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1. Introduction

A flat pseudo-Euclidean Lie algebra is a real Lie algebra with a non degenerate sym-
metric bilinear form and a left symmetric product whose the commutator is the Lie 
bracket and such that the left multiplications are skew-symmetric. In geometrical terms, 
a flat pseudo-Euclidean Lie algebra is the Lie algebra of a Lie group with a left-invariant 
pseudo-Riemannian metric with vanishing curvature. Let (g, 〈 , 〉) be a flat pseudo-
Euclidean Lie algebra of dimension n. If the metric 〈 , 〉 is definite positive (resp. of 
signature (1, n − 1)), then (g, 〈 , 〉) is called Euclidean (resp. Lorentzian). Flat pseudo-
Euclidean Lie algebras have been studied mostly in the Euclidean and the Lorentzian 
cases. Let us enumerate some important results on flat pseudo-Euclidean Lie algebras:

1. In [6], Milnor showed that (g, 〈 , 〉) is a flat Euclidean Lie algebra if and only if g splits 
orthogonally as g = b ⊕ u, where u is an abelian ideal, b is an abelian subalgebra, 
and adb is skew-symmetric for any b ∈ b. According to this theorem, a nilpotent 
(non-abelian) Lie algebra can not admit a flat Euclidean metric.

2. In [3], Aubert and Medina showed that all flat Lorentzian nilpotent Lie algebras are 
obtained by the double extension process from Euclidean abelian Lie algebras.

3. Guédiri showed in [5] that a flat Lorentzian 2-step nilpotent Lie algebra is a 
trivial central extension of the 3-dimensional Heisenberg Lie algebra H3. Recall 
that the Heisenberg Lie algebra H2k+1, is defined as the vector space H2k+1 =
span{z, x1, . . . , xk, y1, . . . , yk} such that all brackets are zeros except [xi, yi] = z for 
1 ≤ i ≤ k.

4. In [2], M. Ait Ben Haddou and the authors showed that all flat Lorentzian Lie al-
gebras with degenerate center can be obtained by double extension process from 
flat Euclidean Lie algebras. In [4], the authors showed that all flat nonunimodu-
lar Lorentzian Lie algebras can be obtained by double extension process from flat 
Euclidean Lie algebras.

The study of flat pseudo-Euclidean Lie algebras of signature other than (0, n) and 
(1, n − 1) is an open problem. In this paper, we study a part of this problem, more 
precisely, we study flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n − 2)
and flat pseudo-Euclidean 2-step nilpotent Lie algebras of any signature. There are our 
main results:

1. In Theorem 3.1, we show that the center of a flat pseudo-Euclidean nilpotent Lie 
algebra of signature (2, n − 2) must be degenerate. From this theorem and Theo-
rem 4.1 we deduce that all flat pseudo-Euclidean nilpotent Lie algebra of signature 
(2, n − 2) are obtained by the double extension process.

2. We give some general properties of flat pseudo-Euclidean 2-step nilpotent Lie alge-
bras and we show that their center is degenerate. We show also that we can construct 



M. Boucetta, H. Lebzioui / Journal of Algebra 537 (2019) 459–477 461
all this Lie algebras by applying a sequence of double extension starting from a 
pseudo-Euclidean abelian Lie algebra.

3. We give all 2-step nilpotent Lie algebras which can admit flat pseudo-Euclidean 
metrics of signature (2, n − 2) (Theorem 6.1 and Theorem 6.2). We will see that a 
class of 2-step nilpotent Lie algebras which can admit a flat pseudo-Euclidean metrics 
of signature (2, n −2) is very rich, contrary to the Euclidean and the Lorentzian cases. 
As example, we show that any 6-dimensional 2-step nilpotent Lie algebra which is 
not a trivial central extension of a 5-dimensional Heisenberg Lie algebra, admits such 
metric.

The paper is organized as follows. In section 2, we give some generalities on flat 
pseudo-Euclidean Lie algebras. In section 3 and section 4, we study flat pseudo-Euclidean 
metrics of signature (2, n − 2) on nilpotent Lie algebras. In section 5, we study flat 
pseudo-Euclidean 2-step nilpotent Lie algebra of any signature. In section 6, we give all 
flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n − 2). We end the 
paper by giving some examples.

2. Preliminaries

In this section, we give some general results on nilpotent Lie algebras and on flat 
pseudo-Euclidean nilpotent Lie algebras which will be crucial in the proofs of our main 
results.

