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Abstract. Let M be a smooth manifold and Γ a group acting on M by
diffeomorphisms; which means that there is a group morphism ρ : Γ → Diff(M)
from Γ to the group of diffeomorphisms of M . For any such action we associate
a cohomology H(Ω(M)Γ) which we call the cohomology of Γ -coinvariant forms.
This is the cohomology of the graded vector space generated by the differentiable
forms ω − ρ(γ)∗ω where ω is a differential form with compact support and
γ ∈ Γ . The present paper is an introduction to the study of this cohomology.
More precisely, we study the relations between this cohomology, the de Rham
cohomology and the cohomology of invariant forms H(Ω(M)Γ) in the case of
isometric actions on compact Riemannian oriented manifolds and in the case of
properly discontinuous actions on manifolds.
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1. Introduction and statement of the main results

We start by fixing a notation which will be used along this paper. If V is a
real vector space, Γ a group and Γ × V −→ V , (γ, v) 7→ γ.v an action of Γ
on V by linear isomorphisms, we denote by V Γ the vector subspace of invariant
vectors and VΓ the vector subspace of coinvariant vectors, i.e., VΓ = Span{v−γ.v ,
v ∈ V, γ ∈ Γ} .

Let M be a connected differentiable manifold of dimension n and Γ a
group. We denote by Diff(M) the group of diffeomorphisms of M . An action
of Γ on M is a group morphism ρ : Γ → Diff(M) . The orbit space M/Γ will
be endowed with its quotient topology and we denote by π : M −→ M/Γ the
canonical projection. For each 0 ≤ r ≤ n , Ωr(M) is the space of r -differential
forms on M and Ωr

c(M) the space of r -differential forms with compact support,
where Ω0

c(M) = C∞
c (M) . For ω ∈ Ωr

c(M) and γ ∈ Γ , we denote by γ∗ω
the pull-back of ω by the diffeomorphism ρ(γ) . The map (γ, ω) −→ (γ−1)∗ω
defines an action of Γ both on Ωr(M) and Ωr

c(M) . The graded vector spaces
Ω(M)Γ := ⊕rΩ

r(M)Γ and Ωc(M)Γ := ⊕rΩ
r
c(M)Γ are stable under the usual de

Rham differential operator d and hence define two cohomologies H(Ω(M)Γ) and
H(Ωc(M)Γ) . The cohomology H(Ω(M)Γ) known as the cohomology of invariant
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forms has been studied by many authors (for instance see [10, 11, 16, 19]), however
the cohomology H(Ωc(M)Γ) , we will call cohomology of Γ-coinvariant forms, is
to our knowledge new and constitutes the main object of this paper. The idea
behind the introduction of this cohomology lies in the paper [2] where the first
author introduced the cohomology of G -divergence forms and used it to study
integrability conditions of an action of Lie algebra G on a manifold to a proper
action of a connected Lie group. Our cohomology can be seen, in a broad sense, as
a sort of generalization of this idea in order to include actions of discrete groups
or even actions of groups that are not necessarily Lie groups.

We shall denote also by H(M) (resp. Hc(M)) the de Rham cohomology of
M (resp. the de Rham cohomology of differential forms with compact support).
The group Γ acts linearly on H(M) and we call the elements of H(M)Γ invariant
classes and the elements of H(M)Γ coinvariant classes.

Throughout this paper a cohomology class in H(M) will be denoted by [ω] ,
a cohomology class in H(Ω(M)Γ) by [ω]Γ and a cohomology class in H(Ωc(M)Γ)
by [ω]Γ .

In this article, we study in two situations the relations between the coho-
mologies Hc(M) , H(Ω(M)Γ) , H(Ωc(M)Γ) and H(M) . The first one is the case
when ρ(Γ) ⊂ Isom(M) where Isom(M) is the group of isometries of a Riemannian
metric on an oriented compact manifold M . Let G0 be the connected component
of the unity of Isom(M) . Then ρ(Γ) ∩ G0 is a normal subgroup of ρ(Γ) and the
quotient Γ1 := ρ(Γ)/ρ(Γ)∩G0 is a finite group. Since the cohomology is invariant
by homotopy, ρ(Γ) ∩ G0 acts trivially on H(M) and hence the action of Γ on
H(M) factors on an action of Γ1 on H(M) . Our first main result is the following.

Theorem 1.1. Let ρ : Γ → Isom(M) be an action by isometries of a group Γ
on a compact oriented manifold. Then, for all 0 ≤ p ≤ n, the following assertions
hold.

