M(α,β, γ )=−DβDγ dα. (6)

The definition of a contravariant connection is similar to the definition of
an ordinary (covariant) connection, except that cotangent vectors have taken
the place of tangent vectors. So one can translate many definitions, identities
and proofs for covariant connections to contravariant connections simply by
exchanging the roles of tangent and cotangent vectors and replacing Lie Bracket
with Koszul bracket. Nevertheless, there are some differences between those two
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notions. Fernandes pointed out in [5] that the equation Dα = 0 cannot be solved
locally for a general torsion-free and flat contravariant connection D. However,
he showed [5, Proposition 1.9.1] that for a torsion-free and flat F-connection this
equation can be solved locally. Let us precise this result.

PROPOSITION 2.1. Let (P, π) be a Poisson manifold and D a torsion-free and flat
contravariant connection with respect π . Let p be a regular point of π such that the
restriction of D to a neighborhood of p is an F-connection. Then, for any β ∈ T ∗

p P ,
there exists a 1-form β̃ over some neighborhood of p such that Dβ̃ =0 and β̃p =β.

By combining (6) and Proposition 2.1, we get the following useful proposition.

PROPOSITION 2.2. Let (P, π) be a Poisson manifold and D a torsion-free and flat
F reg-connection with respect to π . Then the metacurvature of D vanishes if and only
if, for any local parallel 1-form on Preg, D2dα =0.

Finally, we give another description of the solutions of the classical Yang–
Baxter equation which will be useful latter.

Let G be a Lie algebra. Note that the data of r ∈G ∧G is equivalent to the data
of a vectorial subspace Sr ⊂G and a nondegenerate 2-form ωr ∈∧2S∗

r .
Indeed, for r ∈G ∧G, we put Sr = Imr and

ωr (u, v)= r(r−1(u), r−1(v)), (7)

where u, v ∈ Sr and r−1(u) is any antecedent of u by r .
Conversely, let (S,ω) be a vectorial subspace of G with a nondegenerate 2-form.

The 2-form ω defines an isomorphism ωb : S −→ S∗ by ωb(u)=ω(u, .), we denote
by # : S∗ −→ S its inverse and we put

r =#◦ i∗

where i∗ :G∗ −→ S∗ is the dual of the inclusion i : S ↪→G.
With this observation in mind, the following well-known result (see [4]) gives

another description of the solutions of the classical Yang–Baxter equation.

PROPOSITION 2.3. Let G be a Lie algebra and r ∈G ∧G. The following assertions
are equivalent:

1. r is a solution of the classical Yang–Baxter equation.
2. I mr is a subalgebra of G and

ωr (u, [v,w])+ωr (v, [w,u])+ωr (w, [u, v])=0 (8)

for any u, v,w ∈ Imr.
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2.2. PROOF OF THEOREM 1.1

Let P be a smooth manifold, G a Lie algebra with � :G −→X (P) a Lie algebras
morphism from G to the Lie algebra of vector fields and r ∈∧2G a solution of the
classical Yang–Baxter equation such that Imr is an unimodular Lie algebra.

There exists a basis (e1, . . . , en, f1, . . . , fn) of I mr such that the symplectic form
ωr , defined by (7), is given by

ωr =
n∑

i=1

e∗
i ∧ f ∗

i .

Since Imr is unimodular, then for any z ∈ I mr , the trace of adz is zero. This is
equivalent to

n∑

i=1

(ωr ([z, ei ], fi )+ωr (ei , [z, fi ]))=0.

According to (8), this relation is equivalent to
n∑

i=1

ωr (z, [ei , fi ])=0

and hence to
n∑

i=1

[ei , fi ]=0.

Let ε be a volume form on P such that L�(ei )ε = L�( fi )ε = 0 for i = 1, . . . ,n. We
have

d(iπr ε)=d

(
n∑

i=1

i�(ei )∧�( fi )ε

)
=

=
n∑

i=1

(
i[�(ei ),�( fi )]ε − i�(ei )L�( fi )ε − i�( fi )L�(ei )ε

)=

= i�(
∑n

i=1[ei , fi ])ε =0.

This gives a proof of Theorem 1.1. 
�

2.3. PROOF OF THEOREM 1.2

Let P be a smooth manifold, G a Lie algebra with � :G −→X (P) a Lie algebras
morphism from G to the Lie algebra of vector fields and r ∈∧2G a solution of the
classical Yang–Baxter equation.

Choose a basis (u1, . . . ,un) of G and write r =∑
i, j ai j ui ∧u j . For α,β ∈�1(P),

we put

Dr
αβ =

∑

i, j

ai jα(Ui )LU j β,
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where Ui =�(ui ). One can check easily that this formula defines a contravariant
connection with respect to πr which depends only on r and � and does not
depend on the basis (u1, . . . ,un). One can also check that Dr is torsion-free. If
�(u) is a Killing vector field, for any u ∈ Imr, then Dr is the metric contravariant
connection associated to the metric and the Poisson tensor πr .

Let us compute the curvature of Dr and show that it vanishes identically.
There exists a basis (u1, . . . ,u p, v1, . . . , vp) of Imr such that r =∑p

i=1 ui ∧vi . Put
Ui =�(ui ) and Vi =�(vi ) for i =1, . . . , p. We have

Dr
αβ = Lπ#(α)β +

p∑

i=1

Ai (α,β)

where Ai (α,β) = β(Ui )d (α(Vi )) − β(Vi )d (α(Ui )) and π# is the anchor map asso-
ciated to πr . With this in mind, we get for any f, g, h ∈C∞(P),

K (d f,dg,dh)=
p∑

i=1

(
Ai (d f,d{g, h})− Ai (dg,d{ f, h}) +

+ Lπ#(d f ) Ai (dg,dh)− Lπ#(dg) Ai (d f,dh)− Ai (d{ f, g},dh)
)

+

+
p∑

i, j=1

(
A j (d f, Ai (dg,dh))− A j (dg, Ai (d f,dh)).

