On flat pseudo-Euclidean nilpotent Lie algebras
Mohamed Boucetta ${ }^{\text {a }}$, Hicham Lebzioui ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Université Cadi-Ayyad, Faculté des sciences et techniques, B.P. 549, Marrakech, Maroc
b Université Sultan Moulay Slimane, École Supérieure de Technologie-Khénifra, B.P. 170, Khénifra, Maroc

A R T I C L E I N F O

Article history:

Received 18 November 2017
Available online 1 August 2019
Communicated by Alberto Elduque

MSC:

17B60
17B30
17B10
53C50
Keywords:
Nilpotent Lie algebras
Nilpotent Lie groups
Flat left-invariant metrics
Double extension

A B S T R A C T

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate symmetric bilinear form and a left symmetric product whose the commutator is the Lie bracket and such that the left multiplications are skew-symmetric. We show that the center of a flat pseudo-Euclidean nilpotent Lie algebra of signature $(2, n-2)$ must be degenerate and all flat pseudo-Euclidean nilpotent Lie algebras of signature ($2, n-2$) can be obtained by using the double extension process from flat Lorentzian nilpotent Lie algebras. We show also that the center of a flat pseudo-Euclidean 2-step nilpotent Lie algebra is degenerate and all these Lie algebras are obtained by using a sequence of double extension from an abelian Lie algebra. In particular, we determine all flat pseudo-Euclidean 2 -step nilpotent Lie algebras of signature $(2, n-2)$. The paper contains also some examples in low dimension.
© 2019 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate symmetric bilinear form and a left symmetric product whose the commutator is the Lie bracket and such that the left multiplications are skew-symmetric. In geometrical terms, a flat pseudo-Euclidean Lie algebra is the Lie algebra of a Lie group with a left-invariant pseudo-Riemannian metric with vanishing curvature. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-$ Euclidean Lie algebra of dimension n. If the metric \langle,$\rangle is definite positive (resp. of$ signature $(1, n-1))$, then $(\mathfrak{g},\langle\rangle$,$) is called Euclidean (resp. Lorentzian). Flat pseudo-$ Euclidean Lie algebras have been studied mostly in the Euclidean and the Lorentzian cases. Let us enumerate some important results on flat pseudo-Euclidean Lie algebras:

1. In [6], Milnor showed that $(\mathfrak{g},\langle\rangle$,$) is a flat Euclidean Lie algebra if and only if \mathfrak{g}$ splits orthogonally as $\mathfrak{g}=\mathfrak{b} \oplus \mathfrak{u}$, where \mathfrak{u} is an abelian ideal, \mathfrak{b} is an abelian subalgebra, and ad_{b} is skew-symmetric for any $b \in \mathfrak{b}$. According to this theorem, a nilpotent (non-abelian) Lie algebra can not admit a flat Euclidean metric.
2. In [3], Aubert and Medina showed that all flat Lorentzian nilpotent Lie algebras are obtained by the double extension process from Euclidean abelian Lie algebras.
3. Guédiri showed in [5] that a flat Lorentzian 2-step nilpotent Lie algebra is a trivial central extension of the 3-dimensional Heisenberg Lie algebra \mathcal{H}_{3}. Recall that the Heisenberg Lie algebra $\mathcal{H}_{2 k+1}$, is defined as the vector space $\mathcal{H}_{2 k+1}=$ $\operatorname{span}\left\{z, x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ such that all brackets are zeros except $\left[x_{i}, y_{i}\right]=z$ for $1 \leq i \leq k$.
4. In [2], M. Ait Ben Haddou and the authors showed that all flat Lorentzian Lie algebras with degenerate center can be obtained by double extension process from flat Euclidean Lie algebras. In [4], the authors showed that all flat nonunimodular Lorentzian Lie algebras can be obtained by double extension process from flat Euclidean Lie algebras.

The study of flat pseudo-Euclidean Lie algebras of signature other than $(0, n)$ and $(1, n-1)$ is an open problem. In this paper, we study a part of this problem, more precisely, we study flat pseudo-Euclidean nilpotent Lie algebras of signature ($2, n-2$) and flat pseudo-Euclidean 2-step nilpotent Lie algebras of any signature. There are our main results:

1. In Theorem 3.1, we show that the center of a flat pseudo-Euclidean nilpotent Lie algebra of signature $(2, n-2)$ must be degenerate. From this theorem and Theorem 4.1 we deduce that all flat pseudo-Euclidean nilpotent Lie algebra of signature $(2, n-2)$ are obtained by the double extension process.
2. We give some general properties of flat pseudo-Euclidean 2-step nilpotent Lie algebras and we show that their center is degenerate. We show also that we can construct
all this Lie algebras by applying a sequence of double extension starting from a pseudo-Euclidean abelian Lie algebra.
3. We give all 2 -step nilpotent Lie algebras which can admit flat pseudo-Euclidean metrics of signature $(2, n-2)$ (Theorem 6.1 and Theorem 6.2). We will see that a class of 2-step nilpotent Lie algebras which can admit a flat pseudo-Euclidean metrics of signature $(2, n-2)$ is very rich, contrary to the Euclidean and the Lorentzian cases. As example, we show that any 6-dimensional 2-step nilpotent Lie algebra which is not a trivial central extension of a 5 -dimensional Heisenberg Lie algebra, admits such metric.

The paper is organized as follows. In section 2, we give some generalities on flat pseudo-Euclidean Lie algebras. In section 3 and section 4, we study flat pseudo-Euclidean metrics of signature $(2, n-2)$ on nilpotent Lie algebras. In section 5, we study flat pseudo-Euclidean 2-step nilpotent Lie algebra of any signature. In section 6, we give all flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature $(2, n-2)$. We end the paper by giving some examples.

2. Preliminaries

In this section, we give some general results on nilpotent Lie algebras and on flat pseudo-Euclidean nilpotent Lie algebras which will be crucial in the proofs of our main results.

Let us start with two useful lemmas. Recall that a pseudo-Euclidean vector space is a real finite dimensional vector space endowed with a non degenerate bilinear symmetric form.

Lemma 2.1. Let $(V,\langle\rangle$,$) be a pseudo-Euclidean vector space and A$ a skew-symmetric endomorphism satisfying $A^{2}=0$ and $\operatorname{dim} \operatorname{Im} A \leq 1$. Then $A=0$.

Proof. Suppose that $A \neq 0$. Then $\operatorname{Im} A$ is a totally isotropic vector space of dimension 1. This implies that ker A is an hyperplan which contains $\operatorname{Im} A$. Let e be a generator of $\operatorname{Im} A$ and choose an isotropic vector $\bar{e} \notin \operatorname{ker} A$ such that $\langle e, \bar{e}\rangle=1$. We have $V=\operatorname{ker} A \oplus \mathbb{R} \bar{e}$ and $A(\bar{e})=\alpha e$. Then $\alpha=\langle A(\bar{e}), \bar{e}\rangle=0$ which gives a contradiction and completes the proof.

Lemma 2.2. Let \mathfrak{g} be a nilpotent Lie algebra, \mathfrak{a} and \mathfrak{h}, respectively, a Lie subalgebra of codimension one and an ideal of codimension two. Then $[\mathfrak{g}, \mathfrak{g}]$ is contained in \mathfrak{a} and in \mathfrak{h}.

Proof. We have $\mathfrak{g} / \mathfrak{h}$ is a 2-dimensional nilpotent Lie algebra and hence must be abelian. This implies that $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{h}$. On the other hand, write $\mathfrak{g}=\mathfrak{a} \oplus \mathbb{R} y$. For any $x \in \mathfrak{a}$, we have

$$
[x, y]=a(x) y+u_{1}, \text { where } u_{1} \in \mathfrak{a} .
$$

Since \mathfrak{a} is a Lie subalgebra then, for any $n \in \mathbb{N}^{*}, \operatorname{ad}_{x}^{n}(y)=a(x)^{n} y+u_{n}$ with $u_{n} \in \mathfrak{a}$. Since ad_{x} is nilpotent then $a(x)=0$ and the result follows.

We pursue with some general properties of flat pseudo-Euclidean Lie algebras. A pseudo-Euclidean Lie algebra $(\mathfrak{g},\langle\rangle$,$) is a finite dimensional real Lie algebra \mathfrak{g}$ endowed with a non degenerate symmetric bilinear form \langle,$\rangle . We define a product$ $(u, v) \mapsto u . v$ on \mathfrak{g} called Levi-Civita product by Koszul's formula

$$
\begin{equation*}
2\langle u . v, w\rangle=\langle[u, v], w\rangle+\langle[w, u], v\rangle+\langle[w, v], u\rangle \tag{2.1}
\end{equation*}
$$

for any $u, v, w \in \mathfrak{g}$. We denote by $\mathrm{L}_{u}: \mathfrak{g} \longrightarrow \mathfrak{g}$ and $\mathrm{R}_{u}: \mathfrak{g} \longrightarrow \mathfrak{g}$, respectively, the left multiplication and the right multiplication by u given by $\mathrm{L}_{u} v=u . v$ and $\mathrm{R}_{u} v=v . u$. For any $u \in \mathfrak{g}, \mathrm{~L}_{u}$ is skew-symmetric with respect to \langle,$\rangle and \operatorname{ad}_{u}=\mathrm{L}_{u}-\mathrm{R}_{u}$, where $\operatorname{ad}_{u}: \mathfrak{g} \longrightarrow \mathfrak{g}$ is given by $\operatorname{ad}_{u} v=[u, v]$. We call $(\mathfrak{g},\langle\rangle$,$) flat pseudo-Euclidean Lie algebra$ if the Levi-Civita product is left symmetric, i.e., for any $u, v, w \in \mathfrak{g}$,

$$
\begin{equation*}
\operatorname{ass}(u, v, w)=\operatorname{ass}(v, u, w) \tag{2.2}
\end{equation*}
$$

where $\operatorname{ass}(u, v, w)=(u \cdot v) \cdot w-u \cdot(v \cdot w)$.
Remark 1. Let G be a Lie group, and μ a left-invariant pseudo-Riemannian metric on G. Let $\mathfrak{g}=\operatorname{Lie}(G)$ and $\langle\rangle=,\mu_{e}$. Then the curvature of (G, μ) vanishes if and only if $(\mathfrak{g},\langle\rangle$,$) is a flat pseudo-Euclidean Lie algebra.$

Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean Lie algebra. The condition (2.2) is also$ equivalent to one of the following relations:

$$
\begin{align*}
& \mathrm{L}_{[u, v]}=\left[\mathrm{L}_{u}, \mathrm{~L}_{v}\right], \tag{2.3}\\
& \mathrm{R}_{u . v}-\mathrm{R}_{v} \circ \mathrm{R}_{u}=\left[\mathrm{L}_{u}, \mathrm{R}_{v}\right], \tag{2.4}
\end{align*}
$$

for any $u, v \in \mathfrak{g}$. We denote by $Z(\mathfrak{g})=\left\{u \in \mathfrak{g}, \operatorname{ad}_{u}=0\right\}$ the center of \mathfrak{g}. For any $u, v \in Z(\mathfrak{g})$ and $a, b \in \mathfrak{g}$, one can deduce easily from (2.1)-(2.4) that

$$
\begin{equation*}
u . v=0, \mathrm{~L}_{u}=\mathrm{R}_{u}, \mathrm{~L}_{u} \circ \mathrm{~L}_{v}=0 \quad \text { and } \quad u \cdot(a . b)=a .(u . b) . \tag{2.5}
\end{equation*}
$$

Proposition 2.1. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra.$ If $Z(\mathfrak{g})=\left\{u \in \mathfrak{g}, \mathrm{~L}_{u}=\mathrm{R}_{u}=0\right\}$ then $Z(\mathfrak{g})$ is degenerate.