(1) Hp(M)Γ = Hp(M)Γ1, Hp(M)Γ = Hp(M)Γ1 and Hp(M) = Hp(M)Γ1⊕Hp(M)Γ1 ,

(2) The map Φ : Hp(Ω(M)Γ) ⊕ Hp(Ω(M)Γ) −→ Hp(M), ([ω]Γ + [η]Γ) 7→ [ω + η]
is an isomorphism,

Φ
(
Hp(Ω(M)Γ)

)
= Hp(M)Γ1 and Φ (Hp(Ω(M)Γ)) = Hp(M)Γ1 .

(3) If ρ(Γ) ⊂ G0 then H(M) is isomorphic to H(Ω(M)Γ).

The last assertion of this theorem is an immediate consequence of the second
one and, actually, has been proved by Élie Cartan (see [11]). One can also deduce
from Theorem 1.1 that the cohomology of a compact connected Lie group G is
isomorphic to the cohomology of its Lie algebra by taking M = G , Γ = G and
the action is by left translations.

When a finite group Γ acts on a manifold M there exists always on M an
invariant Riemannian metric. So actions by finite groups on compact connected
manifolds are particular cases of Theorem 1.1. The proof in this case is quite easy
and does not involve the invariant metric and we will give it in the beginning of
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Section 2. However, the proof in the general case needs more work and it will
be based on the following result which is an adaptation of the classical Hodge
theory to the case of group actions. Note that classical Hodge theory has been
used by many authors and for many purposes to study actions of Lie groups (see
for instance [5, 19]).

Theorem 1.2 (Hodge Decomposition Theorem of Ω(M)Γ and Ω(M)Γ ). Let
ρ : Γ → Isom(M) be an action by isometries of a group Γ on a compact oriented
manifold M . Then for all 0 ≤ p ≤ n, we have the following orthogonal direct sum
decompositions:

(1) Ωp(M)Γ = d(Ωp−1(M)Γ)
⊥
⊕ δ(Ωp+1(M)Γ)

⊥
⊕Hp(M)Γ,

(2) Ωp(M)Γ = d(Ωp−1(M)Γ)
⊥
⊕ δ(Ωp+1(M)Γ)

⊥
⊕Hp(M)Γ,

(3) Hp(M) = Hp(M)Γ
⊥
⊕Hp(M)Γ ,

where δ is the divergence operator and Hp(M)Γ is the space of Γ-invariant
harmonic p-forms and Hp(M)Γ is the space of Γ-coinvariant harmonic p-forms.

The second case in our study is the case where the action of Γ is properly
discontinuous and M is not necessarily compact.

A properly discontinuous action of a group Γ on a manifold M is an action
such that, for any compact K ⊂ M , the set ΓK = {γ ∈ Γ , γ.K∩K ̸= ∅} is finite.
This is equivalent to the map Γ×M ∋ (γ, x) 7−→ (γ.x, x) ∈ M×M being proper
when we endow Γ with the discrete topology. If M is a connected Riemannian
manifold, then every discrete subgroup of Isom(M) acts properly on M (see [14]).
When M is compact, an action ρ : Γ → Diff(M) is properly discontinuous if
and only if the group Γ is finite. For more details and reviews about properly
discontinuous actions, one can see [14, 15].

Suppose now that Γ acts properly discontinuously on M . We define an
average operator

m : Ωc(M) −→ Ω(M)Γ by m(ω) =
∑
γ∈Γ

γ∗ω.

It is easy to see that m is a well-defined linear map because for any x ∈ M
the set Γx = {γ ∈ Γ , γ.x ∈ supp ω} is finite. Moreover, m commutes with
the differential d and, for any ω ∈ Ωc(M) , the form m(ω) is a Γ-invariant and
has a Γ-compact support, which means that π(supp m(ω)) = (supp m(ω))/Γ
is compact. We denote Ω(M)ΓΓc the space of Γ-invariant forms on M with Γ-
compact support, this is a differential subalgebra of Ω(M) . If M/Γ is compact
then Ω(M)ΓΓc = Ω(M)Γ . Our second main result is the following theorem.

Theorem 1.3. Let ρ : Γ → Diff(M) be a properly discontinuous action. Then
the operator m : Ωc(M) −→ Ω(M)ΓΓc is surjective and kerm = Ωc(M)Γ . In other
words, we obtain a short exact sequence of graded differential vector spaces:

0 → Ωc(M)Γ
ι→ Ωc(M)

m→ Ω(M)ΓΓc → 0,
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which gives rise to a long exact sequence in cohomology :

· · · → Hp(Ωc(M)Γ)
H(ι)−→ Hp

c(M)
H(m)−→ Hp(Ω(M)ΓΓc)

δ−→ Hp+1(Ωc(M)Γ) → . . .