)

A straightforward computation gives

K (d f,dg,dh)=
p∑

i, j=1

{(
U j (g)[Ui , Vj ](h)−U j (h)[Ui , Vj ](g)+ Vj (g)[U j ,Ui ](h)−

−Vj (h) [U j ,Ui ](g)
)

d(Vi ( f ))+ (
U j (g)[Vj , Vi ](h) −

−U j (h)[Vj , Vi ](g)+ Vj (g)[Vi ,U j ](h)− Vj (h)[Vi ,U j ](g)
)×

×d(Ui ( f ))− (
U j ( f )[Ui , Vj ](h)−U j (h)[Ui , Vj ]( f )+

+Vj ( f )[U j ,Ui ](h) −Vj (h)[U j ,Ui ]( f )
)

d(Vi (g))−
− (

U j ( f )[Vj , Vi ](h)−U j (h)[Vj , Vi ]( f )+ Vj ( f )[Vi ,U j ](h) −
−Vj (h)[Vi ,U j ]( f )

)
d(Ui (g))+

+Ui (h)Vj (g)d
([U j , Vi ]( f )

)−Ui (h)Vj ( f )d
([U j , Vi ](g)

)+
+Ui (h)U j (g)d

([Vi , Vj ]( f )
)−Ui (h)U j ( f )d

([Vi , Vj ](g)
)+

+Vi (h)U j (g)d
([Vj ,Ui ]( f )

)− Vi (h)U j ( f )d
([Vj ,Ui ](g)

)+
+ Vi (h)Vj (g)d

([Ui ,U j ]( f )
)− Vi (h)Vj ( f )d

([Ui ,U j ](g)
)}

.

The vanishing of K is a consequence of the equation [r, r ]=0 which is equivalent
to (8). Note that ωr =∑p

i=1 u∗
i ∧v∗

i where (u∗
1, . . . ,u∗

p, v
∗
1 , . . . , v∗

p) is the dual basis
of (u1, . . . ,u p, v1, . . . , vp).
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Put

[ui ,u j ]=
p∑

k=1

(
Cuk

ui u j
uk +Cvk

ui u j
vk

)

and so on. One can see easily that (8) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cui
v j vk +C

u j
vkvi +Cuk

vi v j = 0,

Cvi
u j uk +C

v j
uk ui +Cvk

ui u j = 0,

Cui
u j uk −C

v j
ukvi −Cvk

vi u j = 0,

Cvk
vi v j −C

u j
ukvi −Cui

v j uk = 0.

∀i, j, k.

For i = 1, . . . , p, the coefficients of d(Vi ( f )) and d(Ui ( f )) in the expression of
K (d f,dg,dh) are, respectively,

p∑

j,k=1

(
Cuk

ui v j
−C

u j
ui vk +Cvi

vkv j

)
U j (g)Uk(h)+

(
Cvk

ui v j
−C

u j
uk ui +Cvi

v j uk

)
U j (g)Vk(h)+

+
(
−Cvk

ui v j
+C

u j
uk ui +Cvi

ukv j

)
U j (h)Vk(g)+

(
Cvk

u j ui
−C

v j
uk ui +Cvi

uk u j

)
Vj (g)Vk(h),

p∑

j,k=1

(
Cuk

v j vi
−C

u j
vkvi +Cui

vkv j

)
U j (g)Uk(h)+

(
Cvk

v j vi
−C

u j
vi uk +Cui

v j uk

)
U j (g)Vk(h)+

+
(
−Cvk

v j vi
+C

u j
vi uk +Cui

ukv j

)
U j (h)Vk(g)+

(
Cvk

vi u j
−C

v j
vi uk +Cui

uk u j

)
Vj (g)Vk(h).

Those coefficients vanish according to the relations above. Similarly, the coeffi-
cients of d(Vi (g)) and d(Ui (g) vanish also. This shows that K vanishes identically.

Suppose now that the isotropy subalgebras of the restriction of � to Imr are
trivial. This implies obviously that Dr is an F reg-connection and a 1-form β is
parallel with respect Dr if and only if L�(u)β =0 for all u ∈ Imr. For any parallel
1-form β, we have L�(u)dβ =0 and hence Dr dβ =0. According to Proposition 2.2,
this implies that the metacurvature of Dr vanishes identically, which achieves the
proof of Theorem 1.2. 
�

Remark 1. In Theorem 1.2, the assumption on the isotropy subalgebras can-
not be dropped. For instance, consider the two-dimensional Lie algebra G =
Vect{e1, e2} with [e1, e2]= e1 and the action � :G −→X (IR2) given by

�(e1)= ∂

∂x
and �(e2)= x

∂

∂x
.

For r = e1 ∧ e2, πr is the trivial Poisson tensor and

Dr
αβ =α

(
∂

∂x

)
β

(
∂

∂x

)
dx .
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A differential 1-form γ is parallel with respect Dr if and only if γ = f (x, y)dy.
In this case, for any α and β, we have

Dr
αDr

βdγ =α

(
∂

∂x

)
β

(
∂

∂x

)
∂ f

∂x
dx ∧dy.

This shows that the metacurvature does not vanish.
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