

Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On flat pseudo-Euclidean nilpotent Lie algebras

^a Université Cadi-Ayyad, Faculté des sciences et techniques, B.P. 549, Marrakech, Maroc

^b Université Sultan Moulay Slimane, École Supérieure de Technologie-Khénifra, B.P. 170, Khénifra, Maroc

ARTICLE INFO

Article history: Received 18 November 2017 Available online 1 August 2019 Communicated by Alberto Elduque

MSC: 17B60 17B30 17B10 53C50

Keywords: Nilpotent Lie algebras Nilpotent Lie groups Flat left-invariant metrics Double extension

ABSTRACT

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate symmetric bilinear form and a left symmetric product whose the commutator is the Lie bracket and such that the left multiplications are skew-symmetric. We show that the center of a flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n - 2) must be degenerate and all flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n-2)can be obtained by using the double extension process from flat Lorentzian nilpotent Lie algebras. We show also that the center of a flat pseudo-Euclidean 2-step nilpotent Lie algebra is degenerate and all these Lie algebras are obtained by using a sequence of double extension from an abelian Lie algebra. In particular, we determine all flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n-2). The paper contains also some examples in low dimension.

@ 2019 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: m.boucetta@uca.ac.ma (M. Boucetta), h.lebzioui@usms.ma (H. Lebzioui).

https://doi.org/10.1016/j.jalgebra.2019.07.018 0021-8693/© 2019 Elsevier Inc. All rights reserved.

ALGEBRA

1. Introduction

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate symmetric bilinear form and a left symmetric product whose the commutator is the Lie bracket and such that the left multiplications are skew-symmetric. In geometrical terms, a flat pseudo-Euclidean Lie algebra is the Lie algebra of a Lie group with a left-invariant pseudo-Riemannian metric with vanishing curvature. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean Lie algebra of dimension n. If the metric \langle , \rangle is definite positive (resp. of signature (1, n - 1)), then $(\mathfrak{g}, \langle , \rangle)$ is called Euclidean (resp. Lorentzian). Flat pseudo-Euclidean Lie algebras have been studied mostly in the Euclidean and the Lorentzian cases. Let us enumerate some important results on flat pseudo-Euclidean Lie algebras:

- 1. In [6], Milnor showed that $(\mathfrak{g}, \langle , \rangle)$ is a flat Euclidean Lie algebra if and only if \mathfrak{g} splits orthogonally as $\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{u}$, where \mathfrak{u} is an abelian ideal, \mathfrak{b} is an abelian subalgebra, and ad_b is skew-symmetric for any $b \in \mathfrak{b}$. According to this theorem, a nilpotent (non-abelian) Lie algebra can not admit a flat Euclidean metric.
- 2. In [3], Aubert and Medina showed that all flat Lorentzian nilpotent Lie algebras are obtained by the double extension process from Euclidean abelian Lie algebras.
- 3. Guédiri showed in [5] that a flat Lorentzian 2-step nilpotent Lie algebra is a trivial central extension of the 3-dimensional Heisenberg Lie algebra \mathcal{H}_3 . Recall that the Heisenberg Lie algebra \mathcal{H}_{2k+1} , is defined as the vector space $\mathcal{H}_{2k+1} =$ span $\{z, x_1, \ldots, x_k, y_1, \ldots, y_k\}$ such that all brackets are zeros except $[x_i, y_i] = z$ for $1 \leq i \leq k$.
- 4. In [2], M. Ait Ben Haddou and the authors showed that all flat Lorentzian Lie algebras with degenerate center can be obtained by double extension process from flat Euclidean Lie algebras. In [4], the authors showed that all flat nonunimodular Lorentzian Lie algebras can be obtained by double extension process from flat Euclidean Lie algebras.

The study of flat pseudo-Euclidean Lie algebras of signature other than (0, n) and (1, n - 1) is an open problem. In this paper, we study a part of this problem, more precisely, we study flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n - 2) and flat pseudo-Euclidean 2-step nilpotent Lie algebras of any signature. There are our main results:

- 1. In Theorem 3.1, we show that the center of a flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n 2) must be degenerate. From this theorem and Theorem 4.1 we deduce that all flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n 2) are obtained by the double extension process.
- 2. We give some general properties of flat pseudo-Euclidean 2-step nilpotent Lie algebras and we show that their center is degenerate. We show also that we can construct

all this Lie algebras by applying a sequence of double extension starting from a pseudo-Euclidean abelian Lie algebra.

3. We give all 2-step nilpotent Lie algebras which can admit flat pseudo-Euclidean metrics of signature (2, n - 2) (Theorem 6.1 and Theorem 6.2). We will see that a class of 2-step nilpotent Lie algebras which can admit a flat pseudo-Euclidean metrics of signature (2, n-2) is very rich, contrary to the Euclidean and the Lorentzian cases. As example, we show that any 6-dimensional 2-step nilpotent Lie algebra which is not a trivial central extension of a 5-dimensional Heisenberg Lie algebra, admits such metric.

The paper is organized as follows. In section 2, we give some generalities on flat pseudo-Euclidean Lie algebras. In section 3 and section 4, we study flat pseudo-Euclidean metrics of signature (2, n - 2) on nilpotent Lie algebras. In section 5, we study flat pseudo-Euclidean 2-step nilpotent Lie algebra of any signature. In section 6, we give all flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n - 2). We end the paper by giving some examples.

2. Preliminaries

In this section, we give some general results on nilpotent Lie algebras and on flat pseudo-Euclidean nilpotent Lie algebras which will be crucial in the proofs of our main results.

Let us start with two useful lemmas. Recall that a pseudo-Euclidean vector space is a real finite dimensional vector space endowed with a non degenerate bilinear symmetric form.

Lemma 2.1. Let (V, \langle , \rangle) be a pseudo-Euclidean vector space and A a skew-symmetric endomorphism satisfying $A^2 = 0$ and dim Im $A \leq 1$. Then A = 0.

Proof. Suppose that $A \neq 0$. Then ImA is a totally isotropic vector space of dimension 1. This implies that ker A is an hyperplan which contains ImA. Let e be a generator of ImA and choose an isotropic vector $\bar{e} \notin \ker A$ such that $\langle e, \bar{e} \rangle = 1$. We have $V = \ker A \oplus \mathbb{R}\bar{e}$ and $A(\bar{e}) = \alpha e$. Then $\alpha = \langle A(\bar{e}), \bar{e} \rangle = 0$ which gives a contradiction and completes the proof. \Box

Lemma 2.2. Let \mathfrak{g} be a nilpotent Lie algebra, \mathfrak{a} and \mathfrak{h} , respectively, a Lie subalgebra of codimension one and an ideal of codimension two. Then $[\mathfrak{g},\mathfrak{g}]$ is contained in \mathfrak{a} and in \mathfrak{h} .

Proof. We have $\mathfrak{g}/\mathfrak{h}$ is a 2-dimensional nilpotent Lie algebra and hence must be abelian. This implies that $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{h}$. On the other hand, write $\mathfrak{g} = \mathfrak{a} \oplus \mathbb{R}y$. For any $x \in \mathfrak{a}$, we have

$$[x, y] = a(x)y + u_1$$
, where $u_1 \in \mathfrak{a}$.

Since \mathfrak{a} is a Lie subalgebra then, for any $n \in \mathbb{N}^*$, $\operatorname{ad}_x^n(y) = a(x)^n y + u_n$ with $u_n \in \mathfrak{a}$. Since ad_x is nilpotent then a(x) = 0 and the result follows. \Box

We pursue with some general properties of flat pseudo-Euclidean Lie algebras. A pseudo-Euclidean Lie algebra $(\mathfrak{g}, \langle , \rangle)$ is a finite dimensional real Lie algebra \mathfrak{g} endowed with a non degenerate symmetric bilinear form \langle , \rangle . We define a product $(u, v) \mapsto u.v$ on \mathfrak{g} called Levi-Civita product by Koszul's formula

$$2\langle u.v, w \rangle = \langle [u, v], w \rangle + \langle [w, u], v \rangle + \langle [w, v], u \rangle, \tag{2.1}$$

for any $u, v, w \in \mathfrak{g}$. We denote by $L_u : \mathfrak{g} \longrightarrow \mathfrak{g}$ and $R_u : \mathfrak{g} \longrightarrow \mathfrak{g}$, respectively, the left multiplication and the right multiplication by u given by $L_u v = u.v$ and $R_u v = v.u$. For any $u \in \mathfrak{g}$, L_u is skew-symmetric with respect to \langle , \rangle and $\mathrm{ad}_u = L_u - R_u$, where $\mathrm{ad}_u : \mathfrak{g} \longrightarrow \mathfrak{g}$ is given by $\mathrm{ad}_u v = [u, v]$. We call $(\mathfrak{g}, \langle , \rangle)$ flat pseudo-Euclidean Lie algebra if the Levi-Civita product is left symmetric, i.e., for any $u, v, w \in \mathfrak{g}$,

$$\operatorname{ass}(u, v, w) = \operatorname{ass}(v, u, w), \tag{2.2}$$

where $\operatorname{ass}(u, v, w) = (u.v).w - u.(v.w).$

Remark 1. Let G be a Lie group, and μ a left-invariant pseudo-Riemannian metric on G. Let $\mathfrak{g} = \text{Lie}(G)$ and $\langle , \rangle = \mu_e$. Then the curvature of (G, μ) vanishes if and only if $(\mathfrak{g}, \langle , \rangle)$ is a flat pseudo-Euclidean Lie algebra.

Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean Lie algebra. The condition (2.2) is also equivalent to one of the following relations:

$$\mathbf{L}_{[u,v]} = [\mathbf{L}_u, \mathbf{L}_v],\tag{2.3}$$

$$\mathbf{R}_{u.v} - \mathbf{R}_v \circ \mathbf{R}_u = [\mathbf{L}_u, \mathbf{R}_v], \tag{2.4}$$

for any $u, v \in \mathfrak{g}$. We denote by $Z(\mathfrak{g}) = \{u \in \mathfrak{g}, \mathrm{ad}_u = 0\}$ the center of \mathfrak{g} . For any $u, v \in Z(\mathfrak{g})$ and $a, b \in \mathfrak{g}$, one can deduce easily from (2.1)-(2.4) that

$$u.v = 0, L_u = R_u, L_u \circ L_v = 0 \text{ and } u.(a.b) = a.(u.b).$$
 (2.5)

Proposition 2.1. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent non abelian Lie algebra. If $Z(\mathfrak{g}) = \{u \in \mathfrak{g}, L_u = R_u = 0\}$ then $Z(\mathfrak{g})$ is degenerate.

Proof. One can see easily that the orthogonal of the derived ideal of \mathfrak{g} is given by

$$[\mathfrak{g},\mathfrak{g}]^{\perp} = \{ u \in \mathfrak{g}, \mathcal{R}_u = \mathcal{R}_u^* \}.$$
(2.6)

Then $Z(\mathfrak{g}) \subset [\mathfrak{g}, \mathfrak{g}]^{\perp}$ and hence $[\mathfrak{g}, \mathfrak{g}] \subset Z(\mathfrak{g})^{\perp}$. Since \mathfrak{g} is nilpotent non abelian then $\{0\} \neq [\mathfrak{g}, \mathfrak{g}] \cap Z(\mathfrak{g}) \subset Z(\mathfrak{g})^{\perp} \cap Z(\mathfrak{g})$. This shows that $Z(\mathfrak{g})$ is degenerate. \Box

Proposition 2.2. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent Lie algebra. Then:

- 1. If $(\mathfrak{g}, \langle , \rangle)$ is Euclidean then \mathfrak{g} is abelian.
- 2. If $(\mathfrak{g}, \langle , \rangle)$ is non abelian Lorentzian then $Z(\mathfrak{g})$ is degenerate.
- Proof. 1. According to (2.5), for any u ∈ Z(g), L_u is a nilpotent skew-symmetric endomorphism and hence must vanishes. This gives the result, by virtue of Proposition 2.1.
 2. This is a consequence of (2.5), Lemma 2.1 and Proposition 2.1. □

Put $N(\mathfrak{g}) = \bigcap_{u \in Z(\mathfrak{g})} \ker L_u$, $\mathfrak{g}_0 := N(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and $\mathfrak{h}_0 := N(\mathfrak{g})^{\perp}$. These vector spaces and the following lemma which states their main properties will play a central role in this paper, namely, in the proof of Theorem 3.1.

Lemma 2.3. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of signature (2, n-2) with $n \geq 4$. Then:

- 1. $N(\mathfrak{g}), \mathfrak{g}_0$ and \mathfrak{h}_0 are left ideals for the Levi-Civita product, $\mathfrak{h}_0 \subset \mathfrak{g}_0$, and \mathfrak{h}_0 is totally isotropic with dim $\mathfrak{h}_0 \leq 2$.
- 2. If $Z(\mathfrak{g})$ is non degenerate then the restriction of \langle , \rangle to $Z(\mathfrak{g})$ is positive definite, dim $\mathfrak{h}_0 = 2$ and dim $(Z(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]) = 1$. Moreover, if z_0 is a generator of $Z(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ with $\langle z_0, z_0 \rangle = 1$ then for any $u, v \in \mathfrak{g}$,

$$[u, v] = [u, v]_1 - 2\langle \mathcal{L}_{z_0} u, v \rangle z_0, \qquad (2.7)$$

where $[u, v]_1 \in Z(\mathfrak{g})^{\perp}$.

- **Proof.** 1. Note first that, for any $u \in \mathfrak{g}$, $(\ker L_u)^{\perp} = \operatorname{Im} L_u$ and hence $\mathfrak{h}_0 = \sum_{u \in Z(\mathfrak{g})} \operatorname{Im} L_u$. From (2.5), we have clearly that $Z(\mathfrak{g}) \subset N(\mathfrak{g})$ and, for any $u, v \in Z(\mathfrak{g})$, $\operatorname{Im} L_u \subset \ker L_v$. Thus $\mathfrak{h}_0 \subset \mathfrak{g}_0$. This implies that \mathfrak{h}_0 is totally isotropic and since the signature is (2, n 2) one must have dim $\mathfrak{h}_0 \leq 2$. One can deduce easily from the third relation in (2.5) that $N(\mathfrak{g})$ is a left ideal. This implies, since the left multiplication are skew-symmetric that \mathfrak{h}_0 and \mathfrak{g}_0 are also left ideals.
- 2. Suppose now that $Z(\mathfrak{g})$ is non degenerate. If $\dim \mathfrak{h}_0 \leq 1$ then, according to Lemma 2.1, $\mathcal{L}_u = 0$ for any $u \in Z(\mathfrak{g})$ and hence, by virtue of Proposition 2.1, $Z(\mathfrak{g})$ is degenerate. So we must have $\dim \mathfrak{h}_0 = 2$ and the restriction of \langle , \rangle to $Z(\mathfrak{g})^{\perp}$ is of signature $(2, \dim Z(\mathfrak{g})^{\perp} - 2)$ which implies that the restriction of \langle , \rangle to $Z(\mathfrak{g})$ is definite positive. On the other hand, according to what above we can choose two vectors (\bar{e}_1, \bar{e}_2) of $Z(\mathfrak{g})^{\perp}$ such that $Z(\mathfrak{g})^{\perp} = \mathfrak{g}_0 \oplus \operatorname{Span}\{\bar{e}_1, \bar{e}_2\}$. So,

$$[\mathfrak{g},\mathfrak{g}] = [Z(\mathfrak{g})^{\perp}, Z(\mathfrak{g})^{\perp}] = \mathbb{R}[\bar{e}_1, \bar{e}_2] + [\bar{e}_1, \mathfrak{g}_0] + [\bar{e}_2, \mathfrak{g}_0] + [\mathfrak{g}_0, \mathfrak{g}_0]$$

We have that \mathfrak{g}_0 is a left ideal for the Levi-Civita product and for any $a \in \mathfrak{g}_0, b \in \mathfrak{g}$ and $u \in Z(\mathfrak{g})$,

$$\langle a.b, u \rangle = -\langle b, a.u \rangle = -\langle b, u.a \rangle = 0$$

and hence $\mathfrak{g}_0.\mathfrak{g} \subset Z(\mathfrak{g})^{\perp}$. This implies that $[\bar{e}_1,\mathfrak{g}_0] + [\bar{e}_2,\mathfrak{g}_0] + [\mathfrak{g}_0,\mathfrak{g}_0] \subset Z(\mathfrak{g})^{\perp}$. Moreover, $[\bar{e}_1,\bar{e}_2] = z + v_0$, where $z \in Z(\mathfrak{g}), z \neq 0$ since $Z(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] \neq 0$ and $v_0 \in Z(\mathfrak{g})^{\perp}$. So $[\mathfrak{g},\mathfrak{g}] = \mathbb{R}z \oplus F$ where F is a vector subspace of $Z(\mathfrak{g})^{\perp}$. From this relation, we can deduce that $Z(\mathfrak{g}) \cap [\mathfrak{g},\mathfrak{g}] = \mathbb{R}z$ and (2.7) follows immediately. \Box

3. The center of a flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n - 2) is degenerate

The purpose of this section is to prove the following theorem.

Theorem 3.1. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of signature (2, n-2) with $n \geq 4$. Then $Z(\mathfrak{g})$ is degenerate.