Let us start with two useful lemmas. Recall that a pseudo-Euclidean vector space is a 
real finite dimensional vector space endowed with a non degenerate bilinear symmetric 
form.

Lemma 2.1. Let (V, 〈 , 〉) be a pseudo-Euclidean vector space and A a skew-symmetric 
endomorphism satisfying A2 = 0 and dim ImA ≤ 1. Then A = 0.

Proof. Suppose that A �= 0. Then ImA is a totally isotropic vector space of dimension 1. 
This implies that kerA is an hyperplan which contains ImA. Let e be a generator of ImA

and choose an isotropic vector ē /∈ kerA such that 〈e, ̄e〉 = 1. We have V = kerA ⊕ Rē

and A(ē) = αe. Then α = 〈A(ē), ̄e〉 = 0 which gives a contradiction and completes the 
proof. �
Lemma 2.2. Let g be a nilpotent Lie algebra, a and h, respectively, a Lie subalgebra of 
codimension one and an ideal of codimension two. Then [g, g] is contained in a and in h.

Proof. We have g/h is a 2-dimensional nilpotent Lie algebra and hence must be abelian. 
This implies that [g, g] ⊂ h. On the other hand, write g = a ⊕ Ry. For any x ∈ a, we 
have

[x, y] = a(x)y + u1, where u1 ∈ a.
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Since a is a Lie subalgebra then, for any n ∈ N∗, adn
x(y) = a(x)ny + un with un ∈ a. 

Since adx is nilpotent then a(x) = 0 and the result follows. �
We pursue with some general properties of flat pseudo-Euclidean Lie algebras. 

A pseudo-Euclidean Lie algebra (g, 〈 , 〉) is a finite dimensional real Lie algebra g
endowed with a non degenerate symmetric bilinear form 〈 , 〉. We define a product 
(u, v) 	→ u.v on g called Levi-Civita product by Koszul’s formula

2〈u.v, w〉 = 〈[u, v], w〉 + 〈[w, u], v〉 + 〈[w, v], u〉, (2.1)

for any u, v, w ∈ g. We denote by Lu : g −→ g and Ru : g −→ g, respectively, the left 
multiplication and the right multiplication by u given by Luv = u.v and Ruv = v.u. 
For any u ∈ g, Lu is skew-symmetric with respect to 〈 , 〉 and adu = Lu − Ru, where 
adu : g −→ g is given by aduv = [u, v]. We call (g, 〈 , 〉) flat pseudo-Euclidean Lie algebra
if the Levi-Civita product is left symmetric, i.e., for any u, v, w ∈ g,

ass(u, v, w) = ass(v, u, w), (2.2)

where ass(u, v, w) = (u.v).w − u.(v.w).

Remark 1. Let G be a Lie group, and μ a left-invariant pseudo-Riemannian metric on G. 
Let g = Lie(G) and 〈 , 〉 = μe. Then the curvature of (G, μ) vanishes if and only if 
(g, 〈 , 〉) is a flat pseudo-Euclidean Lie algebra.

Let (g, 〈 , 〉) be a flat pseudo-Euclidean Lie algebra. The condition (2.2) is also 
equivalent to one of the following relations:

L[u,v] = [Lu,Lv], (2.3)

Ru.v − Rv ◦ Ru = [Lu,Rv], (2.4)

for any u, v ∈ g. We denote by Z(g) = {u ∈ g, adu = 0} the center of g. For any 
u, v ∈ Z(g) and a, b ∈ g, one can deduce easily from (2.1)-(2.4) that

u.v = 0, Lu = Ru, Lu ◦ Lv = 0 and u.(a.b) = a.(u.b). (2.5)

Proposition 2.1. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra. 
If Z(g) = {u ∈ g, Lu = Ru = 0} then Z(g) is degenerate.

Proof. One can see easily that the orthogonal of the derived ideal of g is given by

[g, g]⊥ = {u ∈ g,Ru = R∗
u}. (2.6)

Then Z(g) ⊂ [g, g]⊥ and hence [g, g] ⊂ Z(g)⊥. Since g is nilpotent non abelian then 
{0} �= [g, g] ∩ Z(g) ⊂ Z(g)⊥ ∩ Z(g). This shows that Z(g) is degenerate. �
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Proposition 2.2. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent Lie algebra. Then:

1. If (g, 〈 , 〉) is Euclidean then g is abelian.
2. If (g, 〈 , 〉) is non abelian Lorentzian then Z(g) is degenerate.

Proof. 1. According to (2.5), for any u ∈ Z(g), Lu is a nilpotent skew-symmetric endo-
morphism and hence must vanishes. This gives the result, by virtue of Proposition 2.1.