Proof. One can see easily that the orthogonal of the derived ideal of \mathfrak{g} is given by

$$
\begin{equation*}
[\mathfrak{g}, \mathfrak{g}]^{\perp}=\left\{u \in \mathfrak{g}, \mathrm{R}_{u}=\mathrm{R}_{u}^{*}\right\} . \tag{2.6}
\end{equation*}
$$

Then $Z(\mathfrak{g}) \subset[\mathfrak{g}, \mathfrak{g}]^{\perp}$ and hence $[\mathfrak{g}, \mathfrak{g}] \subset Z(\mathfrak{g})^{\perp}$. Since \mathfrak{g} is nilpotent non abelian then $\{0\} \neq[\mathfrak{g}, \mathfrak{g}] \cap Z(\mathfrak{g}) \subset Z(\mathfrak{g})^{\perp} \cap Z(\mathfrak{g})$. This shows that $Z(\mathfrak{g})$ is degenerate.

Proposition 2.2. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent Lie algebra. Then:$

1. If $(\mathfrak{g},\langle\rangle$,$) is Euclidean then \mathfrak{g}$ is abelian.
2. If $(\mathfrak{g},\langle\rangle$,$) is non abelian Lorentzian then Z(\mathfrak{g})$ is degenerate.

Proof. 1. According to (2.5), for any $u \in Z(\mathfrak{g}), \mathrm{L}_{u}$ is a nilpotent skew-symmetric endomorphism and hence must vanishes. This gives the result, by virtue of Proposition 2.1.
2. This is a consequence of (2.5), Lemma 2.1 and Proposition 2.1.

Put $N(\mathfrak{g})=\bigcap_{u \in Z(\mathfrak{g})} \operatorname{ker} \mathrm{L}_{u}, \mathfrak{g}_{0}:=N(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and $\mathfrak{h}_{0}:=N(\mathfrak{g})^{\perp}$. These vector spaces and the following lemma which states their main properties will play a central role in this paper, namely, in the proof of Theorem 3.1.

Lemma 2.3. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of$ signature $(2, n-2)$ with $n \geq 4$. Then:

1. $N(\mathfrak{g}), \mathfrak{g}_{0}$ and \mathfrak{h}_{0} are left ideals for the Levi-Civita product, $\mathfrak{h}_{0} \subset \mathfrak{g}_{0}$, and \mathfrak{h}_{0} is totally isotropic with $\operatorname{dim} \mathfrak{h}_{0} \leq 2$.
2. If $Z(\mathfrak{g})$ is non degenerate then the restriction of \langle,$\rangle to Z(\mathfrak{g})$ is positive definite, $\operatorname{dim} \mathfrak{h}_{0}=2$ and $\operatorname{dim}(Z(\mathfrak{g}) \cap[\mathfrak{g}, \mathfrak{g}])=1$. Moreover, if z_{0} is a generator of $Z(\mathfrak{g}) \cap[\mathfrak{g}, \mathfrak{g}]$ with $\left\langle z_{0}, z_{0}\right\rangle=1$ then for any $u, v \in \mathfrak{g}$,

$$
\begin{equation*}
[u, v]=[u, v]_{1}-2\left\langle\mathrm{~L}_{z_{0}} u, v\right\rangle z_{0} \tag{2.7}
\end{equation*}
$$

where $[u, v]_{1} \in Z(\mathfrak{g})^{\perp}$.
Proof. 1. Note first that, for any $u \in \mathfrak{g}$, $\left(\operatorname{ker} L_{u}\right)^{\perp}=\operatorname{ImL}_{u}$ and hence $\mathfrak{h}_{0}=$ $\sum_{u \in Z(\mathfrak{g})} \operatorname{ImL}_{u}$. From (2.5), we have clearly that $Z(\mathfrak{g}) \subset N(\mathfrak{g})$ and, for any $u, v \in$ $Z(\mathfrak{g}), \operatorname{ImL}_{u} \subset \operatorname{ker} \mathrm{~L}_{v}$. Thus $\mathfrak{h}_{0} \subset \mathfrak{g}_{0}$. This implies that \mathfrak{h}_{0} is totally isotropic and since the signature is $(2, n-2)$ one must have $\operatorname{dim} \mathfrak{h}_{0} \leq 2$. One can deduce easily from the third relation in (2.5) that $N(\mathfrak{g})$ is a left ideal. This implies, since the left multiplication are skew-symmetric that \mathfrak{h}_{0} and \mathfrak{g}_{0} are also left ideals.
2. Suppose now that $Z(\mathfrak{g})$ is non degenerate. If $\operatorname{dim} \mathfrak{h}_{0} \leq 1$ then, according to Lemma 2.1, $\mathrm{L}_{u}=0$ for any $u \in Z(\mathfrak{g})$ and hence, by virtue of Proposition 2.1, $Z(\mathfrak{g})$ is degenerate. So we must have $\operatorname{dim} \mathfrak{h}_{0}=2$ and the restriction of \langle,$\rangle to Z(\mathfrak{g})^{\perp}$ is of signature $\left(2, \operatorname{dim} Z(\mathfrak{g})^{\perp}-2\right)$ which implies that the restriction of \langle,$\rangle to Z(\mathfrak{g})$ is definite positive. On the other hand, according to what above we can choose two vectors $\left(\bar{e}_{1}, \bar{e}_{2}\right)$ of $Z(\mathfrak{g})^{\perp}$ such that $Z(\mathfrak{g})^{\perp}=\mathfrak{g}_{0} \oplus \operatorname{Span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$. So,

$$
[\mathfrak{g}, \mathfrak{g}]=\left[Z(\mathfrak{g})^{\perp}, Z(\mathfrak{g})^{\perp}\right]=\mathbb{R}\left[\bar{e}_{1}, \bar{e}_{2}\right]+\left[\bar{e}_{1}, \mathfrak{g}_{0}\right]+\left[\bar{e}_{2}, \mathfrak{g}_{0}\right]+\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]
$$

We have that \mathfrak{g}_{0} is a left ideal for the Levi-Civita product and for any $a \in \mathfrak{g}_{0}, b \in \mathfrak{g}$ and $u \in Z(\mathfrak{g})$,

$$
\langle a . b, u\rangle=-\langle b, a . u\rangle=-\langle b, u \cdot a\rangle=0
$$

and hence $\mathfrak{g}_{0} \cdot \mathfrak{g} \subset Z(\mathfrak{g})^{\perp}$. This implies that $\left[\bar{e}_{1}, \mathfrak{g}_{0}\right]+\left[\bar{e}_{2}, \mathfrak{g}_{0}\right]+\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right] \subset Z(\mathfrak{g})^{\perp}$. Moreover, $\left[\bar{e}_{1}, \bar{e}_{2}\right]=z+v_{0}$, where $z \in Z(\mathfrak{g}), z \neq 0$ since $Z(\mathfrak{g}) \cap[\mathfrak{g}, \mathfrak{g}] \neq 0$ and $v_{0} \in Z(\mathfrak{g})^{\perp}$. So $[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} z \oplus F$ where F is a vector subspace of $Z(\mathfrak{g})^{\perp}$. From this relation, we can deduce that $Z(\mathfrak{g}) \cap[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} z$ and (2.7) follows immediately.

3. The center of a flat pseudo-Euclidean nilpotent Lie algebra of signature ($2, n-2$) is degenerate

The purpose of this section is to prove the following theorem.
Theorem 3.1. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra$ of signature $(2, n-2)$ with $n \geq 4$. Then $Z(\mathfrak{g})$ is degenerate.

Proof. We proceed by contradiction and we suppose that $Z(\mathfrak{g})$ is non degenerate, i.e., $\mathfrak{g}=Z(\mathfrak{g}) \oplus Z(\mathfrak{g})^{\perp}$. As in Lemma 2.3, we consider $\mathfrak{g}_{0}=\left\{v \in Z(\mathfrak{g})^{\perp} / L_{u} v=0, \forall u \in Z(\mathfrak{g})\right\}$ and \mathfrak{h}_{0} its orthogonal in $Z(\mathfrak{g})^{\perp}$. We have both \mathfrak{h}_{0} and \mathfrak{g}_{0} are left ideals for the Levi-Civita product, $\mathfrak{h}_{0} \subset \mathfrak{g}_{0}$ and \mathfrak{h}_{0} is totally isotropic of dimension 2 . Moreover, if z_{0} is a generator of $Z(\mathfrak{g}) \cap[\mathfrak{g}, \mathfrak{g}]$ such that $\left\langle z_{0}, z_{0}\right\rangle=1$ then, for any $u, v \in \mathfrak{g}$,

$$
\begin{equation*}
[u, v]=[u, v]_{1}-2\left\langle\mathrm{~L}_{z_{0}} u, v\right\rangle z_{0} \tag{3.1}
\end{equation*}
$$

where $[u, v]_{1} \in Z(\mathfrak{g})^{\perp}$. This relation shows that $\mathrm{L}_{z_{0}} \neq 0$ and since $\mathrm{L}_{z_{0}}^{2}=0$ and $\operatorname{ImL}_{z_{0}} \subset$ \mathfrak{h}_{0}, by virtue of Lemma 2.1, $\operatorname{ImL}_{z_{0}}=\mathfrak{h}_{0}$ and $\operatorname{ker} \mathrm{L}_{z_{0}}=Z(\mathfrak{g}) \oplus \mathfrak{g}_{0}$. Moreover, from (3.1), one can check easily that $[,]_{1}$ satisfies Jacobi identity and $\left(Z(\mathfrak{g})^{\perp},[,]_{1}\right)$ becomes a nilpotent Lie algebra. We denote by o the Levi-Civita product of $\left(Z(\mathfrak{g})^{\perp},[,]_{1},\langle\rangle,\right)$ and we have obviously, for any $u, v \in Z(\mathfrak{g})^{\perp}$,

$$
\begin{equation*}
u . v=u \circ v-\left\langle\mathrm{L}_{z_{0}} u, v\right\rangle z_{0} . \tag{3.2}
\end{equation*}
$$

Let $C(\mathfrak{g})$ denote the center of $\left(Z(\mathfrak{g})^{\perp},[,]_{1}\right)$. We have $C(\mathfrak{g}) \neq 0$ and $C(\mathfrak{g}) \cap \mathfrak{g}_{0}=\{0\}$. Indeed, if $u \in C(\mathfrak{g}) \cap \mathfrak{g}_{0}$, then for any $v \in Z(\mathfrak{g})^{\perp}$,

$$
[u, v]=[u, v]_{1}-2\left\langle\mathrm{~L}_{z_{0}} u, v\right\rangle z_{0}=0
$$

hence $u \in Z(\mathfrak{g})$ and then $u=0$. This implies that $1 \leq \operatorname{dim} C(\mathfrak{g}) \leq 2$ and for any $u \in C(\mathfrak{g}) \backslash\{0\}, z_{0} . u \neq 0$.