The connecting homomorphisms δ : Hp(Ω(M)ΓΓc) −→ Hp+1(Ωc(M)Γ) are given by
the formula

δ([ω]Γ) = [dϕ ∧ ω]Γ,

where ϕ ∈ C∞(M) is a cutoff function.

For the definition of a cutoff function see Lemma 3.1. Moreover, a cutoff
function satisfies

∑
γ∈Γ ϕ ◦ ρ(γ) = 1 and hence m(dϕ ∧ ω) = 0 which shows that

dϕ ∧ ω ∈ Ωp+1
c (M)Γ and the expression of δ given in the theorem makes sense.

The paper is organized as follows. In Section 2, we prove Theorems 1.1 and
1.2. We devote Section 3 to a proof of Theorem 1.3 and some of its applications.

2. Actions by isometries on compact manifolds

This section is devoted to proving Theorem 1.1 and 1.2. The proof of Theorem
1.1 is based on Theorem 1.2. However, in the case when Γ is finite we can prove
Theorem 1.1 straight forwardly. This proof presents some interest and we will give
it first.

Let us start with a general remark. Let V be a real vector space and
Γ × V −→ V , (γ, v) 7→ γ.v an action of a finite group Γ on V by linear
isomorphisms. The average operator is the linear map m : V −→ V Γ given by

m(v) =
1

|Γ|
∑
γ∈Γ

γ.v, (1)

where |Γ| is the cardinal of Γ . It is an easy task to check that

v −m(v) =
∑
γ∈Γ

(
v

|Γ|
− γ.(

v

|Γ|
)). (2)

This formula shows that

kerm = VΓ and V = V Γ ⊕ VΓ. (3)

A non trivial and analogous splitting to (3) has been obtained in a more general
setting involving linear actions of compact Lie groups on some classes of topological
vector spaces (see [12, Theorem 3.36, pp. 76]).

Remark 2.1. Note that if Γ is a group (not necessarily finite) acting by
isometries on a real pre-Hilbert space (V, ⟨ , ⟩) then V Γ = (VΓ)

⊥ and hence if
dimV is finite then V = V Γ ⊕ VΓ .
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Proof of Theorem 1.1 in the case where Γ is finite.
According to (3), for any r ∈ {0, . . . , n} ,

Ωr(M) = Ωr(M)Γ ⊕ Ωr(M)Γ and Hr(M) = Hr(M)Γ ⊕ Hr(M)Γ. (4)

An immediate consequence of the first relation is that Φ is an isomorphism.
Moreover, it is obvious that Φ(Hr(Ω(M)Γ)) ⊂ Hr(M)Γ . Conversely, let [ω] ∈
Hr(M)Γ . Then ω is closed and, for any γ ∈ Γ , there exists αγ such that γ∗ω =

ω+dαγ . It follows then that m(ω) = ω+d
(

1
|Γ|
∑

αγ
)

and hence [ω] = Φ([m(ω)]Γ) .
Thus Φ(Hr(Ω(M)Γ)) = Hr(M)Γ . On the other hand, Hr(M)Γ ⊂ Φ(Hr(Ω(M)Γ)) .
Indeed, if [ω] ∈ Hr(M)Γ , then there exists a family (ωi) of closed forms and a
family (γi) of elements of Γ and a form α such that

ω =
∑
i

(ωi − γ∗
i ωi) + dα.

This shows that [ω] = Φ([
∑

i (ωi − γ∗ωi)]Γ) . Now since M is compact, its cohomol-
ogy is finite dimensional. Then from the second relation in (4) and the fact that
Φ(Hr(Ω(M)Γ)) = Hr(M)Γ , we deduce that dimHr(M)Γ = dimΦ(Hr(Ω(M)Γ))
which completes the proof of Theorem 1.1 in the case when Γ is finite.
We approach now the proof of Theorem 1.2 by recalling the main results of Hodge
theory of harmonic forms on a Riemannian manifold M . For more details see [20].
We suppose that M is a connected compact oriented Riemannian manifold of
dimension n . We denote by ⟨ , ⟩ the Riemannian metric and by µ the Riemannian
volume form associated to it. For every p ∈ {0, . . . , n} , let ΛpT ∗M be the
vector bundle of alternating covariant p-tensors on M . The Riemannian metric
induces a Riemannian metric on the vector bundle ΛpT ∗M → M denoted by the
same notation. For any p ∈ N , we consider the ∗-operator which is the bundle
isomorphism ∗ : ΛpT ∗M −→ Λn−pT ∗M uniquely determined by the relation

α ∧ ∗β = ⟨α, β⟩µ, α, β ∈ ΛpT ∗M.