2. This is a consequence of (2.5), Lemma 2.1 and Proposition 2.1. �
Put N(g) =

⋂
u∈Z(g) ker Lu, g0 := N(g) ∩ Z(g)⊥ and h0 := N(g)⊥. These vector 

spaces and the following lemma which states their main properties will play a central 
role in this paper, namely, in the proof of Theorem 3.1.

Lemma 2.3. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of 
signature (2, n − 2) with n ≥ 4. Then:

1. N(g), g0 and h0 are left ideals for the Levi-Civita product, h0 ⊂ g0, and h0 is totally 
isotropic with dim h0 ≤ 2.

2. If Z(g) is non degenerate then the restriction of 〈 , 〉 to Z(g) is positive definite, 
dim h0 = 2 and dim(Z(g) ∩ [g, g]) = 1. Moreover, if z0 is a generator of Z(g) ∩ [g, g]
with 〈z0, z0〉 = 1 then for any u, v ∈ g,

[u, v] = [u, v]1 − 2〈Lz0u, v〉z0, (2.7)

where [u, v]1 ∈ Z(g)⊥.

Proof. 1. Note first that, for any u ∈ g, (ker Lu)⊥ = ImLu and hence h0 =∑
u∈Z(g) ImLu. From (2.5), we have clearly that Z(g) ⊂ N(g) and, for any u, v ∈

Z(g), ImLu ⊂ ker Lv. Thus h0 ⊂ g0. This implies that h0 is totally isotropic and 
since the signature is (2, n − 2) one must have dim h0 ≤ 2. One can deduce easily 
from the third relation in (2.5) that N(g) is a left ideal. This implies, since the left 
multiplication are skew-symmetric that h0 and g0 are also left ideals.

2. Suppose now that Z(g) is non degenerate. If dim h0 ≤ 1 then, according to 
Lemma 2.1, Lu = 0 for any u ∈ Z(g) and hence, by virtue of Proposition 2.1, 
Z(g) is degenerate. So we must have dim h0 = 2 and the restriction of 〈 , 〉 to Z(g)⊥
is of signature (2, dimZ(g)⊥ − 2) which implies that the restriction of 〈 , 〉 to Z(g)
is definite positive. On the other hand, according to what above we can choose two 
vectors (ē1, ̄e2) of Z(g)⊥ such that Z(g)⊥ = g0 ⊕ Span{ē1, ̄e2}. So,

[g, g] = [Z(g)⊥, Z(g)⊥] = R[ē1, ē2] + [ē1, g0] + [ē2, g0] + [g0, g0].

We have that g0 is a left ideal for the Levi-Civita product and for any a ∈ g0, b ∈ g

and u ∈ Z(g),
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〈a.b, u〉 = −〈b, a.u〉 = −〈b, u.a〉 = 0

and hence g0.g ⊂ Z(g)⊥. This implies that [ē1, g0] + [ē2, g0] + [g0, g0] ⊂ Z(g)⊥. 
Moreover, [ē1, ̄e2] = z + v0, where z ∈ Z(g), z �= 0 since Z(g) ∩ [g, g] �= 0 and 
v0 ∈ Z(g)⊥. So [g, g] = Rz ⊕ F where F is a vector subspace of Z(g)⊥. From this 
relation, we can deduce that Z(g) ∩ [g, g] = Rz and (2.7) follows immediately. �

3. The center of a flat pseudo-Euclidean nilpotent Lie algebra of signature (2, n − 2)
is degenerate

The purpose of this section is to prove the following theorem.

Theorem 3.1. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra 
of signature (2, n − 2) with n ≥ 4. Then Z(g) is degenerate.

Proof. We proceed by contradiction and we suppose that Z(g) is non degenerate, i.e., 
g = Z(g) ⊕Z(g)⊥. As in Lemma 2.3, we consider g0 = {v ∈ Z(g)⊥/Luv = 0, ∀u ∈ Z(g)}
and h0 its orthogonal in Z(g)⊥. We have both h0 and g0 are left ideals for the Levi-Civita 
product, h0 ⊂ g0 and h0 is totally isotropic of dimension 2. Moreover, if z0 is a generator 
of Z(g) ∩ [g, g] such that 〈z0, z0〉 = 1 then, for any u, v ∈ g,