Let z be a non-null vector in $C(\mathfrak{g})$ then $z_{0} . z$ is a non-null vector in \mathfrak{h}_{0}. From (2.3) we get $\mathrm{L}_{z} \circ \mathrm{~L}_{z_{0}}=\mathrm{L}_{z_{0}} \circ \mathrm{~L}_{z}$ and by using (2.4) we have

$$
\mathrm{R}_{z . z_{0}}=\mathrm{R}_{z_{0}} \circ \mathrm{R}_{z}=\mathrm{L}_{z_{0}} \circ \mathrm{R}_{z}
$$

For any $u \in Z(\mathfrak{g})^{\perp}$, we have from (3.2) and the fact that $z \in C(\mathfrak{g})$,

$$
\mathrm{L}_{z} u=z \circ u-\left\langle z_{0} . z, u\right\rangle z_{0} \quad \text { and } \quad \mathrm{R}_{z} u=u \circ z+\left\langle z_{0} . z, u\right\rangle z_{0}=z \circ u+\left\langle z_{0} . z, u\right\rangle z_{0} .
$$

Thus $\mathrm{L}_{z} u=\mathrm{R}_{z} u-2\left\langle z_{0} . z, u\right\rangle z_{0}$. This relation is also true for $u \in Z(\mathfrak{g})$ since $z_{0} . u=0$ and hence $\mathrm{L}_{z}=\mathrm{R}_{z}+A_{z}$, where $\mathrm{A}_{z}=-2\left\langle z . z_{0},.\right\rangle z_{0}$. Since $\mathrm{L}_{z_{0}} \circ A_{z}=0$, we deduce that

$$
\begin{equation*}
\mathrm{R}_{z . z_{0}}=\mathrm{L}_{z_{0}} \circ \mathrm{R}_{z}=\mathrm{L}_{z_{0}} \circ\left(\mathrm{~L}_{z}-A_{z}\right)=\mathrm{L}_{z_{0}} \circ \mathrm{~L}_{z}=\mathrm{L}_{z} \circ \mathrm{~L}_{z_{0}} . \tag{3.3}
\end{equation*}
$$

This relation implies that $\mathrm{R}_{z . z_{0}}$ is symmetric and $\mathfrak{g}_{0} \oplus Z(\mathfrak{g}) \subset \operatorname{ker} \mathrm{R}_{z . z_{0}}$. From (3.2), we have $z . z=0$, and hence $\mathfrak{g}_{0} \oplus \mathbb{R} z \oplus Z(\mathfrak{g}) \subset \operatorname{ker} \mathrm{R}_{z . z_{0}}$. From the symmetry of $\mathrm{R}_{z . z_{0}}$ we deduce that $\operatorname{ImR}_{z . z_{0}}=\left(\operatorname{ker} \mathrm{R}_{z . z_{0}}\right)^{\perp}$ and finally $\operatorname{ImR}_{z . z_{0}} \subset\left(\mathfrak{g}_{0} \oplus \mathbb{R} z \oplus Z(\mathfrak{g})\right)^{\perp}=\mathbb{R} z . z_{0}$. So we can write, for any $u \in \mathfrak{g}$,

$$
\begin{equation*}
\mathrm{R}_{z \cdot z_{0}}(u)=a_{1}(u) z . z_{0}=\alpha\left\langle z \cdot z_{0}, u\right\rangle z \cdot z_{0}, \tag{3.4}
\end{equation*}
$$

where $a_{1} \in \mathfrak{g}^{*}$ and $\alpha \in \mathbb{R}$. We will show now that $\mathrm{R}_{z . z_{0}}=0$.
Put $e_{1}=z_{0} . z$. Since the orthogonal of z in $Z(\mathfrak{g})^{\perp}$ is different from the orthogonal of e_{1} in $Z(\mathfrak{g})^{\perp}$, we can choose $\bar{z} \in Z(\mathfrak{g})^{\perp}$ such that $\langle z, \bar{z}\rangle=0$ and $\left\langle e_{1}, \bar{z}\right\rangle=1$. We put $e_{2}=-z_{0} \cdot \bar{z}$. We have $\left\langle e_{2}, z\right\rangle=1, Z(\mathfrak{g})^{\perp}=\mathfrak{g}_{0} \oplus \operatorname{span}\{z, \bar{z}\}$ and $\left(e_{1}, e_{2}\right)$ is a basis of \mathfrak{h}_{0}. Now \mathfrak{h}_{0} is a 2-dimensional subalgebra of a nilpotent Lie algebra then it must be abelian and since $\mathfrak{h}_{0} \subset \operatorname{ker} \mathrm{R}_{e_{1}}$ we deduce that $e_{1} \cdot e_{1}=e_{1} \cdot e_{2}=e_{2} \cdot e_{1}=0$. Moreover, \mathfrak{h}_{0} is a left ideal and we can write, for any $u \in \mathfrak{g}$,

$$
u . e_{1}=a_{1}(u) e_{1} \quad \text { and } \quad u . e_{2}=a_{2}(u) e_{1}+b_{2}(u) e_{2} .
$$

From the relation $u .\left(z_{0} \cdot z\right)=z_{0} \cdot(u . z)$ shown in (2.5), we deduce that $a_{1}(u) z_{0} . z=z_{0} \cdot(u . z)$, $a_{1}(u) z-u . z \in \operatorname{ker} \mathrm{~L}_{z_{0}}=\mathfrak{h}_{0}^{\perp}$ and hence

$$
0=a_{1}(u)\left\langle z, e_{2}\right\rangle-\left\langle u . z, e_{2}\right\rangle=a_{1}(u)\left\langle z, e_{2}\right\rangle+\left\langle z, u . e_{2}\right\rangle=a_{1}(u)+b_{2}(u) .
$$

Thus $b_{2}=-a_{1}$. Using the fact that the curvature vanishes, we get

$$
\begin{aligned}
{[u, v] . e_{2} } & =u \cdot\left(v \cdot e_{2}\right)-v \cdot\left(u \cdot e_{2}\right) \\
& =u \cdot\left(a_{2}(v) e_{1}-a_{1}(v) e_{2}\right)-v \cdot\left(a_{2}(u) e_{1}-a_{1}(u) e_{2}\right) \\
& =2\left(a_{2}(v) a_{1}(u)-a_{1}(v) a_{2}(u)\right) e_{1} .
\end{aligned}
$$

Thus

$$
a_{2}([u, v])=2\left(a_{2}(v) a_{1}(u)-a_{1}(v) a_{2}(u)\right) .
$$

By taking $u=z$ and $v=\bar{z}$ in this relation and since $a_{2}\left(z_{0}\right)=0, a_{1}(z)=0$ and, by virtue of (3.1), $[z, \bar{z}]=-2 z_{0}$, we get $a_{2}(z) a_{1}(\bar{z})=0$. Now

$$
a_{1}(\bar{z}) e_{1}=\mathrm{R}_{e_{1}}(\bar{z}) \stackrel{(3.3)}{=} \mathrm{L}_{z} \circ \mathrm{~L}_{z_{0}}(\bar{z})=-z \cdot e_{2}=-a_{2}(z) e_{1}
$$

This relation and $a_{2}(z) a_{1}(\bar{z})=0$ imply that $\mathrm{R}_{e_{1}}(\bar{z})=0$. But $\mathfrak{g}_{0} \oplus \mathbb{R} z \oplus Z(\mathfrak{g}) \subset \operatorname{ker} \mathrm{R}_{e_{1}}$ so finally $\mathrm{R}_{e_{1}}=0$. To complete, we will show that $e_{1} \in Z(\mathfrak{g})$, i.e., $\mathrm{L}_{e_{1}}=\operatorname{ad}_{e_{1}}=0$ and we will get a contradiction.

Note first that $\mathrm{L}_{e_{1}}$ is nilpotent, $\mathrm{L}_{e_{1}}\left(\mathfrak{h}_{0}\right)=0$ and $\mathrm{L}_{e_{1}}\left(\mathfrak{g}_{0}\right) \subset \mathfrak{g}_{0}$. So $\mathrm{L}_{e_{1}}$ induces on the Euclidean vector space $\mathfrak{g}_{0} / \mathfrak{h}_{0}$ a skew-symmetric nilpotent endomorphism which must then vanish. So $\mathrm{L}_{e_{1}}\left(\mathfrak{g}_{0}\right) \subset \mathfrak{h}_{0}$. On the other hand, by virtue of (3.1), $e_{1} . z=\left[e_{1}, z\right]=0$. So for any $x \in \mathfrak{g}_{0}, e_{1} \cdot x=\left[e_{1}, x\right]=a(x) e_{1}+b(x) e_{2}$. This implies that $b(x)=\left\langle e_{1} \cdot x, z\right\rangle=$ $-\left\langle x, e_{1}, z\right\rangle=0$. But ad ${ }_{x}$ is nilpotent so $a(x)=0$ and we deduce that $\mathrm{L}_{e_{1}}\left(\mathfrak{g}_{0}\right)=0$. So far, we have shown that $\mathfrak{g}_{0} \oplus \mathbb{R} z \oplus Z(\mathfrak{g}) \subset \operatorname{ker} \mathrm{L}_{e_{1}}$ and hence its image has a dimension less or equal to 1 . Moreover, $\operatorname{ImL}_{e_{1}} \subset \mathfrak{h}_{0}$ and hence $L_{e_{1}}^{2}=0$ and we can conclude by using Lemma 2.1.

4. Flat pseudo-Euclidean nilpotent Lie algebras of signature (2, $n-2$) are obtained by the double extension process

In this section, based on Theorem 3.1, we will show that any flat pseudo-Euclidean nilpotent Lie algebra of signature $(2, n-2)$ can be obtained by the double extension process from a Lorentzian or an Euclidean flat nilpotent Lie algebra. To do so we need first to recall the double extension process introduced by Aubert and Medina [3]. Note that Propositions 3.1 and 3.2 in the paper [3] are essential in this process.