The star operator extends to a mapping ∗ : Ωp(M) → Ωn−p(M) called the Hodge
star operator. The codifferential operator on p-forms δ : Ωp(M) −→ Ωp−1(M) is
defined by δω = (−1)n(p+1)+1 ∗ d ∗ ω and the Laplace-Beltrami operator is defined
as ∆: Ωp(M) −→ Ωp(M) by ∆ = δd + dδ . A differential form ω is said to be
harmonic if ∆ω = 0 . We denote by Hp(M) the space of p-harmonic forms with

H(M) :=
n⊕

p=0

Hp(M).

The last major definition is the scalar product (·, ·)M : Ωp(M) × Ωp(M) −→ R
given by

(α, β)M =

∫
M

α ∧ ∗β.

We extend ( ., .)M to an inner product on Ω∗(M) by declaring Ωp(M) and Ωq(M)
to be orthogonal for p ̸= q . We denote the corresponding norm by ||ω|| . There
are the main properties of these operators:
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(i) The Laplace-Beltrami ∆ and Hodge star operator commute : ∗∆ = ∆∗ .

(ii) The codifferential is the adjoint of the exterior derivative with respect to
(·, ·)M , i.e., for all α, β we have

(dα, β)M = (α, δβ)M .

(iii) The Laplace-Beltrami operator is self-adjoint (∆α, β)M = (α,∆β)M .

(iv) For every α ∈ Ω(M) , ∆α = 0 if and only if dα = 0 and δα = 0 .

The main result in this theory is the following theorem.

Theorem 2.2 (Hodge Decomposition Theorem). For all 0 ≤ p ≤ n, Hp(M) is
finite dimensional and we have the following orthogonal direct sum decomposition
of Ωp(M):

Ωp(M) = d(Ωp−1(M))
⊥
⊕ δ(Ωp+1(M))

⊥
⊕Hp(M). (5)

Moreover, every de Rham cohomology class on a compact oriented Riemannian
manifold M has a unique harmonic representative. More precisely, the mapping
ȷ : Hp(M) −→ Hp(M) given by: ȷ(ω) = [ω] is an isomorphism of vector spaces.

Proof of Theorem 1.2.
Since ρ(Γ) ⊂ Isom(M) , for any γ ∈ Γ , γ∗ commutes with δ and ∆ , γ∗ is
an isometry of Ω(M) endowed with the scalar product (., .)M . Thus, for any
p ∈ {0, . . . , n} , Γ acts by isometry on Hp(M) . Since dimHp(M) is finite and
according to Remark 2.1, we have

Hp(M) = Hp(M)Γ ⊕Hp(M)Γ. (6)

This shows the third relation in the theorem.
Before proving the first and the second decomposition, note that Hp(M)Γ =
Hp(M) ∩ Ωp(M)Γ . Indeed, if α − γ∗α ∈ Hp(M) then, by virtue of (5), α =
dα1+δα2+α3 where α3 is harmonic. Hence α−γ∗α = d(α1−γ∗α1)+δ(α2−γ∗α2)+
(α3 − γ∗α3) . Since α3 − γ∗α3 is harmonic, we deduce that α − γ∗α = α3 − γ∗α3

and the result follows.
The first decomposition is quite easy. Indeed, let ω ∈ Ωp(M) and γ ∈ Γ . By
virtue of (5), ω = dα + δβ + η, where η ∈ Hp(M) . Then

ω − γ∗ω = d(α− γ∗α) + δ(β − γ∗β) + (η − γ∗η).