Proof. We proceed by contradiction and we suppose that $Z(\mathfrak{g})$ is non degenerate, i.e., $\mathfrak{g} = Z(\mathfrak{g}) \oplus Z(\mathfrak{g})^{\perp}$. As in Lemma 2.3, we consider $\mathfrak{g}_0 = \{v \in Z(\mathfrak{g})^{\perp}/L_u v = 0, \forall u \in Z(\mathfrak{g})\}$ and \mathfrak{h}_0 its orthogonal in $Z(\mathfrak{g})^{\perp}$. We have both \mathfrak{h}_0 and \mathfrak{g}_0 are left ideals for the Levi-Civita product, $\mathfrak{h}_0 \subset \mathfrak{g}_0$ and \mathfrak{h}_0 is totally isotropic of dimension 2. Moreover, if z_0 is a generator of $Z(\mathfrak{g}) \cap [\mathfrak{g}, \mathfrak{g}]$ such that $\langle z_0, z_0 \rangle = 1$ then, for any $u, v \in \mathfrak{g}$,

$$[u, v] = [u, v]_1 - 2\langle \mathcal{L}_{z_0} u, v \rangle z_0, \qquad (3.1)$$

where $[u, v]_1 \in Z(\mathfrak{g})^{\perp}$. This relation shows that $L_{z_0} \neq 0$ and since $L_{z_0}^2 = 0$ and $\operatorname{Im} L_{z_0} \subset \mathfrak{h}_0$, by virtue of Lemma 2.1, $\operatorname{Im} L_{z_0} = \mathfrak{h}_0$ and $\ker L_{z_0} = Z(\mathfrak{g}) \oplus \mathfrak{g}_0$. Moreover, from (3.1), one can check easily that $[\ ,\]_1$ satisfies Jacobi identity and $(Z(\mathfrak{g})^{\perp}, [\ ,\]_1)$ becomes a nilpotent Lie algebra. We denote by \circ the Levi-Civita product of $(Z(\mathfrak{g})^{\perp}, [\ ,\]_1, \langle \ ,\ \rangle)$ and we have obviously, for any $u, v \in Z(\mathfrak{g})^{\perp}$,

$$u.v = u \circ v - \langle \mathcal{L}_{z_0} u, v \rangle z_0.$$
(3.2)

Let $C(\mathfrak{g})$ denote the center of $(Z(\mathfrak{g})^{\perp}, [,]_1)$. We have $C(\mathfrak{g}) \neq 0$ and $C(\mathfrak{g}) \cap \mathfrak{g}_0 = \{0\}$. Indeed, if $u \in C(\mathfrak{g}) \cap \mathfrak{g}_0$, then for any $v \in Z(\mathfrak{g})^{\perp}$,

$$[u, v] = [u, v]_1 - 2\langle \mathbf{L}_{z_0} u, v \rangle z_0 = 0,$$

hence $u \in Z(\mathfrak{g})$ and then u = 0. This implies that $1 \leq \dim C(\mathfrak{g}) \leq 2$ and for any $u \in C(\mathfrak{g}) \setminus \{0\}, z_0.u \neq 0$.

Let z be a non-null vector in $C(\mathfrak{g})$ then $z_0.z$ is a non-null vector in \mathfrak{h}_0 . From (2.3) we get $L_z \circ L_{z_0} = L_{z_0} \circ L_z$ and by using (2.4) we have

$$\mathbf{R}_{z.z_0} = \mathbf{R}_{z_0} \circ \mathbf{R}_z = \mathbf{L}_{z_0} \circ \mathbf{R}_z.$$

464

For any $u \in Z(\mathfrak{g})^{\perp}$, we have from (3.2) and the fact that $z \in C(\mathfrak{g})$,

$$\mathbf{L}_z u = z \circ u - \langle z_0.z, u \rangle z_0 \quad \text{and} \quad \mathbf{R}_z u = u \circ z + \langle z_0.z, u \rangle z_0 = z \circ u + \langle z_0.z, u \rangle z_0$$

Thus $L_z u = R_z u - 2\langle z_0.z, u \rangle z_0$. This relation is also true for $u \in Z(\mathfrak{g})$ since $z_0.u = 0$ and hence $L_z = R_z + A_z$, where $A_z = -2\langle z.z_0, . \rangle z_0$. Since $L_{z_0} \circ A_z = 0$, we deduce that

$$R_{z,z_0} = L_{z_0} \circ R_z = L_{z_0} \circ (L_z - A_z) = L_{z_0} \circ L_z = L_z \circ L_{z_0}.$$
(3.3)

This relation implies that R_{z,z_0} is symmetric and $\mathfrak{g}_0 \oplus Z(\mathfrak{g}) \subset \ker R_{z,z_0}$. From (3.2), we have z.z = 0, and hence $\mathfrak{g}_0 \oplus \mathbb{R}z \oplus Z(\mathfrak{g}) \subset \ker R_{z,z_0}$. From the symmetry of R_{z,z_0} we deduce that $\operatorname{Im} R_{z,z_0} = (\ker R_{z,z_0})^{\perp}$ and finally $\operatorname{Im} R_{z,z_0} \subset (\mathfrak{g}_0 \oplus \mathbb{R}z \oplus Z(\mathfrak{g}))^{\perp} = \mathbb{R}z.z_0$. So we can write, for any $u \in \mathfrak{g}$,

$$\mathbf{R}_{z.z_0}(u) = a_1(u)z.z_0 = \alpha \langle z.z_0, u \rangle z.z_0,$$
(3.4)

where $a_1 \in \mathfrak{g}^*$ and $\alpha \in \mathbb{R}$. We will show now that $R_{z,z_0} = 0$.

Put $e_1 = z_0.z$. Since the orthogonal of z in $Z(\mathfrak{g})^{\perp}$ is different from the orthogonal of e_1 in $Z(\mathfrak{g})^{\perp}$, we can choose $\overline{z} \in Z(\mathfrak{g})^{\perp}$ such that $\langle z, \overline{z} \rangle = 0$ and $\langle e_1, \overline{z} \rangle = 1$. We put $e_2 = -z_0.\overline{z}$. We have $\langle e_2, z \rangle = 1$, $Z(\mathfrak{g})^{\perp} = \mathfrak{g}_0 \oplus \operatorname{span}\{z, \overline{z}\}$ and (e_1, e_2) is a basis of \mathfrak{h}_0 . Now \mathfrak{h}_0 is a 2-dimensional subalgebra of a nilpotent Lie algebra then it must be abelian and since $\mathfrak{h}_0 \subset \ker \mathbb{R}_{e_1}$ we deduce that $e_1.e_1 = e_1.e_2 = e_2.e_1 = 0$. Moreover, \mathfrak{h}_0 is a left ideal and we can write, for any $u \in \mathfrak{g}$,

$$u.e_1 = a_1(u)e_1$$
 and $u.e_2 = a_2(u)e_1 + b_2(u)e_2$.

From the relation $u.(z_0.z) = z_0.(u.z)$ shown in (2.5), we deduce that $a_1(u)z_0.z = z_0.(u.z)$, $a_1(u)z - u.z \in \ker L_{z_0} = \mathfrak{h}_0^{\perp}$ and hence

$$0 = a_1(u)\langle z, e_2 \rangle - \langle u.z, e_2 \rangle = a_1(u)\langle z, e_2 \rangle + \langle z, u.e_2 \rangle = a_1(u) + b_2(u).$$

Thus $b_2 = -a_1$. Using the fact that the curvature vanishes, we get

$$[u, v].e_2 = u.(v.e_2) - v.(u.e_2)$$

= $u.(a_2(v)e_1 - a_1(v)e_2) - v.(a_2(u)e_1 - a_1(u)e_2)$
= $2(a_2(v)a_1(u) - a_1(v)a_2(u))e_1.$

Thus

$$a_2([u,v]) = 2(a_2(v)a_1(u) - a_1(v)a_2(u)).$$

By taking u = z and $v = \overline{z}$ in this relation and since $a_2(z_0) = 0$, $a_1(z) = 0$ and, by virtue of (3.1), $[z, \overline{z}] = -2z_0$, we get $a_2(z)a_1(\overline{z}) = 0$. Now

$$a_1(\bar{z})e_1 = \mathcal{R}_{e_1}(\bar{z}) \stackrel{(3.3)}{=} \mathcal{L}_z \circ \mathcal{L}_{z_0}(\bar{z}) = -z.e_2 = -a_2(z)e_1.$$

This relation and $a_2(z)a_1(\bar{z}) = 0$ imply that $R_{e_1}(\bar{z}) = 0$. But $\mathfrak{g}_0 \oplus \mathbb{R}z \oplus Z(\mathfrak{g}) \subset \ker R_{e_1}$ so finally $R_{e_1} = 0$. To complete, we will show that $e_1 \in Z(\mathfrak{g})$, i.e., $L_{e_1} = \operatorname{ad}_{e_1} = 0$ and we will get a contradiction.

Note first that L_{e_1} is nilpotent, $L_{e_1}(\mathfrak{h}_0) = 0$ and $L_{e_1}(\mathfrak{g}_0) \subset \mathfrak{g}_0$. So L_{e_1} induces on the Euclidean vector space $\mathfrak{g}_0/\mathfrak{h}_0$ a skew-symmetric nilpotent endomorphism which must then vanish. So $L_{e_1}(\mathfrak{g}_0) \subset \mathfrak{h}_0$. On the other hand, by virtue of (3.1), $e_1 \cdot z = [e_1, z] = 0$. So for any $x \in \mathfrak{g}_0$, $e_1 \cdot x = [e_1, x] = a(x)e_1 + b(x)e_2$. This implies that $b(x) = \langle e_1 \cdot x, z \rangle = -\langle x, e_1 \cdot z \rangle = 0$. But ad_x is nilpotent so a(x) = 0 and we deduce that $L_{e_1}(\mathfrak{g}_0) = 0$. So far, we have shown that $\mathfrak{g}_0 \oplus \mathbb{R}z \oplus Z(\mathfrak{g}) \subset \ker L_{e_1}$ and hence its image has a dimension less or equal to 1. Moreover, $\mathrm{Im}L_{e_1} \subset \mathfrak{h}_0$ and hence $L_{e_1}^2 = 0$ and we can conclude by using Lemma 2.1. \Box

4. Flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n - 2) are obtained by the double extension process

In this section, based on Theorem 3.1, we will show that any flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n - 2) can be obtained by the double extension process from a Lorentzian or an Euclidean flat nilpotent Lie algebra. To do so we need first to recall the double extension process introduced by Aubert and Medina [3]. Note that Propositions 3.1 and 3.2 in the paper [3] are essential in this process.