Let $\left(B,[,]_{0},\langle,\rangle_{0}\right)$ be a pseudo-Riemannian flat Lie algebra, $\xi, D: B \longrightarrow B$ two endomorphisms of $B, b_{0} \in B$ and $\mu \in \mathbb{R}$ such that:

1. ξ is a 1 -cocycle of $\left(B,[,]_{0}\right)$ with respect to the representation $\mathrm{L}: B \longrightarrow \operatorname{End}(B)$ defined by the left multiplication associated to the Levi-Civita product, i.e., for any $a, b \in B$,

$$
\begin{equation*}
\xi([a, b])=\mathrm{L}_{a} \xi(b)-\mathrm{L}_{b} \xi(a) \tag{4.1}
\end{equation*}
$$

2. $D-\xi$ is skew-symmetric with respect to \langle,\rangle_{0},

$$
\begin{equation*}
[D, \xi]=\xi^{2}-\mu \xi-\mathrm{R}_{b_{0}} \tag{4.2}
\end{equation*}
$$

and for any $a, b \in B$

$$
\begin{equation*}
a . \xi(b)-\xi(a . b)=D(a) . b+a . D(b)-D(a . b) . \tag{4.3}
\end{equation*}
$$

We call $\left(\xi, D, \mu, b_{0}\right)$ satisfying the two conditions above admissible.
Given $\left(\xi, D, \mu, b_{0}\right)$ admissible, we endow the vector space $\mathfrak{g}=\mathbb{R} e \oplus B \oplus \mathbb{R} \bar{e}$ with the inner product \langle,$\rangle which extends \langle,\rangle_{0}$, for which $\operatorname{span}\{e, \bar{e}\}$ and B are orthogonal, $\langle e, e\rangle=\langle\bar{e}, \bar{e}\rangle=0$ and $\langle e, \bar{e}\rangle=1$. We define also on \mathfrak{g} the bracket

$$
\begin{equation*}
[\bar{e}, e]=\mu e,[\bar{e}, a]=D(a)-\left\langle b_{0}, a\right\rangle_{0} e \quad \text { and } \quad[a, b]=[a, b]_{0}+\left\langle\left(\xi-\xi^{*}\right)(a), b\right\rangle_{0} e, \tag{4.4}
\end{equation*}
$$

where $a, b \in B$ and ξ^{*} is the adjoint of ξ with respect to \langle,\rangle_{0}. Then $(\mathfrak{g},[],,\langle\rangle$,$) is a$ flat pseudo-Euclidean Lie algebra called double extension of ($B,[,]_{0},\langle,\rangle_{0}$) according to $\left(\xi, D, \mu, b_{0}\right)$. Using this method, Aubert and Medina characterize a flat Lorentzian nilpotent Lie algebras. They show that $(\mathfrak{g},\langle\rangle$,$) is a flat Lorentzian nilpotent Lie algebra$ if and only if $(\mathfrak{g},\langle\rangle$,$) is a double extension of an Euclidean abelian Lie algebra according$ to $\mu=0, D=\xi$ and b_{0} where $D^{2}=0$.

Theorem 4.1. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of$ signature ($2, n-2$) with $n \geq 4$. Then, for any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}, \mathrm{L}_{e}=\mathrm{R}_{e}=0$. Moreover, $Z(\mathfrak{g})+Z(\mathfrak{g})^{\perp}$ is a two-sided ideal with respect to the Levi-Civita product.

Proof. Recall that $[\mathfrak{g}, \mathfrak{g}]^{\perp}=\left\{u \in \mathfrak{g}, \mathrm{R}_{u}=\mathrm{R}_{u}^{*}\right\}$, put $\mathfrak{a}=Z(\mathfrak{g})+Z(\mathfrak{g})^{\perp}$ and consider $N(\mathfrak{g})=\left\{v \in \mathfrak{g} / \mathrm{L}_{u} v=0, \forall u \in Z(\mathfrak{g})\right\}$ and \mathfrak{h}_{0} its orthogonal. We have seen in Lemma 2.3 that both $N(\mathfrak{g})$ and \mathfrak{h}_{0} are left ideals and \mathfrak{h}_{0} is totally isotropic. We have seen that if $\operatorname{dim} \mathfrak{h}_{0} \leq 1$ then $N(\mathfrak{g})=\mathfrak{g}$ and hence any vector $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ satisfies the conditions required. Suppose that $\operatorname{dim} \mathfrak{h}_{0}=2$. We claim that $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset \mathfrak{h}_{0}$. This is a consequence of the fact that $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset Z(\mathfrak{g}) \subset N(\mathfrak{g})$ and the fact that $N(\mathfrak{g}) / \mathfrak{h}_{0}$ is Euclidean. We distinguish two cases:

1. $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=\mathfrak{h}_{0}$ and hence $\mathfrak{a}=N(\mathfrak{g})$. We have that $\mathfrak{g} . N(\mathfrak{g}) \subset N(\mathfrak{g})$ and for any $u \in N(\mathfrak{g}), w \in \mathfrak{g}$ and $v \in \mathfrak{h}_{0}, v . u=u . v=0$ and hence $\langle u . w, v\rangle=0$. This implies that $N(\mathfrak{g})$ is an ideal for the Lie bracket and, according to Lemma 2.2, $\mathfrak{g}, \mathfrak{g}] \subset N(\mathfrak{g})$. We deduce that $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset[\mathfrak{g}, \mathfrak{g}]^{\perp}$ and hence for any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}, \mathrm{L}_{e}$ is both skew-symmetric and symmetric and hence $\mathrm{L}_{e}=\mathrm{R}_{e}=0$.
2. $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$. Since $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset \mathfrak{h}_{0}$, we have $N(\mathfrak{g}) \subset \mathfrak{a}$ and $\mathfrak{a}=N(\mathfrak{g}) \oplus \mathbb{R} y$. We have $\mathfrak{g} \cdot N(\mathfrak{g}) \subset \mathfrak{a}$ and for any $u \in N(\mathfrak{g}), w \in \mathfrak{g}$ and $v \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}, v \cdot u=u \cdot v=0$ and hence $\langle u . w, v\rangle=0$. Thus $N(\mathfrak{g}) \cdot \mathfrak{g} \subset \mathfrak{a}$. Moreover, for any $v \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$, $\langle y . y, v\rangle=0$ and then $y . y \in \mathfrak{a}$. In particular, $\mathfrak{a} \cdot \mathfrak{a} \subset \mathfrak{a}$ and hence \mathfrak{a} is a subalgebra. According to Lemma 2.2, $[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{a}$ and hence $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset[\mathfrak{g}, \mathfrak{g}]^{\perp}$. This implies that for any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}, \mathrm{L}_{e}=\mathrm{R}_{e}=0$ and \mathfrak{a} is a two-sided ideal.

Theorem 4.2. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean nilpotent non abelian Lie alge-$ bra of signature $(2, n-2)$ with $n \geq 4$. Then $(\mathfrak{g},\langle\rangle$,$) is a double extension of a flat$ Lorentzian nilpotent Lie algebra, according to $\mu=0, D, \xi$ and b_{0} where D is a nilpotent endomorphism.

Proof. Let e be a non-null vector in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and put $\mathrm{I}=\mathbb{R} e$. According to Theorem 4.1, I is a totally isotropic two-sided ideal with respect to the Levi-Civita product. Moreover, I^{\perp} is also a two sided ideal. Then, according to [3], ($\left.\mathfrak{g},\langle\rangle,\right)$ is a double extension of flat Lorentzian Lie algebra $\left(B,\langle,\rangle_{B}\right)$ with $\mu=0$. From (4.4) and the fact that
\mathfrak{g} is nilpotent we deduce that D is a nilpotent endomorphism, and B is a nilpotent Lie algebra.

Remark 2. According to [3], flat Lorentzian nilpotent Lie algebra are double extension of abelian Euclidean Lie algebras. Then flat pseudo-Euclidean nilpotent Lie algebras of signature $(2, n-2)$ are obtained by applying twice the double extension process, starting from abelian Euclidean Lie algebras.

Example 1. Let $(\mathfrak{g},\langle\rangle$,$) be a 4-dimensional flat pseudo-Euclidean nilpotent Lie alge-$ bras of signature $(2,2)$. According to Theorem 4.2, $(\mathfrak{g},\langle\rangle$,$) is a double extension of a$ 2-dimensional abelian Lorentzian Lie algebra $\left(B,\langle,\rangle_{B}\right)$ with $D^{2}=0$. The conditions (4.1)-(4.3) are equivalent to $[D, \xi]=\xi^{2}$ and $D-\xi$ is skew-symmetric, which implies that $D=\xi$. Then there exists a basis $\left\{e_{1}, e_{2}\right\}$ of B such that the matrix of D in this basis has the form

$$
\left(\begin{array}{cc}
0 & \alpha \\
0 & 0
\end{array}\right), \text { where } \alpha \in \mathbb{R}
$$

Let \langle,\rangle_{B} be any Lorentzian metric in B. Then according to (4.4), $\mathfrak{g}=\operatorname{span}\left\{\bar{e}, e, e_{1}, e_{2}\right\}$ with the non vanishing Lie brackets

$$
\left[\bar{e}, e_{1}\right]=\beta e,\left[\bar{e}, e_{2}\right]=\alpha e_{1}+\gamma e,\left[e_{1}, e_{2}\right]=\delta e, \text { where } \alpha, \beta, \gamma, \delta \in \mathbb{R}
$$

and the metric in \mathfrak{g} is an extension orthogonal of \langle,\rangle_{B} such that $\langle\bar{e}, \bar{e}\rangle=\langle e, e\rangle=0$ and $\langle\bar{e}, e\rangle=1$. It is easy to show that \mathfrak{g} is isomorphic to one of the following Lie algebras:

- \mathbb{R}^{4} : The 4-dimensional abelian Lie algebra (if $\alpha=\beta=\gamma=\delta=0$).
- $\mathcal{H}_{3} \oplus \mathbb{R}$: The trivial central extension of \mathcal{H}_{3} (if $\alpha=0$ and $(\beta, \gamma) \neq(0,0)$ or $\alpha \neq 0$ and $\beta=\delta=0$).
- The 4-dimensional filiform Lie algebra: $\left[\bar{e}, e_{1}\right]=e,\left[\bar{e}, e_{2}\right]=e_{1}$ (if $\alpha \neq 0$ and $(\beta, \delta) \neq$ $(0,0))$.