Since η − γ∗η is harmonic we get the first decomposition.
The second decomposition needs some work. Let ω ∈ Ωp(M)Γ and as previously
we write

ω = dα + δβ + η, (7)
where α ∈ Ωp−1(M) , β ∈ Ωp+1(M) and η ∈ Hp(M) . Since ω is Γ-invariant we
obtain that for any γ ∈ Γ ,

ω − γ∗ω = 0 = d(α− γ∗α) + δ(β − γ∗β) + η − γ∗η.
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which implies that dα = γ∗dα , δβ = γ∗δβ and η = γ∗η for any γ ∈ Γ . In
particular, η ∈ Hp(M)Γ . We shall now show that we can replace α and β by
Γ-invariant differential forms, more precisely we will show that α = α1 + α2 and
β = β1 + β2, where α1 ∈ Ωp−1(M)Γ , β1 ∈ Ωp+1(M)Γ , dα2 = 0 and δβ2 = 0 .
To do so, we write α = dµ + δν + λ and β = dµ̂ + δν̂ + λ̂ the respective Hodge
decompositions of α and β . Hence, for any γ ∈ Γ ,

d(α− γ∗α) = dδ(ν − γ∗ν) and δ(β − γ∗β) = δd(µ̂− γ∗µ̂).

This implies that dδ(ν − γ∗ν) = 0 and δd(µ̂− γ∗µ̂) = 0 . Therefore

(δ(ν − γ∗ν), δ(ν − γ∗ν))M = (ν − γ∗ν, dδ(ν − γ∗ν))M = 0.

Thus δν − γ∗δν = 0 for any γ ∈ Γ and hence δν ∈ Ωp−1(M)Γ . In the same way,
we can show that dµ̂ ∈ Ωp+1(M)Γ . We put α1 = δν , α2 = dµ + λ , β1 = dµ̂ and
β2 = δν̂ + λ̂ . By replacing in (7), we obtain

ω = d(α1 + α2) + δ(β1 + β2) + η = dα1 + δβ1 + η,

and we have α1 ∈ Ωp−1(M)Γ , β1 ∈ Ωp+1(M)Γ and η ∈ Hp(M)Γ . This completes
the proof.

Proof of Theorem 1.1.
The facts that Hp(M)Γ = Hp(M)Γ1 and Hp(M)Γ = Hp(M)Γ1 are obvious and the
decomposition Hp(M) = Hp(M)Γ1 ⊕Hp(M)Γ1 is a consequence of the fact that Γ1

is finite and (3). From the first and the second decomposition in Theorem 1.2, we
get that there is an isomorphism

Φ1 : Hp(Ω(M)Γ)⊕ Hp(Ω(M)Γ) −→ Hp(M)Γ ⊕Hp(M)Γ
(6)
= Hp(M),

and Φ = j ◦ Φ1 where j : Hp(M) −→ Hp(M) is the natural isomorphism. Since
j(Hp(M)Γ) = Hp(M)Γ and j(Hp(M)Γ) = Hp(M)Γ , we get that

Φ
(
Hp(Ω(M)Γ)

)
= Hp(M)Γ1 and Φ (Hp(Ωc(M)Γ)) = Hp(M)Γ1 .

If ρ(Γ) ⊂ G0 then Γ1 is trivial and we get that the cohomology of M is isomorphic
to the cohomology of Γ-invariant forms.

Remark 2.3. Under the hypothesis of Theorem 1.1, we have from Remark 2.1
that for any p ∈ {0, . . . , n} , (Ωp(M)Γ)

⊥ = Ωp(M)Γ and hence

(Ωp(M)Γ ⊕ Ωp(M)Γ)
⊥ = {0}.

However, we can not derive any useful conclusion which could permit us to avoid
the use of Hodge theory in the proof of the theorem.

3. Cohomology of properly discontinuous actions
In this section, we prove Theorem 1.3. We refer the reader to the introduction
where the definitions of properly discontinuous actions and the average operator
associated to these actions have been given.
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The main tool we will need is the following lemma about the existence of cutoff
functions for properly discontinuous actions. These functions were already dis-
cussed in Bourbaki [6, Proposition 8, p. 51] in the context of topological group
actions, and in the article of El Kacimi, Matsumoto and Moussa [8] in the case
when the projection M → M/Γ is a covering, our proof however does not presup-
pose that the action is free and is therefore available in a more general setting.

Lemma 3.1 (Cutoff functions). Let Γ be a discrete group acting properly discon-
tinuously on a manifold M . Then there exists a C∞ positive function ϕ : M −→ R
such that for any compact B ⊂ M/Γ, supp(ϕ)∩π−1(B) is compact. Furthermore,
we have ∑

γ∈Γ

ϕ ◦ γ = 1. (8)

Proof. Let (Vn)n∈N be a locally finite covering of M/Γ by relatively compact
open sets. We claim that there exists a locally finite covering (Wn)n of M/Γ
such that Wn is relatively compact and V n ⊂ Wn . Indeed, denote by J1 = {i ∈
N, V 1 ∩ Vi ̸= ∅} . Since V 1 is compact and (Vn)n is a locally finite cover of M/Γ ,
we obtain that J1 is finite and moreover

V 1 ⊂
∪
j∈J1

Vj and V 1 ∩
∪
j /∈J1

Vj = ∅.