Let $(B, [,]_0, \langle , \rangle_0)$ be a pseudo-Riemannian flat Lie algebra, $\xi, D : B \longrightarrow B$ two endomorphisms of $B, b_0 \in B$ and $\mu \in \mathbb{R}$ such that:

1. ξ is a 1-cocycle of $(B, [,]_0)$ with respect to the representation $L : B \longrightarrow End(B)$ defined by the left multiplication associated to the Levi-Civita product, i.e., for any $a, b \in B$,

$$\xi([a,b]) = \mathcal{L}_a\xi(b) - \mathcal{L}_b\xi(a), \tag{4.1}$$

2. $D - \xi$ is skew-symmetric with respect to \langle , \rangle_0 ,

$$[D,\xi] = \xi^2 - \mu\xi - \mathbf{R}_{b_0}, \qquad (4.2)$$

and for any $a, b \in B$

$$a.\xi(b) - \xi(a.b) = D(a).b + a.D(b) - D(a.b).$$
(4.3)

We call (ξ, D, μ, b_0) satisfying the two conditions above *admissible*.

Given (ξ, D, μ, b_0) admissible, we endow the vector space $\mathfrak{g} = \mathbb{R}e \oplus B \oplus \mathbb{R}\bar{e}$ with the inner product \langle , \rangle which extends \langle , \rangle_0 , for which span $\{e, \bar{e}\}$ and B are orthogonal, $\langle e, e \rangle = \langle \bar{e}, \bar{e} \rangle = 0$ and $\langle e, \bar{e} \rangle = 1$. We define also on \mathfrak{g} the bracket

466

$$[\bar{e}, e] = \mu e, \ [\bar{e}, a] = D(a) - \langle b_0, a \rangle_0 e \quad \text{and} \quad [a, b] = [a, b]_0 + \langle (\xi - \xi^*)(a), b \rangle_0 e, \quad (4.4)$$

where $a, b \in B$ and ξ^* is the adjoint of ξ with respect to \langle , \rangle_0 . Then $(\mathfrak{g}, [,], \langle , \rangle)$ is a flat pseudo-Euclidean Lie algebra called *double extension* of $(B, [,]_0, \langle , \rangle_0)$ according to (ξ, D, μ, b_0) . Using this method, Aubert and Medina characterize a flat Lorentzian nilpotent Lie algebras. They show that $(\mathfrak{g}, \langle , \rangle)$ is a flat Lorentzian nilpotent Lie algebra double extension of an Euclidean abelian Lie algebra according to $\mu = 0, D = \xi$ and b_0 where $D^2 = 0$.

Theorem 4.1. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of signature (2, n-2) with $n \geq 4$. Then, for any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$, $\mathcal{L}_e = \mathcal{R}_e = 0$. Moreover, $Z(\mathfrak{g}) + Z(\mathfrak{g})^{\perp}$ is a two-sided ideal with respect to the Levi-Civita product.

Proof. Recall that $[\mathfrak{g},\mathfrak{g}]^{\perp} = \{u \in \mathfrak{g}, \mathbb{R}_u = \mathbb{R}_u^*\}$, put $\mathfrak{a} = Z(\mathfrak{g}) + Z(\mathfrak{g})^{\perp}$ and consider $N(\mathfrak{g}) = \{v \in \mathfrak{g} \mid \mathbb{L}_u v = 0, \forall u \in Z(\mathfrak{g})\}$ and \mathfrak{h}_0 its orthogonal. We have seen in Lemma 2.3 that both $N(\mathfrak{g})$ and \mathfrak{h}_0 are left ideals and \mathfrak{h}_0 is totally isotropic. We have seen that if dim $\mathfrak{h}_0 \leq 1$ then $N(\mathfrak{g}) = \mathfrak{g}$ and hence any vector $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ satisfies the conditions required. Suppose that dim $\mathfrak{h}_0 = 2$. We claim that $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset \mathfrak{h}_0$. This is a consequence of the fact that $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} \subset Z(\mathfrak{g}) \subset N(\mathfrak{g})$ and the fact that $N(\mathfrak{g})/\mathfrak{h}_0$ is Euclidean. We distinguish two cases:

- Z(g) ∩ Z(g)[⊥] = h₀ and hence a = N(g). We have that g.N(g) ⊂ N(g) and for any u ∈ N(g), w ∈ g and v ∈ h₀, v.u = u.v = 0 and hence ⟨u.w, v⟩ = 0. This implies that N(g) is an ideal for the Lie bracket and, according to Lemma 2.2, [g, g] ⊂ N(g). We deduce that Z(g) ∩ Z(g)[⊥] ⊂ [g, g][⊥] and hence for any e ∈ Z(g) ∩ Z(g)[⊥], L_e is both skew-symmetric and symmetric and hence L_e = R_e = 0.
- dim Z(g)∩Z(g)[⊥] = 1. Since Z(g)∩Z(g)[⊥] ⊂ h₀, we have N(g) ⊂ a and a = N(g)⊕ℝy. We have g.N(g) ⊂ a and for any u ∈ N(g), w ∈ g and v ∈ Z(g)∩Z(g)[⊥], v.u = u.v = 0 and hence ⟨u.w, v⟩ = 0. Thus N(g).g ⊂ a. Moreover, for any v ∈ Z(g) ∩ Z(g)[⊥], ⟨y.y, v⟩ = 0 and then y.y ∈ a. In particular, a.a ⊂ a and hence a is a subalgebra. According to Lemma 2.2, [g, g] ⊂ a and hence Z(g) ∩ Z(g)[⊥] ⊂ [g, g][⊥]. This implies that for any e ∈ Z(g) ∩ Z(g)[⊥], L_e = R_e = 0 and a is a two-sided ideal. □

Theorem 4.2. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of signature (2, n - 2) with $n \geq 4$. Then $(\mathfrak{g}, \langle , \rangle)$ is a double extension of a flat Lorentzian nilpotent Lie algebra, according to $\mu = 0, D, \xi$ and b_0 where D is a nilpotent endomorphism.

Proof. Let *e* be a non-null vector in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and put $I = \mathbb{R}e$. According to Theorem 4.1, I is a totally isotropic two-sided ideal with respect to the Levi-Civita product. Moreover, I^{\perp} is also a two sided ideal. Then, according to [3], $(\mathfrak{g}, \langle , \rangle)$ is a double extension of flat Lorentzian Lie algebra (B, \langle , \rangle_B) with $\mu = 0$. From (4.4) and the fact that

 \mathfrak{g} is nilpotent we deduce that D is a nilpotent endomorphism, and B is a nilpotent Lie algebra. \Box

Remark 2. According to [3], flat Lorentzian nilpotent Lie algebra are double extension of abelian Euclidean Lie algebras. Then flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n-2) are obtained by applying twice the double extension process, starting from abelian Euclidean Lie algebras.

Example 1. Let $(\mathfrak{g}, \langle , \rangle)$ be a 4-dimensional flat pseudo-Euclidean nilpotent Lie algebras of signature (2, 2). According to Theorem 4.2, $(\mathfrak{g}, \langle , \rangle)$ is a double extension of a 2-dimensional abelian Lorentzian Lie algebra (B, \langle , \rangle_B) with $D^2 = 0$. The conditions (4.1)-(4.3) are equivalent to $[D, \xi] = \xi^2$ and $D - \xi$ is skew-symmetric, which implies that $D = \xi$. Then there exists a basis $\{e_1, e_2\}$ of B such that the matrix of D in this basis has the form

$$\begin{pmatrix} 0 & \alpha \\ 0 & 0 \end{pmatrix}$$
, where $\alpha \in \mathbb{R}$.

Let \langle , \rangle_B be any Lorentzian metric in B. Then according to (4.4), $\mathfrak{g} = \operatorname{span}\{\bar{e}, e, e_1, e_2\}$ with the non vanishing Lie brackets

$$[\bar{e}, e_1] = \beta e, \ [\bar{e}, e_2] = \alpha e_1 + \gamma e, \ [e_1, e_2] = \delta e, \text{where } \alpha, \ \beta, \ \gamma, \ \delta \in \mathbb{R},$$

and the metric in \mathfrak{g} is an extension orthogonal of \langle , \rangle_B such that $\langle \bar{e}, \bar{e} \rangle = \langle e, e \rangle = 0$ and $\langle \bar{e}, e \rangle = 1$. It is easy to show that \mathfrak{g} is isomorphic to one of the following Lie algebras:

- \mathbb{R}^4 : The 4-dimensional abelian Lie algebra (if $\alpha = \beta = \gamma = \delta = 0$).
- $\mathcal{H}_3 \oplus \mathbb{R}$: The trivial central extension of \mathcal{H}_3 (if $\alpha = 0$ and $(\beta, \gamma) \neq (0, 0)$ or $\alpha \neq 0$ and $\beta = \delta = 0$).
- The 4-dimensional filiform Lie algebra: $[\bar{e}, e_1] = e$, $[\bar{e}, e_2] = e_1$ (if $\alpha \neq 0$ and $(\beta, \delta) \neq (0, 0)$).

5. Flat pseudo-Euclidean 2-step nilpotent Lie algebras

A 2-step nilpotent Lie algebra is a non-abelian Lie algebra \mathfrak{g} which satisfies $[\mathfrak{g}, \mathfrak{g}] \subset Z(\mathfrak{g})$. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. In [5], the author showed that if the metric \langle , \rangle is Lorentzian, then \mathfrak{g} is a trivial central extension of \mathcal{H}_3 , where \mathcal{H}_3 is a 3-dimensional Heisenberg Lie algebra. Let us studies some properties of $(\mathfrak{g}, \langle , \rangle)$ in other signatures.