5. Flat pseudo-Euclidean 2-step nilpotent Lie algebras

A 2-step nilpotent Lie algebra is a non-abelian Lie algebra \mathfrak{g} which satisfies $[\mathfrak{g}, \mathfrak{g}] \subset$ $Z(\mathfrak{g})$. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. In [5], the$ author showed that if the metric \langle,$\rangle is Lorentzian, then \mathfrak{g}$ is a trivial central extension of \mathcal{H}_{3}, where \mathcal{H}_{3} is a 3 -dimensional Heisenberg Lie algebra. Let us studies some properties of $(\mathfrak{g},\langle\rangle$,$) in other signatures.$

We consider $N(\mathfrak{g})=\bigcap_{u \in Z(\mathfrak{g})} \operatorname{ker} \mathrm{L}_{u}$, and $\mathfrak{h}_{0}:=N(\mathfrak{g})^{\perp}$. According to Lemma 2.3, $\mathfrak{h}_{0} \subset N(\mathfrak{g})$. If $N(\mathfrak{g}) \neq \mathfrak{g}$, then $N(\mathfrak{g})$ is degenerate. On the other hand, for any $z \in Z(\mathfrak{g})$, $a \in N(\mathfrak{g})$ and $u \in \mathfrak{g}$ we have

$$
\langle u \cdot a, z\rangle=-\langle a, z \cdot u\rangle=\langle z . a, u\rangle=-\langle a . u, z\rangle=0 .
$$

This implies that $\mathfrak{g} . N(\mathfrak{g}) \subset Z(\mathfrak{g})^{\perp}$ and $N(\mathfrak{g}) \cdot \mathfrak{g} \subset Z(\mathfrak{g})^{\perp}$. Thus

$$
\begin{equation*}
[\mathfrak{g}, N(\mathfrak{g})] \subset Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \tag{5.1}
\end{equation*}
$$

Proposition 5.1. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra.$ Then

1. $Z(\mathfrak{g})$ is degenerate.
2. For any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}, \mathrm{L}_{e}=\mathrm{R}_{e}=0$.
3. For any $x, y \in Z(\mathfrak{g})^{\perp},\langle[x, y],[x, y]\rangle=0$.

Proof. 1. Suppose that $Z(\mathfrak{g})$ is non degenerate, i.e., $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=\{0\}$.

- If $\mathfrak{g}=N(\mathfrak{g})$ then according to (5.1), $[\mathfrak{g}, \mathfrak{g}]=0$ which is impossible.
- If $\mathfrak{g} \neq N(\mathfrak{g})$ then $[\mathfrak{g}, N(\mathfrak{g})]=0$ and hence $N(\mathfrak{g})=Z(\mathfrak{g})$ which is impossible since $N(\mathfrak{g})$ is degenerate.

2. Let $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Since $Z(\mathfrak{g})^{\perp} \subset[\mathfrak{g}, \mathfrak{g}]^{\perp}$, then according to (2.6), $\mathrm{L}_{e}=\mathrm{R}_{e}$ is both symmetric and skew-symmetric and hence must vanish.
3. According to (2.1), we have for any $x, y \in Z(\mathfrak{g})^{\perp} x . y=\frac{1}{2}[x, y]$. Using (2.3), we have $[x, y] \cdot x=x .(y \cdot x)-y \cdot(x \cdot x)$, then $[x, y] \cdot x=0$. In particular $\langle[x, y] \cdot x, y\rangle=0$. Since L_{x} is skew-symmetric, thus $\langle[x, y],[x, y]\rangle=0$.

Proposition 5.2. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra.$ Then $(\mathfrak{g},\langle\rangle$,$) is obtained by a sequence of double extension, starting from an abelian$ pseudo-Euclidean Lie algebra.

Proof. Let e be a non-null vector in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Since $\mathrm{L}_{e}=\mathrm{R}_{e}=0$, then $\mathrm{I}=\mathbb{R} e$ is a totally isotropic two sided ideal, and I^{\perp} is also a two sided ideal. Thus, $(\mathfrak{g},\langle\rangle$,$) is a double$ extension of a pseudo-Euclidean Lie algebra $\left(B_{1},\langle,\rangle_{1}\right)$. According to (4.4), B_{1} is either abelian or 2 -step nilpotent. If B_{1} is 2 -step nilpotent, then it's also a double extension of $\left(B_{2},\langle,\rangle_{2}\right)$. Since a 2 -step nilpotent Lie algebra can not admit a flat Euclidean metric, then there exists $k \in \mathbb{N}^{*}$ such that B_{k} is abelian.

Proposition 5.3. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of$ signature $(p, p+q)$. If $\operatorname{dim}\left(Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}\right)=p$ then $Z(\mathfrak{g})^{\perp}$ is abelian.

Proof. Let $\left\{e_{1}, \ldots, e_{p}\right\}$ be a basis of $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$, then we can write $Z(\mathfrak{g})=Z_{1} \oplus$ $\operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\}$ where $\left(Z_{1},\langle,\rangle_{z_{1} \times Z_{1}}\right)$ is euclidean. In Z_{1}^{\perp} we can choose a totally isotropic subspace $\operatorname{span}\left\{\bar{e}_{1}, \ldots, \bar{e}_{p}\right\}$ such that, $\left\langle e_{i}, \bar{e}_{j}\right\rangle=0$ for $i \neq j$, and $\left\langle e_{i}, \bar{e}_{i}\right\rangle=1$. Let B_{1} be the orthogonal of $Z_{1} \oplus \operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\} \oplus \operatorname{span}\left\{\bar{e}_{1}, \ldots, \bar{e}_{p}\right\}$. Thus we get a decomposition

$$
\begin{equation*}
\mathfrak{g}=Z_{1} \oplus \operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\} \oplus B_{1} \oplus \operatorname{span}\left\{\bar{e}_{1}, \ldots, \bar{e}_{p}\right\} \tag{5.2}
\end{equation*}
$$

We have $Z(\mathfrak{g})^{\perp}=B_{1} \oplus \operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\}$, and $\left(B_{1},\langle,\rangle_{B_{1} \times B_{1}}\right)$ is euclidean. Let $\left\{b_{1}, \ldots, b_{r}\right\}$ be an orthonormal basis of B_{1}. Since $\left\langle\left[b_{i}, b_{j}\right],\left[b_{i}, b_{j}\right]\right\rangle=0$ and Z_{1} is euclidean, then $\left[b_{i}, b_{j}\right] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ for all $i, j \in\{1, \ldots, r\}$. Thus, it suffices to show that $\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle=0$ for all $i, j \in\{1, \ldots, r\}$ and $k \in\{1, \ldots, p\}$. Let $z \in Z(\mathfrak{g}), k \in\{1, \ldots, p\}$ and $i, j \in\{1, \ldots, r\}$. We have $z . \bar{e}_{k} \in Z(\mathfrak{g})^{\perp}$ and $\left\langle z \cdot \bar{e}_{k}, z \cdot \bar{e}_{k}\right\rangle=0$. Since B_{1} is euclidean, then $z . \bar{e}_{k} \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Thus

$$
\left\langle\left[\bar{e}_{k}, b_{i}\right], z\right\rangle=2\left\langle\bar{e}_{k} \cdot b_{i}, z\right\rangle=-2\left\langle z \cdot \bar{e}_{k}, b_{i}\right\rangle=0,
$$

which implies that $\left[\bar{e}_{k}, b_{i}\right] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and $\bar{e}_{k} . b_{i} \in Z(\mathfrak{g})^{\perp}$. We have $\left\langle\bar{e}_{k} . b_{i}, b_{j}\right\rangle=$ $-\frac{1}{2}\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle$, then $\bar{e}_{k} \cdot b_{i}=e_{0}-\frac{1}{2} \sum_{j=1}^{r}\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle b_{j}$, where $e_{0} \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Using the flatness of the metric, we have $\left[\bar{e}_{k}, b_{i}\right] \cdot b_{i}=\bar{e}_{k} \cdot\left(b_{i} \cdot b_{i}\right)-b_{i} \cdot\left(\bar{e}_{k} \cdot b_{i}\right)$. Since $\left[\bar{e}_{k}, b_{i}\right] \cdot b_{i}=0$, and $b_{i} \cdot b_{i}=0$, thus $b_{i} \cdot\left(\bar{e}_{k} \cdot b_{i}\right)=0$. From the facts that $b_{i} \cdot e_{0}=0$ and $b_{i} \cdot b_{j}=\frac{1}{2}\left[b_{i}, b_{j}\right]$, we deduce that

$$
\begin{aligned}
b_{i} \cdot\left(\bar{e}_{k} \cdot b_{i}\right) & =-\frac{1}{2} \sum_{j=1}^{r}\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle b_{i} \cdot b_{j} \\
& =-\frac{1}{4} \sum_{j=1}^{r}\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle\left[b_{i}, b_{j}\right]
\end{aligned}
$$

which implies that $\sum_{j=1}^{r}\left\langle\left[b_{i}, b_{j}\right], \bar{e}_{k}\right\rangle^{2}=0$, and completes the proof.
Suppose that $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$. Then the decomposition (5.2) becomes

$$
\begin{equation*}
\mathfrak{g}=Z_{1} \oplus \mathbb{R} e \oplus B_{1} \oplus \mathbb{R} \bar{e} \tag{5.3}
\end{equation*}
$$

and the restriction of \langle,$\rangle to Z_{1}$ and B_{1} is nondegenerate.

Proposition 5.4. Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra such$ that $\operatorname{dim}\left(Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}\right)=1$. With notations as in (5.3), if the restriction of the metric \langle,$\rangle to B_{1}$ is positive or negative definite, then $\operatorname{dim} B_{1}=1$, and \mathfrak{g} is a trivial central extension of \mathcal{H}_{3}, where \mathcal{H}_{3} is the 3-dimensional Heisenberg Lie algebra.