There exists then a relatively compact open set W1 such that V 1 ⊂ W1 and

W1 ⊂
∪
j∈J1

Vj and W1 ∩
∪
j /∈J1

Vj = ∅.

Hence, the family F1 = {W1} ∪ {Vj, j ≥ 2} is a locally finite cover of M/Γ by
relatively compact open sets. Repeating this process on the family F1 , we prove
by induction our claim.

Furthermore, for all n ∈ N , there exists two relatively compact open sets
Un and On of M satisfying π(Un) = Vn , π(On) = Wn and Un ⊂ On . Indeed, we
start by taking a relatively compact open set Ôn such that π(Ôn) = Wn and Ûn

a relatively compact open set of M such that π(Ûn) = Vn . Since Vn ⊂ Wn then
Ûn ⊂

∪
γ∈Γ γÔn . We then put :

Un = Ôn ∩
∪
γ∈Γ

γ−1Ûn.

Thus Un is a relatively compact open set of M and it is clear that π(Un) ⊂ Vn .
Conversely, if x ∈ Vn , then there exists a ∈ Ûn such that π(a) = x . Since Ûn ⊂∪

γ∈Γ γÔn , there exists γ ∈ Γ such that a ∈ γÔn and hence γ−1a ∈ γ−1Ûn ∩ Ôn ,
moreover π(γ−1a) = x . Thus, we obtain that x ∈ π(Un) which means that
π(Un) = Vn . Now denote {γn

1 , . . . , γ
n
rn} = {γ ∈ Γ, Un ∩ γÔn ̸= ∅} . Since

V n ⊂ Wn , then Un ⊂
∪

γ∈Γ γÔn . We deduce that

Un ⊂
rn∪
i=1

γÔn := On.
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To summarize, On is a relatively compact open set of M satisfying π(On) = Wn

and Un ⊂ On .
After this tedious construction, we can begin the proof of the lemma. Define for
all n ∈ N the function gn ∈ C∞

c (M) satisfying
(1) 0 ≤ gn ≤ 1 et supp(gn) ⊂ On ,
(2) gn = 1 on Un .
Put g =

∑
n∈N gn . Then g is well-defined, positive and of class C∞ on M . Indeed,

let U be a relatively compact open set on M and set J = {n ∈ N, U ∩ On ̸= ∅}.
Since (Wn)n∈N is a locally finite cover of M/Γ , then (On)n∈N is a locally finite
cover of M and thus the set J is finite. Hence

g|U =
∑
j∈J

gj |U ∈ C∞(U).

This shows that g is well defined and of class C∞ . Let us next consider a compact
set B de M/Γ and put I0 = {n ∈ N, π−1(B)∩On ̸= ∅} . Since (Wn)n is a locally
finite cover of M/Γ and π(On) = Wn , we have

I0 ⊂ {n ∈ N, π−1(B) ∩ π−1(Wn) ̸= ∅} = {n ∈ N, B ∩Wn ̸= ∅} which is finite.

Thus π−1(B)∩ supp(g) ⊂ π−1(B)∩
∪

n∈NOn = π−1(B)∩
∪

i∈I0 Oi . Since
∪

i∈I0 Oi

is relatively compact, we obtain that π−1(B)∩supp(g) is compact for any compact
B in M/Γ . Next let x ∈ M , there exists then n ∈ N such that π(x) ∈ Vn . This
means that there is a γ ∈ Γ such that γx ∈ Un and thus g(γx) > 0 . Hence∑

γ∈Γ g(γx) > 0 for all x ∈ M . Finally, we put

ϕ =
g∑

γ∈Γ g ◦ γ
.

This gives that supp(ϕ) = supp(g) and
∑

γ∈Γ ϕ ◦ γ = 1 . This ends the proof.

Remark 3.2. When M/Γ is compact, the cutoff function ϕ in Lemma 3.1 has
a compact support.

Proof of Theorem 1.3.
We start by showing that m is onto and kerm = Ωc(M)Γ . Let η ∈ Ω(M)ΓΓc and
choose a cutoff function ϕ ∈ C∞(M) as in Lemma 3.1. The set K = π(supp η)
is compact and since supp(η) is Γ-invariant then supp(η) = π−1(K) . It follows
from the properties of ϕ that ω = ϕη has compact support in M since supp ω ⊂
supp ϕ ∩ π−1(K) which is compact. Moreover,

m(ω) =
∑
γ∈Γ

γ∗ω =
∑
γ∈Γ

γ∗(ϕη) =

(∑
γ∈Γ

γ∗ϕ

)
η = η.