We consider $N(\mathfrak{g}) = \bigcap_{u \in Z(\mathfrak{g})} \ker \mathcal{L}_u$, and $\mathfrak{h}_0 := N(\mathfrak{g})^{\perp}$. According to Lemma 2.3, $\mathfrak{h}_0 \subset N(\mathfrak{g})$. If $N(\mathfrak{g}) \neq \mathfrak{g}$, then $N(\mathfrak{g})$ is degenerate. On the other hand, for any $z \in Z(\mathfrak{g})$, $a \in N(\mathfrak{g})$ and $u \in \mathfrak{g}$ we have

$$\langle u.a, z \rangle = -\langle a, z.u \rangle = \langle z.a, u \rangle = -\langle a.u, z \rangle = 0.$$

This implies that $\mathfrak{g}.N(\mathfrak{g}) \subset Z(\mathfrak{g})^{\perp}$ and $N(\mathfrak{g}).\mathfrak{g} \subset Z(\mathfrak{g})^{\perp}$. Thus

$$[\mathfrak{g}, N(\mathfrak{g})] \subset Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}.$$
(5.1)

Proposition 5.1. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. Then

- 1. $Z(\mathfrak{g})$ is degenerate.
- 2. For any $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$, $L_e = R_e = 0$.
- 3. For any $x, y \in Z(\mathfrak{g})^{\perp}$, $\langle [x, y], [x, y] \rangle = 0$.

Proof. 1. Suppose that $Z(\mathfrak{g})$ is non degenerate, i.e., $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = \{0\}$.

- If $\mathfrak{g} = N(\mathfrak{g})$ then according to (5.1), $[\mathfrak{g}, \mathfrak{g}] = 0$ which is impossible.
- If g ≠ N(g) then [g, N(g)] = 0 and hence N(g) = Z(g) which is impossible since N(g) is degenerate.
- 2. Let $e \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Since $Z(\mathfrak{g})^{\perp} \subset [\mathfrak{g}, \mathfrak{g}]^{\perp}$, then according to (2.6), $L_e = R_e$ is both symmetric and skew-symmetric and hence must vanish.
- 3. According to (2.1), we have for any $x, y \in Z(\mathfrak{g})^{\perp} x.y = \frac{1}{2}[x, y]$. Using (2.3), we have [x, y].x = x.(y.x) y.(x.x), then [x, y].x = 0. In particular $\langle [x, y].x, y \rangle = 0$. Since L_x is skew-symmetric, thus $\langle [x, y], [x, y] \rangle = 0$. \Box

Proposition 5.2. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. Then $(\mathfrak{g}, \langle , \rangle)$ is obtained by a sequence of double extension, starting from an abelian pseudo-Euclidean Lie algebra.

Proof. Let e be a non-null vector in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Since $\mathcal{L}_e = \mathcal{R}_e = 0$, then $\mathcal{I} = \mathbb{R}e$ is a totally isotropic two sided ideal, and \mathcal{I}^{\perp} is also a two sided ideal. Thus, $(\mathfrak{g}, \langle , \rangle)$ is a double extension of a pseudo-Euclidean Lie algebra $(B_1, \langle , \rangle_1)$. According to (4.4), B_1 is either abelian or 2-step nilpotent. If B_1 is 2-step nilpotent, then it's also a double extension of $(B_2, \langle , \rangle_2)$. Since a 2-step nilpotent Lie algebra can not admit a flat Euclidean metric, then there exists $k \in \mathbb{N}^*$ such that B_k is abelian. \Box

Proposition 5.3. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of signature (p, p+q). If dim $(Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}) = p$ then $Z(\mathfrak{g})^{\perp}$ is abelian.

Proof. Let $\{e_1, \ldots, e_p\}$ be a basis of $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$, then we can write $Z(\mathfrak{g}) = Z_1 \oplus$ span $\{e_1, \ldots, e_p\}$ where $(Z_1, \langle , \rangle_{/Z_1 \times Z_1})$ is euclidean. In Z_1^{\perp} we can choose a totally isotropic subspace span $\{\bar{e}_1, \ldots, \bar{e}_p\}$ such that, $\langle e_i, \bar{e}_j \rangle = 0$ for $i \neq j$, and $\langle e_i, \bar{e}_i \rangle = 1$. Let B_1 be the orthogonal of $Z_1 \oplus \text{span}\{e_1, \ldots, e_p\} \oplus \text{span}\{\bar{e}_1, \ldots, \bar{e}_p\}$. Thus we get a decomposition

$$\mathfrak{g} = Z_1 \oplus \operatorname{span}\{e_1, \dots, e_p\} \oplus B_1 \oplus \operatorname{span}\{\bar{e}_1, \dots, \bar{e}_p\}.$$
(5.2)

We have $Z(\mathfrak{g})^{\perp} = B_1 \oplus \operatorname{span}\{e_1, \ldots, e_p\}$, and $(B_1, \langle , \rangle_{/B_1 \times B_1})$ is euclidean. Let $\{b_1, \ldots, b_r\}$ be an orthonormal basis of B_1 . Since $\langle [b_i, b_j], [b_i, b_j] \rangle = 0$ and Z_1 is euclidean, then $[b_i, b_j] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ for all $i, j \in \{1, \ldots, r\}$. Thus, it suffices to show that $\langle [b_i, b_j], \bar{e}_k \rangle = 0$ for all $i, j \in \{1, \ldots, r\}$ and $k \in \{1, \ldots, p\}$. Let $z \in Z(\mathfrak{g}), k \in \{1, \ldots, p\}$ and $i, j \in \{1, \ldots, r\}$. We have $z.\bar{e}_k \in Z(\mathfrak{g})^{\perp}$ and $\langle z.\bar{e}_k, z.\bar{e}_k \rangle = 0$. Since B_1 is euclidean, then $z.\bar{e}_k \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Thus

$$\langle [\bar{e}_k, b_i], z \rangle = 2 \langle \bar{e}_k. b_i, z \rangle = -2 \langle z. \bar{e}_k, b_i \rangle = 0,$$

which implies that $[\bar{e}_k, b_i] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ and $\bar{e}_k.b_i \in Z(\mathfrak{g})^{\perp}$. We have $\langle \bar{e}_k.b_i, b_j \rangle = -\frac{1}{2} \langle [b_i, b_j], \bar{e}_k \rangle$, then $\bar{e}_k.b_i = e_0 - \frac{1}{2} \sum_{j=1}^r \langle [b_i, b_j], \bar{e}_k \rangle b_j$, where $e_0 \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Using the flatness of the metric, we have $[\bar{e}_k, b_i].b_i = \bar{e}_k.(b_i.b_i) - b_i.(\bar{e}_k.b_i)$. Since $[\bar{e}_k, b_i].b_i = 0$, and $b_i.b_i = 0$, thus $b_i.(\bar{e}_k.b_i) = 0$. From the facts that $b_i.e_0 = 0$ and $b_i.b_j = \frac{1}{2}[b_i, b_j]$, we deduce that

$$\begin{split} b_i.(\bar{e}_k.b_i) &= -\frac{1}{2}\sum_{j=1}^r \langle [b_i,b_j],\bar{e}_k \rangle b_i.b_j \\ &= -\frac{1}{4}\sum_{j=1}^r \langle [b_i,b_j],\bar{e}_k \rangle [b_i,b_j], \end{split}$$

which implies that $\sum_{j=1}^{r} \langle [b_i, b_j], \bar{e}_k \rangle^2 = 0$, and completes the proof. \Box

Suppose that dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$. Then the decomposition (5.2) becomes

$$\mathfrak{g} = Z_1 \oplus \mathbb{R}e \oplus B_1 \oplus \mathbb{R}\bar{e},\tag{5.3}$$

and the restriction of \langle , \rangle to Z_1 and B_1 is nondegenerate.

Proposition 5.4. Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra such that $\dim(Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}) = 1$. With notations as in (5.3), if the restriction of the metric \langle , \rangle to B_1 is positive or negative definite, then $\dim B_1 = 1$, and \mathfrak{g} is a trivial central extension of \mathcal{H}_3 , where \mathcal{H}_3 is the 3-dimensional Heisenberg Lie algebra.