Proof. Let $z \in Z(\mathfrak{g})$, and $b \in B_{1}$. We have $z . \bar{e} \in B_{1}$ and $z . b \in Z(\mathfrak{g})^{\perp}$. Since $\langle,\rangle_{\beta_{B_{1} \times B_{1}}}$ is positive definite or negative definite and $\langle z \cdot \bar{e}, z \cdot \bar{e}\rangle=0$, then $z \cdot \bar{e}=0$. Thus $\langle z . b, \bar{e}\rangle=0$, which implies that $z . b \in B_{1}$. Using the same argument, then we can conclude that $z . b=0$, and $\mathrm{L}_{z}=0$ for any $z \in Z(\mathfrak{g})$. Let $x, y \in B_{1}$. We have for any $z \in Z(\mathfrak{g})$

$$
\langle[x, y], z\rangle=2\langle x . y, z\rangle=0,
$$

thus $[x, y]=\alpha e$, where $\alpha \in \mathbb{R}$. Using the flatness of the metric, then we get $[\bar{e}, x] . x=$ $\bar{e} .(x . x)-x .(\bar{e} . x)$, thus $x .(\bar{e} . x)=0$. Let $\left\{b_{1}, \ldots, b_{r}\right\}$ be an orthonormal basis of B_{1}. Then

$$
\bar{e} . x=\beta e \mp \frac{1}{2} \sum_{i=1}^{r}\left\langle\left[x, b_{i}\right], \bar{e}\right\rangle b_{i}
$$

where $\beta \in \mathbb{R}$. Thus

$$
x .(\bar{e} . x)=\mp \frac{1}{4} \sum_{i=1}^{r}\left\langle\left[x, b_{i}\right], \bar{e}\right\rangle\left[x, b_{i}\right]=0
$$

which implies that B_{1} is abelian. On the other hand, we have for any $z \in Z(\mathfrak{g})$,

$$
0=\langle z . \bar{e}, x\rangle=-\frac{1}{2}\langle[\bar{e}, x], z\rangle
$$

thus $[\bar{e}, x] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Put $\left[\bar{e}, b_{i}\right]=\alpha_{i} e$, where $\alpha_{i} \in \mathbb{R}^{*}$ for any $i \in\{1, \ldots, r\}$. In fact, if $\alpha_{i}=0$ then $b_{i} \in Z(\mathfrak{g})$, which contradicts the fact that $Z(\mathfrak{g}) \cap B_{1}=\{0\}$. Suppose that $\operatorname{dim} B_{1}>1$. For any $i \in\{2, \ldots, r\}$, we put $b_{i}^{\prime}=b_{i}-\frac{\alpha_{i}}{\alpha_{1}} b_{1}$, thus $\left[\bar{e}, b_{i}^{\prime}\right]=0$ and $b_{i}^{\prime} \in Z(\mathfrak{g})$ which is a Contradiction. Then $\operatorname{dim} B_{1}=1$ and the only non vanishing brackets in \mathfrak{g} is $\left[\bar{e}, b_{1}\right]=\alpha_{1} e$, thus \mathfrak{g} is a trivial central extension of \mathcal{H}_{3}.

6. Flat pseudo-Euclidean 2 -step nilpotent Lie algebras of signature $(2, n-2)$

Let us start by an example which play an important role in this section. Let L_{6}^{4} be a 6 -dimensional Lie algebra defined by the non vanishing Lie brackets, giving in the basis $\left\{x_{1}, \ldots, x_{6}\right\}$ by

$$
\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6} .
$$

This Lie algebra appear in the classification of 2-step nilpotent Lie algebras of dimension 6 , as for example in [$1, \mathrm{pp} .3$], or in [7, pp. 97], where it is denoted by $L_{6,3}$.

It is clear that this Lie algebra admits no flat Euclidean or Lorentzian metrics. However, L_{6}^{4} admits a flat pseudo-Euclidean metrics of signature $(2, n-2)$. In fact, let \langle,\rangle_{0} be a pseudo-Euclidean metric of signature $(2,4)$ defined in the basis $\left\{x_{1}, \ldots, x_{6}\right\}$ by the matrix

$$
\langle,\rangle_{0}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & a & 1 \\
0 & 0 & b & c & 0 & 0 \\
0 & b & 0 & 0 & 0 & 0 \\
0 & c & 0 & d & 0 & 0 \\
a & 0 & 0 & 0 & \frac{1}{3 d} & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $a, c \in \mathbb{R}, b \in \mathbb{R}^{*}$ and $d>0$. Straightforward calculations using (2.1) shows that, the only non vanishing Levi-Civita products are

$$
\begin{aligned}
& x_{1} \cdot x_{1}=-\frac{1}{b} x_{2}-\left(\frac{a}{b}+\frac{c^{2}}{b^{2} d}\right) x_{3}+\frac{c}{b d} x_{4}, x_{1} \cdot x_{2}=\frac{c}{2 b d} x_{3}-\frac{1}{2 d} x_{4}+\frac{1}{2} x_{5}+\frac{a}{2} x_{6}, \\
& x_{1} \cdot x_{3}=x_{6}, x_{1} \cdot x_{4}=\frac{1}{2 b} x_{3}, x_{1} \cdot x_{5}=x_{5} \cdot x_{1}=-\frac{1}{6 b d} x_{3}, x_{2} \cdot x_{4}=\frac{1}{2} x_{6}, \\
& x_{2} \cdot x_{5}=x_{5} \cdot x_{2}=\frac{1}{6 d} x_{6}, \\
& x_{2} \cdot x_{1}=\frac{c}{2 b d} x_{3}-\frac{1}{2 d} x_{4}-\frac{1}{2} x_{5}+\frac{a}{2} x_{6}, x_{4} \cdot x_{1}=\frac{1}{2 b} x_{3}, x_{4} \cdot x_{2}=-\frac{1}{2} x_{6} .
\end{aligned}
$$

One can verify that for any $x, y \in \mathrm{~L}_{6}^{4}$, we have $\mathrm{L}_{[x, y]}=\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right]$, which shows that $\left(\mathrm{L}_{6}^{4},\langle,\rangle_{0}\right)$ is flat. The following Theorem shows that this example, is the only non trivial one such that $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$.

Let $(\mathfrak{g},\langle\rangle$,$) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of signature$ $(2, n-2)$. According to Theorem 3.1, the dimension of $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ is 1 or 2 .

Theorem 6.1. A 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric of signature $(2, n-2)$ such that $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$ if and only if \mathfrak{g} is a trivial central extension of \mathcal{H}_{3} or \mathfrak{g} is a trivial central extension of L_{6}^{4}. Furthermore, in the second case, the restriction of the metric to L_{6}^{4} is giving by \langle,\rangle_{0}.

Proof. If $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$, then we can split \mathfrak{g} as

$$
\mathfrak{g}=Z_{1} \oplus \mathbb{R} e \oplus B_{1} \oplus \mathbb{R} \bar{e}
$$

where $Z(\mathfrak{g})=Z_{1} \oplus \mathbb{R} e, Z(\mathfrak{g})^{\perp}=\mathbb{R} e \oplus B_{1}, \operatorname{span}\{e, \bar{e}\}=\left(Z_{1} \oplus B_{1}\right)^{\perp},\langle e, e\rangle=\langle\bar{e}, \bar{e}\rangle=0$ and $\langle e, \bar{e}\rangle=1$. We have two cases:
First case: $\langle,\rangle / B_{1} \times B_{1}$ is positive or negative definite. Then according to Proposition 5.4, $\operatorname{dim} B_{1}=1$ and \mathfrak{g} is a trivial central extension of \mathcal{H}_{3}.
Second case: $\langle,\rangle / B_{1} \times B_{1}$ is Lorentzian. Then $\operatorname{dim} B_{1} \geq 2$. For any $z, z^{\prime} \in Z(\mathfrak{g})$, we have $\left\langle z \cdot \bar{e}, z^{\prime} \cdot \bar{e}\right\rangle=0$, then $\mathrm{R}_{\bar{e}}(Z(\mathfrak{g}))$ is a totally isotropic subspace. Since $\mathrm{R}_{\bar{e}}(Z(\mathfrak{g})) \subset B_{1}$ and $\left(B_{1},\langle,\rangle / B_{1} \times B_{1}\right)$ is Lorentzian, then there exists an isotropic vector $b_{0} \in B_{1}$ and a covector $\lambda \in Z(\mathfrak{g})^{*}$ such that $z . \bar{e}=\lambda(z) b_{0}$ for any $z \in Z(\mathfrak{g})$.

Let $x, y \in Z(\mathfrak{g})^{\perp}$. Recall that $x . y=\frac{1}{2}[x, y]$ and $\langle[x, y],[x, y]\rangle=0$. Since Z_{1} is Euclidean then $[x, y] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Choose a basis $\left\{b_{0}, \bar{b}, b_{1}, \ldots, b_{r}\right\}$ of B_{1} such that $\left\{b_{1}, \ldots, b_{r}\right\}$ is orthonormal, $\operatorname{span}\left\{b_{0}, \bar{b}\right\}$ and $\operatorname{span}\left\{b_{1}, \ldots, b_{r}\right\}$ are orthogonal, \bar{b} is isotropic and $\left\langle b_{0}, \bar{b}\right\rangle=1$. Then for any $i \in\{0,1, \ldots, r\}$, we have from (2.1)

$$
\left\langle\left[\bar{e}, b_{i}\right] \cdot \bar{e}, b_{i}\right\rangle=-\frac{1}{2}\left\langle\left[\bar{e}, b_{i}\right],\left[\bar{e}, b_{i}\right]\right\rangle
$$

On the other hand, we have $\left\langle\left[\bar{e}, b_{i}\right] . \bar{e}, b i\right\rangle=\left\langle\lambda\left(\left[\bar{e}, b_{i}\right]\right) b_{0}, b_{i}\right\rangle=0$, then $\left[\bar{e}, b_{i}\right] \in Z(\mathfrak{g}) \cap$ $Z(\mathfrak{g})^{\perp}$.

We can write from the condition of flatness, for any $x, y, z \in \mathfrak{g}$

$$
\begin{equation*}
[x, y] . z=x .(y . z)-y .(x . z) \tag{6.1}
\end{equation*}
$$

If we take $x=\bar{e}$ and $y=z=b_{0}$, we get $b_{0} \cdot\left(\bar{e} . b_{0}\right)=0$. Let $i \in\{0,1, \ldots, r\}$, since $\bar{e} . b_{0} \in Z(\mathfrak{g})^{\perp}$ and $\left\langle\bar{e} . b_{0}, b_{i}\right\rangle=-\frac{1}{2}\left\langle\left[b_{0}, b_{i}\right], \bar{e}\right\rangle$, thus

$$
\bar{e} . b_{0}=\alpha e+\beta b_{0}-\frac{1}{2} \sum_{i=1}^{r}\left\langle\left[b_{0}, b_{i}\right], \bar{e}\right\rangle,
$$

where $\alpha, \beta \in \mathbb{R}$. It follows that $b_{0} \cdot\left(\bar{e} . b_{0}\right)=-\frac{1}{4} \sum_{i=1}^{r}\left\langle\left[b_{0}, b_{i}\right], \bar{e}\right\rangle\left[b_{0}, b_{i}\right]$, thus $\sum_{i=1}^{r}\left\langle\left[b_{0}, b_{i}\right], \bar{e}\right\rangle^{2}=0$ which implies that $\left[b_{0}, b_{i}\right]=0$ for any $i \in\{0,1, \ldots, r\}$.