This shows that m is onto. On the other hand, for any α ∈ Γ and any ω ∈ Ωc(M) ,
we have

m(ω − α∗ω) =
∑
γ∈Γ

γ∗ω −
∑
γ∈Γ

γ∗α∗ω =
∑
γ∈Γ

γ∗ω −
∑
γ∈Γ

γ∗ω = 0.
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Hence Ωc(M)Γ ⊂ ker(m) . Conversely, let ω ∈ ker(m) . Put K0 = supp ω and for
all γ ∈ Γ

ϕγ = ϕ ◦ ρ(γ) and ωγ = ϕγω − (γ−1)∗(ϕγω) = ϕγω − ϕ(γ−1)∗ω.

It is clear that, for all γ ∈ Γ , ωγ ∈ Ω∗
c(M)Γ . Put Γω = {γ ∈ Γ : ωγ ̸= 0} . We

claim that Γω is finite. Indeed, π(K0) is a compact set contained in M/Γ and
then K1 = supp ϕ ∩ π−1(π(K0)) =

∪
γ∈Γ(supp ϕ ∩ γK0) is a compact set in M .

Since the action of Γ is properly discontinuous and

A = {γ ∈ Γ, K1 ∩ (γK0) ̸= ∅} ⊂ {γ ∈ Γ, (K1 ∪K0) ∩ (γ(K1 ∪K0)) ̸= ∅},

it follows that A is finite. Moreover, A = {γ ∈ Γ, supp ϕ ∩ γK0 ̸= ∅} . Hence, if
γ ∈ Γ \ A , it follows that

supp(ϕγω) ⊂ (γ−1supp ϕ) ∩ supp ω = γ−1(supp ϕ ∩ γsupp ω) = ∅.

Consequently ϕγω = 0 and thus ωγ = 0 for all γ ∈ Γ \ A . This shows the claim.
It follows that∑

γ∈Γω

ωγ =
∑
γ∈Γ

ωγ =
∑
γ∈Γ

ϕγω −
∑
γ∈Γ

ϕ(γ−1)∗ω

=

(∑
γ∈Γ

ϕγ

)
ω − ϕ

(∑
γ∈Γ

(γ−1)∗ω

)
= ω − ϕm(ω) = ω.

Thus ω =
∑

γ∈A ωγ ∈ Ωc(M)Γ and completes of the proof of ker(m) = Ωc(M)Γ .
Hence, we get a short exact sequence

0 → Ωc(M)Γ
ι→ Ωc(M)

m→ Ω(M)ΓΓc → 0.

The existence of a long exact sequence in cohomology is a consequence of a well-
known result.
Now, let ω ∈ Ωp(M)Γ be a closed form. From the expression of the connecting
homomorphism in the snake lemma we have δ([ω]) = [β]Γ where β = dα and
α ∈ Ωp

c(M) is such that m(α) = ω . We choose then α = ϕω , which gives
β = dϕ ∧ ω . This completes the proof of the theorem.

Before giving some corollaries to Theorem 1.3 and some illustrative examples we
start with some remarks on H0(Ωc(M)Γ) and H1(Ωc(M)Γ) in the case of properly
discontinuous actions.

Let ρ : Γ → Diff(M) be a properly discontinuous action.

1. Note first that H0(Ωc(M)Γ) = 0 . Indeed, if [f ]Γ ∈ H0(Ω∗
c(M)Γ) , then f is a

constant and
∑

γ∈Γ γ
∗f = 0 . If M is not compact, then f = 0 because it is

constant function with compact support. If M is compact, then Γ is finite
group and hence

∑
γ∈Γ γ

∗f = |Γ|f = 0 , that is f = 0 .

2. Suppose now that M/Γ is compact. Then for every cutoff function ϕ , we have
that ϕ has a compact support and m(ϕ) = 1 . Thus m(dϕ) = 0 and hence
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dϕ ∈ Ω1
c(M)Γ . So [dϕ]Γ defines a cohomology class in H1(Ωc(M)Γ) and one can

see easily that this class does not depend on the choice of ϕ . We denote this
class by θΓ . Obviously if H(ι) : H1(Ωc(M)Γ) → H1

c(M) is the natural map,
then H(ι)(θΓ) = 0 . Moreover, if M is non-compact, then θΓ ̸= 0 . Indeed,
if there exists a coinvariant function ξ with compact support and ϕ − ξ is
constant, one must have ϕ − ξ = 0 since ϕ − ξ is a constant function with
compact support in a non-compact manifold. Thus H1(Ωc(M)Γ) ̸= {0} and
H(ι) is not injective.