Proof. Let $z \in Z(\mathfrak{g})$, and $b \in B_1$. We have $z.\overline{e} \in B_1$ and $z.b \in Z(\mathfrak{g})^{\perp}$. Since $\langle , \rangle_{B_1 \times B_1}$ is positive definite or negative definite and $\langle z.\overline{e}, z.\overline{e} \rangle = 0$, then $z.\overline{e} = 0$. Thus $\langle z.b, \overline{e} \rangle = 0$, which implies that $z.b \in B_1$. Using the same argument, then we can conclude that z.b = 0, and $L_z = 0$ for any $z \in Z(\mathfrak{g})$. Let $x, y \in B_1$. We have for any $z \in Z(\mathfrak{g})$

$$\langle [x,y],z\rangle = 2\langle x.y,z\rangle = 0$$

470

thus $[x, y] = \alpha e$, where $\alpha \in \mathbb{R}$. Using the flatness of the metric, then we get $[\bar{e}, x].x = \bar{e}.(x.x) - x.(\bar{e}.x)$, thus $x.(\bar{e}.x) = 0$. Let $\{b_1, \ldots, b_r\}$ be an orthonormal basis of B_1 . Then

$$\bar{e}.x = \beta e \mp \frac{1}{2} \sum_{i=1}^{r} \langle [x, b_i], \bar{e} \rangle b_i$$

where $\beta \in \mathbb{R}$. Thus

$$x.(\bar{e}.x) = \mp \frac{1}{4} \sum_{i=1}^{r} \langle [x, b_i], \bar{e} \rangle [x, b_i] = 0,$$

which implies that B_1 is abelian. On the other hand, we have for any $z \in Z(\mathfrak{g})$,

$$0 = \langle z.\bar{e}, x \rangle = -\frac{1}{2} \langle [\bar{e}, x], z \rangle,$$

thus $[\bar{e}, x] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Put $[\bar{e}, b_i] = \alpha_i e$, where $\alpha_i \in \mathbb{R}^*$ for any $i \in \{1, \ldots, r\}$. In fact, if $\alpha_i = 0$ then $b_i \in Z(\mathfrak{g})$, which contradicts the fact that $Z(\mathfrak{g}) \cap B_1 = \{0\}$. Suppose that dim $B_1 > 1$. For any $i \in \{2, \ldots, r\}$, we put $b'_i = b_i - \frac{\alpha_i}{\alpha_1} b_1$, thus $[\bar{e}, b'_i] = 0$ and $b'_i \in Z(\mathfrak{g})$ which is a Contradiction. Then dim $B_1 = 1$ and the only non vanishing brackets in \mathfrak{g} is $[\bar{e}, b_1] = \alpha_1 e$, thus \mathfrak{g} is a trivial central extension of \mathcal{H}_3 . \Box

6. Flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n-2)

Let us start by an example which play an important role in this section. Let L_6^4 be a 6-dimensional Lie algebra defined by the non vanishing Lie brackets, giving in the basis $\{x_1, \ldots, x_6\}$ by

$$[x_1, x_2] = x_5$$
, $[x_1, x_3] = [x_2, x_4] = x_6$.

This Lie algebra appear in the classification of 2-step nilpotent Lie algebras of dimension 6, as for example in [1, pp. 3], or in [7, pp. 97], where it is denoted by $L_{6,3}$.

It is clear that this Lie algebra admits no flat Euclidean or Lorentzian metrics. However, L_6^4 admits a flat pseudo-Euclidean metrics of signature (2, n - 2). In fact, let \langle , \rangle_0 be a pseudo-Euclidean metric of signature (2, 4) defined in the basis $\{x_1, \ldots, x_6\}$ by the matrix

$$\langle \ , \ \rangle_0 = \begin{pmatrix} 0 & 0 & 0 & 0 & a & 1 \\ 0 & 0 & b & c & 0 & 0 \\ 0 & b & 0 & 0 & 0 & 0 \\ 0 & c & 0 & d & 0 & 0 \\ a & 0 & 0 & 0 & \frac{1}{3d} & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where $a, c \in \mathbb{R}$, $b \in \mathbb{R}^*$ and d > 0. Straightforward calculations using (2.1) shows that, the only non vanishing Levi-Civita products are

$$\begin{aligned} x_1 \cdot x_1 &= -\frac{1}{b}x_2 - \left(\frac{a}{b} + \frac{c^2}{b^2d}\right)x_3 + \frac{c}{bd}x_4, \ x_1 \cdot x_2 &= \frac{c}{2bd}x_3 - \frac{1}{2d}x_4 + \frac{1}{2}x_5 + \frac{a}{2}x_6 \\ x_1 \cdot x_3 &= x_6, \ x_1 \cdot x_4 &= \frac{1}{2b}x_3, \ x_1 \cdot x_5 &= x_5 \cdot x_1 = -\frac{1}{6bd}x_3, \ x_2 \cdot x_4 &= \frac{1}{2}x_6, \\ x_2 \cdot x_5 &= x_5 \cdot x_2 = \frac{1}{6d}x_6, \\ x_2 \cdot x_1 &= \frac{c}{2bd}x_3 - \frac{1}{2d}x_4 - \frac{1}{2}x_5 + \frac{a}{2}x_6, \ x_4 \cdot x_1 &= \frac{1}{2b}x_3, \ x_4 \cdot x_2 &= -\frac{1}{2}x_6. \end{aligned}$$

One can verify that for any $x, y \in L_6^4$, we have $L_{[x,y]} = [L_x, L_y]$, which shows that $(L_6^4, \langle , \rangle_0)$ is flat. The following Theorem shows that this example, is the only non trivial one such that dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$.

Let $(\mathfrak{g}, \langle , \rangle)$ be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of signature (2, n-2). According to Theorem 3.1, the dimension of $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$ is 1 or 2.

Theorem 6.1. A 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric of signature (2, n-2) such that $\dim Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$ if and only if \mathfrak{g} is a trivial central extension of \mathcal{H}_3 or \mathfrak{g} is a trivial central extension of \mathcal{L}_6^4 . Furthermore, in the second case, the restriction of the metric to \mathcal{L}_6^4 is giving by \langle , \rangle_0 .

Proof. If dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$, then we can split \mathfrak{g} as

$$\mathfrak{g} = Z_1 \oplus \mathbb{R}e \oplus B_1 \oplus \mathbb{R}\bar{e},$$

where $Z(\mathfrak{g}) = Z_1 \oplus \mathbb{R}e$, $Z(\mathfrak{g})^{\perp} = \mathbb{R}e \oplus B_1$, span $\{e, \bar{e}\} = (Z_1 \oplus B_1)^{\perp}$, $\langle e, e \rangle = \langle \bar{e}, \bar{e} \rangle = 0$ and $\langle e, \bar{e} \rangle = 1$. We have two cases:

First case: $\langle , \rangle / B_1 \times B_1$ is positive or negative definite. Then according to Proposition 5.4, dim $B_1 = 1$ and \mathfrak{g} is a trivial central extension of \mathcal{H}_3 .

Second case: $\langle , \rangle / B_1 \times B_1$ is Lorentzian. Then dim $B_1 \geq 2$. For any $z, z' \in Z(\mathfrak{g})$, we have $\langle z.\bar{e}, z'.\bar{e} \rangle = 0$, then $\mathbb{R}_{\bar{e}}(Z(\mathfrak{g}))$ is a totally isotropic subspace. Since $\mathbb{R}_{\bar{e}}(Z(\mathfrak{g})) \subset B_1$ and $(B_1, \langle , \rangle / B_1 \times B_1)$ is Lorentzian, then there exists an isotropic vector $b_0 \in B_1$ and a covector $\lambda \in Z(\mathfrak{g})^*$ such that $z.\bar{e} = \lambda(z)b_0$ for any $z \in Z(\mathfrak{g})$.

Let $x, y \in Z(\mathfrak{g})^{\perp}$. Recall that $x.y = \frac{1}{2}[x, y]$ and $\langle [x, y], [x, y] \rangle = 0$. Since Z_1 is Euclidean then $[x, y] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Choose a basis $\{b_0, \overline{b}, b_1, \ldots, b_r\}$ of B_1 such that $\{b_1, \ldots, b_r\}$ is orthonormal, span $\{b_0, \overline{b}\}$ and span $\{b_1, \ldots, b_r\}$ are orthogonal, \overline{b} is isotropic and $\langle b_0, \overline{b} \rangle = 1$. Then for any $i \in \{0, 1, \ldots, r\}$, we have from (2.1)

$$\langle [\bar{e}, b_i] . \bar{e}, b_i \rangle = -\frac{1}{2} \langle [\bar{e}, b_i], [\bar{e}, b_i] \rangle.$$

On the other hand, we have $\langle [\bar{e}, b_i].\bar{e}, bi \rangle = \langle \lambda ([\bar{e}, b_i]) b_0, b_i \rangle = 0$, then $[\bar{e}, b_i] \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$.

We can write from the condition of flatness, for any $x, y, z \in \mathfrak{g}$

$$[x, y].z = x.(y.z) - y.(x.z).$$
(6.1)

If we take $x = \bar{e}$ and $y = z = b_0$, we get $b_0.(\bar{e}.b_0) = 0$. Let $i \in \{0, 1, \ldots, r\}$, since $\bar{e}.b_0 \in Z(\mathfrak{g})^{\perp}$ and $\langle \bar{e}.b_0, b_i \rangle = -\frac{1}{2} \langle [b_0, b_i], \bar{e} \rangle$, thus

$$\bar{e}.b_0 = \alpha e + \beta b_0 - \frac{1}{2} \sum_{i=1}^r \langle [b_0, b_i], \bar{e} \rangle,$$

where $\alpha, \beta \in \mathbb{R}$. It follows that $b_0.(\bar{e}.b_0) = -\frac{1}{4} \sum_{i=1}^r \langle [b_0, b_i], \bar{e} \rangle [b_0, b_i]$, thus $\sum_{i=1}^r \langle [b_0, b_i], \bar{e} \rangle^2 = 0$ which implies that $[b_0, b_i] = 0$ for any $i \in \{0, 1, \ldots, r\}$.