If we take in (6.1), $x=\bar{e}, y=b_{0}$ and $z=\bar{b}$ we get $b_{0} \cdot(\bar{e} \cdot \bar{b})=0$. Using the fact that $b_{0} \cdot u=0$ for any $u \in Z(\mathfrak{g})$, we deduce that $b_{0} \cdot(\bar{e} . \bar{b})=-\frac{1}{4}\left\langle\left[\bar{b}, b_{0}\right], \bar{e}\right\rangle\left[\bar{b}, b_{0}\right]$, thus $\left[\bar{b}, b_{0}\right]=0$. Similarly, for any $i \in\{1, \ldots, r\}$, if we take in (6.1), $x=\bar{e}$ and $y=z=e_{i}$ we get

$$
0=b_{i} \cdot\left(\bar{e} . b_{i}\right)=-\frac{1}{4} \sum_{j=1}^{r}\left\langle\left[b_{i}, b_{j}\right], \bar{e}\right\rangle\left[b_{i}, b_{j}\right],
$$

thus $\left[b_{i}, b_{j}\right]=0$ for any $i, j \in\{1, \ldots, r\}$. It follows that $\operatorname{span}\left\{b_{0}, b_{1}, \ldots, b_{r}\right\}$ is abelian and $\left[b_{0}, \bar{b}\right]=0$. We put

$$
\left[\bar{e}, b_{i}\right]=\alpha_{i} e,[\bar{e}, \bar{b}]=\alpha e+z_{0},\left[\bar{b}, b_{i}\right]=\beta_{i} e,
$$

where $\alpha_{i}, \beta_{i}, \alpha \in \mathbb{R}, z_{0} \in Z_{1}$ and $i=0,1, \ldots, r$. If we take in (6.1), $x=\bar{e}$ and $y=z=\bar{b}$ we get $z_{0} . \bar{b}=-\bar{b}(\bar{e} . \bar{b})$, then $\frac{3}{2} z_{0} . \bar{b}-\frac{1}{2} \sum_{i=1}^{r} \beta_{i}^{2} e=0$, which implies that

$$
\begin{equation*}
3\left\langle z_{0}, z_{0}\right\rangle=\sum_{i=1}^{r} \beta_{i}^{2} . \tag{6.2}
\end{equation*}
$$

We have $\operatorname{dim} B_{1} \geq 3$. In fact, if $\operatorname{dim} B_{1}=2$ then $B_{1}=\operatorname{span}\left\{b_{0}, \bar{b}\right\}$ and (6.2) implies that $z_{0}=0$. Then the Lie brackets are reduced to $\left[\bar{e}, b_{i}\right]=\alpha_{i} e$ and $[\bar{e}, \bar{b}]=\alpha e$, and as in the proof of Proposition 5.4 we can deduce that $\operatorname{dim} B_{1}=1$, which is a contradiction. The same argument shows that $z_{0} \neq 0$. Then there exists $i \in\{1, \ldots, r\}$ such that $\beta_{i} \neq 0$. To simplify, we can suppose that $\beta_{1} \neq 0$, and we have also $\alpha_{0} \neq 0$ because $b_{0} \notin Z(\mathfrak{g})$.

Let us show that $\operatorname{dim} B_{1}=3$. In fact, if $\operatorname{dim} B_{1} \geq 4$, then we put for any $i \geq 4$,

$$
b_{i}^{\prime}=b_{i}-\frac{\beta_{i}}{\beta_{1}} b_{1}-\left(\frac{\alpha_{i} \beta_{1}-\alpha_{1} \beta_{i}}{\alpha_{0} \beta_{1}}\right) b_{0}
$$

and we can verify easily that $\left[b_{i}^{\prime}, x\right]=0$ for any $x \in \mathfrak{g}$. Thus $b_{i}^{\prime} \in Z(\mathfrak{g})$ which contradicts the fact that $Z(\mathfrak{g}) \cap B_{1}=\{0\}$. We put $x_{1}=\bar{e}, x_{2}=\bar{b}, x_{3}=\frac{b_{0}}{\alpha_{0}}, x_{4}=\frac{1}{\beta_{1}} b_{1}-\frac{\alpha_{1}}{\beta_{1} \alpha_{0}} b_{0}$, $x_{5}=\alpha e+z_{0}$ and $x_{6}=e$. Then the only non vanishing brackets on \mathfrak{g} are

$$
\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{4}\right]=x_{6} .
$$

It follows that \mathfrak{g} is a trivial central extension of L_{6}^{4}. Furthermore, with the condition (6.2), one can verify that the restriction of the metric to L_{6}^{4} is given by \langle,\rangle_{0}. Conversely, if \mathfrak{g} splits orthogonally into $\mathfrak{g}=Z_{1} \oplus \mathrm{~L}_{6}^{4}$, where $Z_{1} \subset Z(\mathfrak{g})$ and the restriction of the metric to L_{6}^{4} is \langle,\rangle_{0}, and the restriction to Z_{1} is Euclidean, then $(\mathfrak{g},\langle\rangle$,$) is a flat pseudo-Euclidean$ 2-step nilpotent Lie algebra of signature $(2, n-2)$ and $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$.

Corollary 6.1. The Heisenberg Lie algebra $\mathcal{H}_{2 k+1}$ admits a flat pseudo-Euclidean metric of signature $(2, n-2)$ if and only if $k=1$.

Proof. Since $Z\left(\mathcal{H}_{2 k+1}\right)=1$, then if $\mathfrak{g}=\mathcal{H}_{2 k+1}$ admits such metric then we have $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$. This gives the result, by virtue of Theorem 6.1.

Remark 3. In Theorem 6.1, if \mathfrak{g} is a trivial central extension of \mathcal{H}_{3}, then $\mathfrak{g}=Z_{1} \oplus \mathcal{H}_{3}$ and the metric \langle,$\rangle has one of the following form:$

- The restriction of \langle,$\rangle to Z_{1}$ is Euclidean and its restriction to \mathcal{H}_{3} is given by the matrix

$$
\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & -1 & 0 \\
\alpha & 0 & 0
\end{array}\right), \text { where } \alpha \in \mathbb{R}
$$

- The restriction of \langle,$\rangle to Z_{1}$ is Lorentzian and its restriction to \mathcal{H}_{3} is given by the matrix

$$
\left(\begin{array}{ccc}
0 & 0 & \alpha \\
0 & 1 & 0 \\
\alpha & 0 & 0
\end{array}\right), \text { where } \alpha \in \mathbb{R}
$$

Theorem 6.2. A 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric \langle,$\rangle of signature (2, n-2)$ such that $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=2$ if and only if there exist an orthonormal vectors $\left\{b_{1}, \ldots, b_{k}\right\}$ in \mathfrak{g}, a linearly independent isotropic vectors $\left\{e_{1}, \bar{e}_{1}, e_{2}, \bar{e}_{2}\right\}$ in $\left\{b_{1}, \ldots, b_{k}\right\}^{\perp}$, where $\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{1}, \bar{e}_{2}\right\rangle=\left\langle\bar{e}_{1}, e_{2}\right\rangle=\left\langle\bar{e}_{1}, \bar{e}_{2}\right\rangle=0$ and $\left\langle e_{1}, \bar{e}_{1}\right\rangle=\left\langle e_{2}, \bar{e}_{2}\right\rangle=1$, such that for any $i \in\{1, \ldots, k\}$ the only non vanishing brackets are

$$
\left[\bar{e}_{1}, \bar{e}_{2}\right]=z_{0}
$$

$$
\begin{align*}
& {\left[\bar{e}_{1}, b_{i}\right]=\alpha_{i} e_{1}+\beta_{i} e_{2}} \tag{6.3}\\
& {\left[\bar{e}_{2}, b_{i}\right]=\gamma_{i} e_{1}+\delta_{i} e_{2}}
\end{align*}
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}$, and

$$
\begin{equation*}
3\left\langle z_{0}, z_{0}\right\rangle=\sum_{i=1}^{k}\left(\gamma_{i}+\beta_{i}\right)^{2}-4 \alpha_{i} \delta_{i} \tag{6.4}
\end{equation*}
$$

Proof. According to Proposition 5.3, $Z(\mathfrak{g})^{\perp}$ is abelian, and we can split \mathfrak{g} into

$$
\begin{equation*}
\mathfrak{g}=Z_{1} \oplus \operatorname{span}\left\{e_{1}, e_{2}\right\} \oplus B_{1} \oplus \operatorname{span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\} \tag{6.5}
\end{equation*}
$$

where $Z(\mathfrak{g})=Z_{1} \oplus \operatorname{span}\left\{e_{1}, e_{2}\right\}, Z(\mathfrak{g})^{\perp}=\operatorname{span}\left\{e_{1}, e_{2}\right\} \oplus B_{1},\left(Z_{1} \oplus B_{1}\right)^{\perp}=\operatorname{span}\left\{e_{1}\right.$, $\left.e_{2}, \bar{e}_{1}, \bar{e}_{2}\right\}, \operatorname{span}\left\{\bar{e}_{1}, \bar{e}_{2}\right\}$ is totally isotropic, $\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{1}, \bar{e}_{2}\right\rangle=\left\langle\bar{e}_{1}, e_{2}\right\rangle=\left\langle\bar{e}_{1}, \bar{e}_{2}\right\rangle=0$ and $\left\langle e_{1}, \bar{e}_{1}\right\rangle=\left\langle e_{2}, \bar{e}_{2}\right\rangle=1$.

In the proof of Proposition 5.3, we have shown that for any $x, y \in Z(\mathfrak{g})^{\perp}$ and $k \in$ $\{1,2\},[x, y]$ and $\left[\bar{e}_{k}, x\right]$ are in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Let $\left\{b_{1}, \ldots, b_{r}\right\}$ be an orthonormal basis of B_{1}. Then, the non vanishing brackets are:

$$
\begin{aligned}
& {\left[\bar{e}_{1}, \bar{e}_{2}\right]=z_{0}} \\
& {\left[\bar{e}_{1}, b_{i}\right]=\alpha_{i} e_{1}+\beta_{i} e_{2},} \\
& {\left[\bar{e}_{2}, b_{i}\right]=\gamma_{i} e_{1}+\delta_{i} e_{2}}
\end{aligned}
$$

where $z_{0} \in Z(\mathfrak{g}), \alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i} \in \mathbb{R}$ and $i=1, \ldots, r$. From (2.1) and the Lie brackets above, we have for any $u \in Z(\mathfrak{g})$ and $v \in Z(\mathfrak{g})^{\perp}$, u.v $=0$. Recall that $(\mathfrak{g},\langle\rangle$,$) is flat if$ and only if for any $x, y, z \in \mathfrak{g}$

$$
\begin{equation*}
\mathrm{L}_{[x, y]}(z)=\left[\mathrm{L}_{x}, \mathrm{~L}_{y}\right](z) \tag{6.6}
\end{equation*}
$$