3. Suppose now that M/Γ is non-compact. In this case H(ι) is always injective.
Indeed, let ω ∈ Ωc(M)Γ be a closed form such that [ω] = 0 . Write ω = df
such that f ∈ C∞

c (M) . Since we have dm(f) = m(df) = m(ω) = 0 we
obtain that m(f) is a constant function with Γ-compact support. If m(f) ̸= 0
then supp m(f) = M and consequently supp m(f)/Γ = M/Γ which is
noncompact, this leads to a contradiction. Thus m(f) = 0 which is equivalent
to f ∈ C∞

c (M)Γ , hence [ω]Γ = 0 . We conclude that ι is injective.

The long exact sequence in Theorem 1.3 has an important consequence.

Corollary 3.3. Let M be a contractible manifold and ρ : Γ → Diff(M) be a pro-
perly discontinuous action with compact orbit space M/Γ. Then for any 1 ≤ p ≤ n,
we have

Hp(Ωc(M)Γ) ≃ Hp−1(Ω(M)Γ).

In particular, H1(Ωc(M)Γ) = Span{[θ]Γ}.

We end this paper by giving some examples which illustrates Theorem 1.3. These
examples show that, in contrast with the case studied in Theorem 1.1, for properly
discontinuous actions the cohomology Hc(M) could be trivial but the cohomologies
H(Ω(M)Γ) and H(Ω(M)Γ) can be interesting.

Example 3.4.
1. Nilmanifolds: A compact nilmanifold is the quotient of a simply connected
nilpotent Lie group G by a discrete subgroup Γ of G such that G/Γ is compact
( [18]) . The simplest example being the n-dimensional torus viewed as a quotient
of IRn by ZZn . The cohomology of Γ-invariant forms on G can naturally be
identified with the cohomology of G/Γ and a famous theorem of Nomizu ([17])
asserts that the cohomology of H(G/Γ) is isomorphic to H(g) the cohomology
of the Lie algebra g = Lie(G) . So we get from Corollary 3.3 that, for every
p ∈ {1, . . . , n} ,

Hp(Ω(G)Γ) ≃ Hp(g) and Hp(Ωc(G)Γ) ≃ Hp−1(g).

In the particular case of the usual action by translations of Zn on Rn , we obtain
dimHp(Ωc(IR

n)Zn) = Cp−1
n .

2. Riemann Surfaces: Let Σg be a connected compact Riemann surface of genus
g ≥ 2 . The fundamental group of Σg can be identified with a discrete subgroup
Γg of PSL(2, IR) = SL(2, IR)/{±I} so that the surface Σg is identified with the
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orbit space IH/Γg of the action of Γg on the Poincaré half-plane IH . This action
is given by

(A, z) 7−→ az + b

cz + d

for every z ∈ IH and
(

a b
c d

)
a matrix of SL(2, IR) representative A ∈ Γg .

The 2-cohomology space of Γg -coinvariant forms on IH is then isomorphic to the
1-cohomology space of Σg , this gives dim(H2(Ωc(IH)Γg) = 2g .

3. Compact Clifford-Klein forms: A homogeneous space G/H is said to have
a compact Clifford-Klein form if there exists a discrete subgroup Γ of G which
acts properly discontinuously on G/H , such that the quotient space Γ\G/H is
compact. The double coset space Γ\G/H is then called a compact Clifford-Klein
form. Compact Clifford-Klein forms have been studied by many authors (see [14]
for instance).

For every compact Clifford-Klein form Γ\G/H , by virtue of Theorem 1.3,
we have a long exact sequence in cohomology:

· · · → Hp(Ωc(G/H)Γ)
H(ι)−→ Hp

c(G/H)
H(m)−→ Hp(Ω(G/H)Γ)

δ−→ Hp+1(Ωc(G/H)Γ) → . . .

In the particular case where H is a maximal compact subgroup of a connected
Lie group G , the manifold G/H is then a contractible, which leads to:

Hp(Ωc(G/H)Γ) ≃ Hp−1(Ω(G/H)Γ)

and when the action of Γ on G/H is free, we have Hp(Ωc(G/H)Γ) ≃ Hp−1(Γ\G/H).
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