If we take in (6.1), $x = \bar{e}$, $y = b_0$ and $z = \bar{b}$ we get $b_0.(\bar{e}.\bar{b}) = 0$. Using the fact that $b_0.u = 0$ for any $u \in Z(\mathfrak{g})$, we deduce that $b_0.(\bar{e}.\bar{b}) = -\frac{1}{4}\langle [\bar{b}, b_0], \bar{e}\rangle [\bar{b}, b_0]$, thus $[\bar{b}, b_0] = 0$. Similarly, for any $i \in \{1, \ldots, r\}$, if we take in (6.1), $x = \bar{e}$ and $y = z = e_i$ we get

$$0 = b_i \cdot (\bar{e} \cdot b_i) = -\frac{1}{4} \sum_{j=1}^r \langle [b_i, b_j], \bar{e} \rangle [b_i, b_j],$$

thus $[b_i, b_j] = 0$ for any $i, j \in \{1, \ldots, r\}$. It follows that span $\{b_0, b_1, \ldots, b_r\}$ is abelian and $[b_0, \bar{b}] = 0$. We put

$$[\bar{e}, b_i] = \alpha_i e, \ [\bar{e}, \bar{b}] = \alpha e + z_0, \ [\bar{b}, b_i] = \beta_i e_i$$

where $\alpha_i, \beta_i, \alpha \in \mathbb{R}, z_0 \in Z_1$ and $i = 0, 1, \ldots, r$. If we take in (6.1), $x = \bar{e}$ and $y = z = \bar{b}$ we get $z_0.\bar{b} = -\bar{b}(\bar{e}.\bar{b})$, then $\frac{3}{2}z_0.\bar{b} - \frac{1}{2}\sum_{i=1}^r \beta_i^2 e = 0$, which implies that

$$3\langle z_0, z_0 \rangle = \sum_{i=1}^r \beta_i^2.$$
 (6.2)

We have dim $B_1 \geq 3$. In fact, if dim $B_1 = 2$ then $B_1 = \operatorname{span}\{b_0, b\}$ and (6.2) implies that $z_0 = 0$. Then the Lie brackets are reduced to $[\bar{e}, b_i] = \alpha_i e$ and $[\bar{e}, \bar{b}] = \alpha e$, and as in the proof of Proposition 5.4 we can deduce that dim $B_1 = 1$, which is a contradiction. The same argument shows that $z_0 \neq 0$. Then there exists $i \in \{1, \ldots, r\}$ such that $\beta_i \neq 0$. To simplify, we can suppose that $\beta_1 \neq 0$, and we have also $\alpha_0 \neq 0$ because $b_0 \notin Z(\mathfrak{g})$.

Let us show that dim $B_1 = 3$. In fact, if dim $B_1 \ge 4$, then we put for any $i \ge 4$,

$$b_i' = b_i - \frac{\beta_i}{\beta_1} b_1 - \left(\frac{\alpha_i \beta_1 - \alpha_1 \beta_i}{\alpha_0 \beta_1}\right) b_0,$$

and we can verify easily that $[b'_i, x] = 0$ for any $x \in \mathfrak{g}$. Thus $b'_i \in Z(\mathfrak{g})$ which contradicts the fact that $Z(\mathfrak{g}) \cap B_1 = \{0\}$. We put $x_1 = \overline{e}, x_2 = \overline{b}, x_3 = \frac{b_0}{\alpha_0}, x_4 = \frac{1}{\beta_1}b_1 - \frac{\alpha_1}{\beta_1\alpha_0}b_0, x_5 = \alpha e + z_0$ and $x_6 = e$. Then the only non vanishing brackets on \mathfrak{g} are

$$[x_1, x_2] = x_5, \ [x_1, x_3] = [x_2, x_4] = x_6.$$

It follows that \mathfrak{g} is a trivial central extension of L_6^4 . Furthermore, with the condition (6.2), one can verify that the restriction of the metric to L_6^4 is given by \langle , \rangle_0 . Conversely, if \mathfrak{g} splits orthogonally into $\mathfrak{g} = Z_1 \oplus L_6^4$, where $Z_1 \subset Z(\mathfrak{g})$ and the restriction of the metric to L_6^4 is \langle , \rangle_0 , and the restriction to Z_1 is Euclidean, then $(\mathfrak{g}, \langle , \rangle)$ is a flat pseudo-Euclidean 2-step nilpotent Lie algebra of signature (2, n-2) and dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$. \Box

Corollary 6.1. The Heisenberg Lie algebra \mathcal{H}_{2k+1} admits a flat pseudo-Euclidean metric of signature (2, n-2) if and only if k = 1.

Proof. Since $Z(\mathcal{H}_{2k+1}) = 1$, then if $\mathfrak{g} = \mathcal{H}_{2k+1}$ admits such metric then we have $\dim Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$. This gives the result, by virtue of Theorem 6.1. \Box

Remark 3. In Theorem 6.1, if \mathfrak{g} is a trivial central extension of \mathcal{H}_3 , then $\mathfrak{g} = Z_1 \oplus \mathcal{H}_3$ and the metric \langle , \rangle has one of the following form:

• The restriction of \langle , \rangle to Z_1 is Euclidean and its restriction to \mathcal{H}_3 is given by the matrix

$$\begin{pmatrix} 0 & 0 & \alpha \\ 0 & -1 & 0 \\ \alpha & 0 & 0 \end{pmatrix}, \text{ where } \alpha \in \mathbb{R}.$$

The restriction of (,) to Z₁ is Lorentzian and its restriction to H₃ is given by the matrix

$$\begin{pmatrix} 0 & 0 & \alpha \\ 0 & 1 & 0 \\ \alpha & 0 & 0 \end{pmatrix}, \text{ where } \alpha \in \mathbb{R}.$$

Theorem 6.2. A 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric \langle , \rangle of signature (2, n - 2) such that $\dim Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 2$ if and only if there exist an orthonormal vectors $\{b_1, \ldots, b_k\}$ in \mathfrak{g} , a linearly independent isotropic vectors $\{e_1, \bar{e}_1, e_2, \bar{e}_2\}$ in $\{b_1, \ldots, b_k\}^{\perp}$, where $\langle e_1, e_2 \rangle = \langle e_1, \bar{e}_2 \rangle = \langle \bar{e}_1, e_2 \rangle = \langle \bar{e}_1, \bar{e}_2 \rangle = 0$ and $\langle e_1, \bar{e}_1 \rangle = \langle e_2, \bar{e}_2 \rangle = 1$, such that for any $i \in \{1, \ldots, k\}$ the only non vanishing brackets are

$$[\bar{e}_1, \bar{e}_2] = z_0,$$

M. Boucetta, H. Lebzioui / Journal of Algebra 537 (2019) 459-477

$$\begin{aligned} [\bar{e}_1, b_i] &= \alpha_i e_1 + \beta_i e_2, \\ [\bar{e}_2, b_i] &= \gamma_i e_1 + \delta_i e_2, \end{aligned}$$
(6.3)

where $\alpha_i, \beta_i, \gamma_i, \delta_i \in \mathbb{R}$, and

$$3\langle z_0, z_0 \rangle = \sum_{i=1}^{k} (\gamma_i + \beta_i)^2 - 4\alpha_i \delta_i.$$
(6.4)

Proof. According to Proposition 5.3, $Z(\mathfrak{g})^{\perp}$ is abelian, and we can split \mathfrak{g} into

$$\mathfrak{g} = Z_1 \oplus \operatorname{span}\{e_1, e_2\} \oplus B_1 \oplus \operatorname{span}\{\bar{e}_1, \bar{e}_2\},\tag{6.5}$$

where $Z(\mathfrak{g}) = Z_1 \oplus \operatorname{span}\{e_1, e_2\}, \ Z(\mathfrak{g})^{\perp} = \operatorname{span}\{e_1, e_2\} \oplus B_1, \ (Z_1 \oplus B_1)^{\perp} = \operatorname{span}\{e_1, e_2, \bar{e}_1, \bar{e}_2\}, \ \operatorname{span}\{\bar{e}_1, \bar{e}_2\} \text{ is totally isotropic, } \langle e_1, e_2 \rangle = \langle e_1, \bar{e}_2 \rangle = \langle \bar{e}_1, e_2 \rangle = \langle \bar{e}_1, \bar{e}_2 \rangle = 0$ and $\langle e_1, \bar{e}_1 \rangle = \langle e_2, \bar{e}_2 \rangle = 1.$

In the proof of Proposition 5.3, we have shown that for any $x, y \in Z(\mathfrak{g})^{\perp}$ and $k \in \{1,2\}, [x,y]$ and $[\bar{e}_k, x]$ are in $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Let $\{b_1, \ldots, b_r\}$ be an orthonormal basis of B_1 . Then, the non vanishing brackets are:

$$egin{aligned} & [ar{e}_1, ar{e}_2] = z_0, \ & [ar{e}_1, b_i] = lpha_i e_1 + eta_i e_2, \ & [ar{e}_2, b_i] = \gamma_i e_1 + \delta_i e_2, \end{aligned}$$

where $z_0 \in Z(\mathfrak{g}), \alpha_i, \beta_i, \gamma_i, \delta_i \in \mathbb{R}$ and $i = 1, \ldots, r$. From (2.1) and the Lie brackets above, we have for any $u \in Z(\mathfrak{g})$ and $v \in Z(\mathfrak{g})^{\perp}$, u.v = 0. Recall that $(\mathfrak{g}, \langle , \rangle)$ is flat if and only if for any $x, y, z \in \mathfrak{g}$

$$\mathbf{L}_{[x,y]}(z) = [\mathbf{L}_x, \mathbf{L}_y](z).$$
(6.6)