Let $x \in Z(\mathfrak{g})+Z(\mathfrak{g})^{\perp}, y, z \in \mathfrak{g}$ and $i \in\{1,2\}$. We have $\left\langle y . z, e_{i}\right\rangle=0$, then $y . z \in Z(\mathfrak{g})+$ $Z(\mathfrak{g})^{\perp}$. Thus $x .(y . z)=(y . z) . x=0$. On the other hand, we have $x . y, y . x \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Thus $(x \cdot y) \cdot z=(y \cdot x) \cdot z=0$. It follows that if one of the vectors x, y or z is in $Z(\mathfrak{g})+Z(\mathfrak{g})^{\perp}$, then (6.6) is satisfied. Thus $(\mathfrak{g},\langle\rangle$,$) is flat if and only if$

$$
\mathrm{L}_{\left[\bar{e}_{1}, \bar{e}_{2}\right]} \bar{e}_{1}-\left[\mathrm{L}_{\bar{e}_{1}}, \mathrm{~L}_{\bar{e}_{2}}\right] \bar{e}_{1}=\mathrm{L}_{\left[\bar{e}_{1}, \bar{e}_{2}\right]} \bar{e}_{2}-\left[\mathrm{L}_{\bar{e}_{1}}, \mathrm{~L}_{\bar{e}_{2}}\right] \bar{e}_{2}=0
$$

Straightforward calculations using (2.1) give

$$
\begin{aligned}
& z_{0} \cdot \bar{e}_{1}=-\frac{1}{2}\left\langle z_{0}, z_{0}\right\rangle e_{2}, \bar{e}_{2} \cdot \bar{e}_{1}=-\frac{1}{2} z_{0}-\frac{1}{2} \sum_{i=1}^{r}\left(\beta_{i}+\gamma_{i}\right) b_{i}, \bar{e}_{1} \cdot \bar{e}_{1}=-\sum_{i=1}^{r} \alpha_{i} b_{i}, \\
& \bar{e}_{1} b_{i}=\alpha_{i} e_{1}+\frac{1}{2}\left(\beta_{i}+\gamma_{i}\right) e_{2}, \bar{e}_{2} b_{i}=\frac{1}{2}\left(\beta_{i}+\gamma_{i}\right) e_{1}+\delta_{i} e_{2} .
\end{aligned}
$$

Thus the condition $\mathrm{L}_{\left[\bar{e}_{1}, \bar{e}_{2}\right]} \bar{e}_{1}-\left[\mathrm{L}_{\bar{e}_{1}}, \mathrm{~L}_{\bar{e}_{2}}\right] \bar{e}_{1}=0$ is equivalent to (6.3). Similarly, we show that the second condition $\mathrm{L}_{\left[\bar{e}_{1}, \bar{e}_{2}\right]} \bar{e}_{2}-\left[\mathrm{L}_{\bar{e}_{1}}, \mathrm{~L}_{\bar{e}_{2}}\right] \bar{e}_{2}=0$ is also equivalent to (6.3). This completes the proof.

Corollary 6.2. If a 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric of signature $(2, n-2)$, then $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}] \leqslant 3$.

7. Examples

In this section, we show that any 6 -dimensional 2 -step nilpotent Lie algebra, which is not a trivial central extension of \mathcal{H}_{5}, admits a flat pseudo-Euclidean metric of signature $(2, n-2)$, where \mathcal{H}_{5} is a 5 -dimensional Heisenberg Lie algebra. For this, we use the table below which give all 6 -dimensional 2 -step nilpotent Lie algebras (see [1, pp. 3]). Note that $\mathcal{H}_{5}\left(\right.$ resp. $\left.\mathcal{H}_{3}\right)$ is denoted in this table by $\mathrm{L}_{5}^{4}\left(\right.$ resp. $\left.\mathrm{L}_{3}\right)$.

Lie algebra	Nonzero commutators
$L_{3} \oplus 3 L_{1}$	$\left[x_{1}, x_{2}\right]=x_{3}$
$L_{5}^{1} \oplus L_{1}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{4}\right]=x_{5}$
$L_{5}^{4} \oplus L_{1}$	$\left[x_{1}, x_{3}\right]=x_{5},\left[x_{2}, x_{4}\right]=x_{5}$
$L_{3} \oplus L_{3}$	$\left[x_{1}, x_{2}\right]=x_{3},\left[x_{4}, x_{5}\right]=x_{6}$
L_{6}^{4}	$\left[x_{1}, x_{2}\right]=x_{5},\left[x_{1}, x_{3}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{6}$
$L_{6}^{5}(-1)$	$\left[x_{1}, x_{3}\right]=x_{5},\left[x_{1}, x_{4}\right]=x_{6},\left[x_{2}, x_{4}\right]=x_{5},\left[x_{2}, x_{3}\right]=-x_{6}$
L_{6}^{3}	$\left[x_{1}, x_{3}\right]=x_{6},\left[x_{1}, x_{2}\right]=x_{4},\left[x_{2}, x_{3}\right]=x_{5}$

The result is evident for $\mathrm{L}_{3} \oplus 3 \mathrm{~L}_{1}$ and L_{6}^{4} (Theorem 6.1). Let \langle,$\rangle be a pseudo-Euclidean$ metric of signature $(2, n-2)$ given by the matrix

$$
\langle,\rangle=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Using Theorem 6.2, let us show that, for all those Lie algebras $\mathrm{L}_{5}^{1} \oplus \mathrm{~L}_{1}, \mathrm{~L}_{3} \oplus \mathrm{~L}_{3}, \mathrm{~L}_{6}^{5}(-1)$ and L_{6}^{3} there exists a basis \mathbb{B} such that the metric given in \mathbb{B} by \langle,$\rangle is flat.$

- For $\mathrm{L}_{5}^{1} \oplus \mathrm{~L}_{1}$, with our notations we put $\mathbb{B}=\left\{e_{1}, \bar{e}_{1}, e_{2}, \bar{e}_{2}, z_{0}, b_{1}\right\}$ where $e_{1}=x_{6}$, $\bar{e}_{1}=x_{1}, e_{2}=x_{5}, \bar{e}_{2}=x_{2}, z_{0}=x_{3}$ and $b_{1}=x_{4}$. One can verify easily that in this basis, the Lie brackets and the metric verify the conditions (6.3) and (6.4), thus $\left(\mathrm{L}_{5}^{1} \oplus \mathrm{~L}_{1},\langle\rangle,\right)$ is flat.
- For $\mathrm{L}_{3} \oplus \mathrm{~L}_{3}$, we put $\mathbb{B}=\left\{e_{1}, \bar{e}_{1}, e_{2}, \bar{e}_{2}, b_{1}, b_{2}\right\}$ where $e_{1}=x_{3}, \bar{e}_{1}=x_{1}, e_{2}=x_{6}$, $\bar{e}_{2}=x_{4}, b_{1}=x_{1}$ and $b_{2}=x_{5}$.
- For $\mathrm{L}_{6}^{5}(-1)$, we put $\mathbb{B}=\left\{e_{1}, \bar{e}_{1}, e_{2}, \bar{e}_{2}, b_{1}, b_{2}\right\}$ where $e_{1}=x_{5}+x_{6}, \bar{e}_{1}=x_{1}, e_{2}=-2 x_{6}$, $\bar{e}_{2}=x_{2}, b_{1}=x_{4}$ and $b_{2}=-(3+\sqrt{15}) x_{4}-x_{3}$.
- For L_{6}^{3}, we put $\mathbb{B}=\left\{e_{1}, \bar{e}_{1}, e_{2}, \bar{e}_{2}, z_{0}, b_{1}\right\}$ where $e_{1}=x_{4}, \bar{e}_{1}=x_{1}, e_{2}=\frac{4}{3} x_{5}, \bar{e}_{2}=x_{3}$, $z_{0}=x_{6}$ and $b_{1}=x_{2}$.

For $\mathfrak{g}=\mathrm{L}_{5}^{4} \oplus \mathrm{~L}_{1}$, it is clear that this algebra can not admit flat pseudo-Euclidean metric of signature $(2, n-2)$ such that $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=1$ (Theorem 6.1). Suppose that it admits such metric with $\operatorname{dim} Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}=2$ (Theorem 6.2). We have $\operatorname{dim}[\mathfrak{g}, \mathfrak{g}]=1$ and $\operatorname{dim} Z(\mathfrak{g})=2$. Then $\operatorname{dim} Z(\mathfrak{g})^{\perp}=4$ and $\operatorname{dim} B_{1}=2$. Put $[\mathfrak{g}, \mathfrak{g}]=\mathbb{R} e_{1}$, thus the Lie brackets satisfy

$$
\left[\bar{e}_{1}, \bar{e}_{2}\right]=\alpha e_{1},\left[\bar{e}_{1}, b_{i}\right]=\alpha_{i} e_{1},\left[\bar{e}_{2}, b_{i}\right]=\gamma_{i} e_{1}, i=1,2 .
$$

The condition (6.4) implies that $\gamma_{1}=\gamma_{2}=0$. Then $\alpha, \alpha_{1}, \alpha_{2} \in \mathbb{R}^{*}$. The fact that $\alpha=0$, for example, implies that $\bar{e}_{2} \in Z(\mathfrak{g})$. Put $b_{2}^{\prime}=b_{2}-\frac{\alpha_{2}}{\alpha_{1}} b_{1}$, then $b_{2}^{\prime} \in Z(\mathfrak{g})$, which is a contradiction. It follows that $\mathrm{L}_{5}^{4} \oplus \mathrm{~L}_{1}$ can not admit flat pseudo-Euclidean metrics of signature ($2, n-2$).

Acknowledgment

We thank the referee for carefully reading our manuscript, and many useful suggestions and comments.

References

[1] A.N. Abiev, On the Ricci curvature of solvable metric Lie algebras with two-step nilpotent derived algebras, Siberian Advences in Mathematics 24 (1) (2014) 1-11.
[2] M. Ait Ben Haddou, M. Boucetta, H. Lebzioui, Left-invariant Lorentzian flat metrics on Lie groups, Journal of Lie Theory 22 (1) (2012) 269-289.
[3] A. Aubert, A. Medina, Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J. 55 (2003) 487-506.
[4] M. Boucetta, H. Lebzioui, Flat nonunimodular Lorentzian Lie algebras, Communications in Algebra 44 (10) (2016) 4185-4195.
[5] M. Guédiri, On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds, Transactions of the American Mathematical Society 355 (2) (2003) 775-786.
[6] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Mathematics 21 (3) (1976) 293-329.
[7] P. Revoy, Algèbres de lie métabéliennes, annales de la faculté des sciences de toulouse, 5éme série 2 (2) (1980) 93-100.

Further reading

[8] M. Boucetta, Ricci flat left-invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups, arXiv:0910.2563v1 [math. D.G], 2009.
[9] M. Guédiri, M. Bin-Asfour, Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups, Archivum Mathematicum 50 (3) (2014) 171-192.

[^0]: * Corresponding author.

 E-mail addresses: m.boucetta@uca.ac.ma (M. Boucetta), h.lebzioui@usms.ma (H. Lebzioui).