Let $x \in Z(\mathfrak{g}) + Z(\mathfrak{g})^{\perp}$, $y, z \in \mathfrak{g}$ and $i \in \{1, 2\}$. We have $\langle y.z, e_i \rangle = 0$, then $y.z \in Z(\mathfrak{g}) + Z(\mathfrak{g})^{\perp}$. Thus x.(y.z) = (y.z).x = 0. On the other hand, we have $x.y, y.x \in Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp}$. Thus (x.y).z = (y.x).z = 0. It follows that if one of the vectors x, y or z is in $Z(\mathfrak{g}) + Z(\mathfrak{g})^{\perp}$, then (6.6) is satisfied. Thus $(\mathfrak{g}, \langle , \rangle)$ is flat if and only if

$$\mathcal{L}_{[\bar{e}_1,\bar{e}_2]}\bar{e}_1 - \left[\mathcal{L}_{\bar{e}_1},\mathcal{L}_{\bar{e}_2}\right]\bar{e}_1 = \mathcal{L}_{[\bar{e}_1,\bar{e}_2]}\bar{e}_2 - \left[\mathcal{L}_{\bar{e}_1},\mathcal{L}_{\bar{e}_2}\right]\bar{e}_2 = 0.$$

Straightforward calculations using (2.1) give

$$z_{0}.\bar{e}_{1} = -\frac{1}{2} \langle z_{0}, z_{0} \rangle e_{2}, \ \bar{e}_{2}.\bar{e}_{1} = -\frac{1}{2} z_{0} - \frac{1}{2} \sum_{i=1}^{r} (\beta_{i} + \gamma_{i}) b_{i}, \ \bar{e}_{1}.\bar{e}_{1} = -\sum_{i=1}^{r} \alpha_{i} b_{i},$$
$$\bar{e}_{1}b_{i} = \alpha_{i}e_{1} + \frac{1}{2} (\beta_{i} + \gamma_{i})e_{2}, \ \bar{e}_{2}b_{i} = \frac{1}{2} (\beta_{i} + \gamma_{i})e_{1} + \delta_{i}e_{2}.$$

Thus the condition $L_{[\bar{e}_1,\bar{e}_2]}\bar{e}_1 - [L_{\bar{e}_1}, L_{\bar{e}_2}]\bar{e}_1 = 0$ is equivalent to (6.3). Similarly, we show that the second condition $L_{[\bar{e}_1,\bar{e}_2]}\bar{e}_2 - [L_{\bar{e}_1}, L_{\bar{e}_2}]\bar{e}_2 = 0$ is also equivalent to (6.3). This completes the proof. \Box

Corollary 6.2. If a 2-step nilpotent Lie algebra \mathfrak{g} admits a flat pseudo-Euclidean metric of signature (2, n - 2), then dim $[\mathfrak{g}, \mathfrak{g}] \leq 3$.

7. Examples

In this section, we show that any 6-dimensional 2-step nilpotent Lie algebra, which is not a trivial central extension of \mathcal{H}_5 , admits a flat pseudo-Euclidean metric of signature (2, n-2), where \mathcal{H}_5 is a 5-dimensional Heisenberg Lie algebra. For this, we use the table below which give all 6-dimensional 2-step nilpotent Lie algebras (see [1, pp. 3]). Note that \mathcal{H}_5 (resp. \mathcal{H}_3) is denoted in this table by L_5^4 (resp. L_3).

Lie algebra	Nonzero commutators
$L_3 \oplus 3L_1$	$[x_1, x_2] = x_3$
$L_5^1 \oplus L_1$	$[x_1, x_2] = x_3, \ [x_1, x_4] = x_5$
$L_5^4 \oplus L_1$	$[x_1, x_3] = x_5, \ [x_2, x_4] = x_5$
$L_3 \oplus L_3$	$[x_1, x_2] = x_3, \ [x_4, x_5] = x_6$
L_{6}^{4}	$[x_1, x_2] = x_5, \ [x_1, x_3] = x_6, \ [x_2, x_4] = x_6$
$L_{6}^{5}(-1)$	$[x_1, x_3] = x_5, \ [x_1, x_4] = x_6, \ [x_2, x_4] = x_5, \ [x_2, x_3] = -x_6$
L_{6}^{3}	$[x_1, x_3] = x_6, \ [x_1, x_2] = x_4, \ [x_2, x_3] = x_5$

The result is evident for $L_3 \oplus 3L_1$ and L_6^4 (Theorem 6.1). Let \langle , \rangle be a pseudo-Euclidean metric of signature (2, n-2) given by the matrix

$\langle \;,\; angle =$	$\int 0$	1	0	0	0	0
	1	0	0	0	0	0
	0	0	0	1	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$
	0	0	1	0	0	0
	0	0	0	0	1	0
	$\int 0$	0	0	0	0	1/

Using Theorem 6.2, let us show that, for all those Lie algebras $L_5^1 \oplus L_1$, $L_3 \oplus L_3$, $L_6^5(-1)$ and L_6^3 there exists a basis \mathbb{B} such that the metric given in \mathbb{B} by \langle , \rangle is flat.

- For $L_5^1 \oplus L_1$, with our notations we put $\mathbb{B} = \{e_1, \bar{e}_1, e_2, \bar{e}_2, z_0, b_1\}$ where $e_1 = x_6$, $\bar{e}_1 = x_1$, $e_2 = x_5$, $\bar{e}_2 = x_2$, $z_0 = x_3$ and $b_1 = x_4$. One can verify easily that in this basis, the Lie brackets and the metric verify the conditions (6.3) and (6.4), thus $(L_5^1 \oplus L_1, \langle , \rangle)$ is flat.
- For $L_3 \oplus L_3$, we put $\mathbb{B} = \{e_1, \bar{e}_1, e_2, \bar{e}_2, b_1, b_2\}$ where $e_1 = x_3$, $\bar{e}_1 = x_1$, $e_2 = x_6$, $\bar{e}_2 = x_4$, $b_1 = x_1$ and $b_2 = x_5$.

- For $L_6^5(-1)$, we put $\mathbb{B} = \{e_1, \bar{e}_1, e_2, \bar{e}_2, b_1, b_2\}$ where $e_1 = x_5 + x_6, \bar{e}_1 = x_1, e_2 = -2x_6, \bar{e}_2 = x_2, b_1 = x_4$ and $b_2 = -(3 + \sqrt{15})x_4 x_3$.
- For L_6^3 , we put $\mathbb{B} = \{e_1, \bar{e}_1, e_2, \bar{e}_2, z_0, b_1\}$ where $e_1 = x_4$, $\bar{e}_1 = x_1$, $e_2 = \frac{4}{3}x_5$, $\bar{e}_2 = x_3$, $z_0 = x_6$ and $b_1 = x_2$.

For $\mathfrak{g} = L_5^4 \oplus L_1$, it is clear that this algebra can not admit flat pseudo-Euclidean metric of signature (2, n - 2) such that dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 1$ (Theorem 6.1). Suppose that it admits such metric with dim $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 2$ (Theorem 6.2). We have dim $[\mathfrak{g}, \mathfrak{g}] = 1$ and dim $Z(\mathfrak{g}) = 2$. Then dim $Z(\mathfrak{g})^{\perp} = 4$ and dim $B_1 = 2$. Put $[\mathfrak{g}, \mathfrak{g}] = \mathbb{R}e_1$, thus the Lie brackets satisfy

$$[\bar{e}_1, \bar{e}_2] = \alpha e_1, \ [\bar{e}_1, b_i] = \alpha_i e_1, \ [\bar{e}_2, b_i] = \gamma_i e_1, \ i = 1, 2.$$

The condition (6.4) implies that $\gamma_1 = \gamma_2 = 0$. Then $\alpha, \alpha_1, \alpha_2 \in \mathbb{R}^*$. The fact that $\alpha = 0$, for example, implies that $\bar{e}_2 \in Z(\mathfrak{g})$. Put $b'_2 = b_2 - \frac{\alpha_2}{\alpha_1}b_1$, then $b'_2 \in Z(\mathfrak{g})$, which is a contradiction. It follows that $L_5^4 \oplus L_1$ can not admit flat pseudo-Euclidean metrics of signature (2, n-2).

Acknowledgment

We thank the referee for carefully reading our manuscript, and many useful suggestions and comments.

References

- A.N. Abiev, On the Ricci curvature of solvable metric Lie algebras with two-step nilpotent derived algebras, Siberian Advences in Mathematics 24 (1) (2014) 1–11.
- [2] M. Ait Ben Haddou, M. Boucetta, H. Lebzioui, Left-invariant Lorentzian flat metrics on Lie groups, Journal of Lie Theory 22 (1) (2012) 269–289.
- [3] A. Aubert, A. Medina, Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J. 55 (2003) 487–506.
- [4] M. Boucetta, H. Lebzioui, Flat nonunimodular Lorentzian Lie algebras, Communications in Algebra 44 (10) (2016) 4185–4195.
- [5] M. Guédiri, On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds, Transactions of the American Mathematical Society 355 (2) (2003) 775–786.
- [6] J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Mathematics 21 (3) (1976) 293–329.
- [7] P. Revoy, Algèbres de lie métabéliennes, annales de la faculté des sciences de toulouse, 5éme série 2 (2) (1980) 93–100.

Further reading

- [8] M. Boucetta, Ricci flat left-invariant pseudo-Riemannian metrics on 2-step nilpotent Lie groups, arXiv:0910.2563v1 [math. D.G], 2009.
- M. Guédiri, M. Bin-Asfour, Ricci-flat left-invariant Lorentzian metrics on 2-step nilpotent Lie groups, Archivum Mathematicum 50 (3) (2014) 171–192.