[u, v] = [u, v]1 − 2〈Lz0u, v〉z0, (3.1)

where [u, v]1 ∈ Z(g)⊥. This relation shows that Lz0 �= 0 and since L2
z0 = 0 and ImLz0 ⊂

h0, by virtue of Lemma 2.1, ImLz0 = h0 and ker Lz0 = Z(g) ⊕ g0. Moreover, from (3.1), 
one can check easily that [ , ]1 satisfies Jacobi identity and (Z(g)⊥, [ , ]1) becomes a 
nilpotent Lie algebra. We denote by ◦ the Levi-Civita product of (Z(g)⊥, [ , ]1, 〈 , 〉) and 
we have obviously, for any u, v ∈ Z(g)⊥,

u.v = u ◦ v − 〈Lz0u, v〉z0. (3.2)

Let C(g) denote the center of (Z(g)⊥, [ , ]1). We have C(g) �= 0 and C(g) ∩ g0 = {0}. 
Indeed, if u ∈ C(g) ∩ g0, then for any v ∈ Z(g)⊥,

[u, v] = [u, v]1 − 2〈Lz0u, v〉z0 = 0,

hence u ∈ Z(g) and then u = 0. This implies that 1 ≤ dimC(g) ≤ 2 and for any 
u ∈ C(g) \ {0}, z0.u �= 0.

Let z be a non-null vector in C(g) then z0.z is a non-null vector in h0. From (2.3) we 
get Lz ◦ Lz0 = Lz0 ◦ Lz and by using (2.4) we have

Rz.z0 = Rz0 ◦ Rz = Lz0 ◦ Rz.
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For any u ∈ Z(g)⊥, we have from (3.2) and the fact that z ∈ C(g),

Lzu = z ◦ u− 〈z0.z, u〉z0 and Rzu = u ◦ z + 〈z0.z, u〉z0 = z ◦ u + 〈z0.z, u〉z0.

Thus Lzu = Rzu −2〈z0.z, u〉z0. This relation is also true for u ∈ Z(g) since z0.u = 0 and 
hence Lz = Rz + Az, where Az = −2〈z.z0, .〉z0. Since Lz0 ◦Az = 0, we deduce that

Rz.z0 = Lz0 ◦ Rz = Lz0 ◦ (Lz −Az) = Lz0 ◦ Lz = Lz ◦ Lz0 . (3.3)

This relation implies that Rz.z0 is symmetric and g0 ⊕ Z(g) ⊂ ker Rz.z0 . From (3.2), we 
have z.z = 0, and hence g0 ⊕ Rz ⊕ Z(g) ⊂ ker Rz.z0 . From the symmetry of Rz.z0 we 
deduce that ImRz.z0 = (kerRz.z0)⊥ and finally ImRz.z0 ⊂ (g0 ⊕ Rz ⊕ Z(g))⊥ = Rz.z0. 
So we can write, for any u ∈ g,

Rz.z0(u) = a1(u)z.z0 = α〈z.z0, u〉z.z0, (3.4)

where a1 ∈ g∗ and α ∈ R. We will show now that Rz.z0 = 0.
Put e1 = z0.z. Since the orthogonal of z in Z(g)⊥ is different from the orthogonal 

of e1 in Z(g)⊥, we can choose z̄ ∈ Z(g)⊥ such that 〈z, ̄z〉 = 0 and 〈e1, ̄z〉 = 1. We put 
e2 = −z0.z̄. We have 〈e2, z〉 = 1, Z(g)⊥ = g0 ⊕ span{z, ̄z} and (e1, e2) is a basis of h0. 
Now h0 is a 2-dimensional subalgebra of a nilpotent Lie algebra then it must be abelian 
and since h0 ⊂ ker Re1 we deduce that e1.e1 = e1.e2 = e2.e1 = 0. Moreover, h0 is a left 
ideal and we can write, for any u ∈ g,

u.e1 = a1(u)e1 and u.e2 = a2(u)e1 + b2(u)e2.

From the relation u.(z0.z) = z0.(u.z) shown in (2.5), we deduce that a1(u)z0.z = z0.(u.z), 
a1(u)z − u.z ∈ ker Lz0 = h⊥0 and hence

0 = a1(u)〈z, e2〉 − 〈u.z, e2〉 = a1(u)〈z, e2〉 + 〈z, u.e2〉 = a1(u) + b2(u).

Thus b2 = −a1. Using the fact that the curvature vanishes, we get

[u, v].e2 = u.(v.e2) − v.(u.e2)

= u.(a2(v)e1 − a1(v)e2) − v.(a2(u)e1 − a1(u)e2)

= 2(a2(v)a1(u) − a1(v)a2(u))e1.

Thus

a2([u, v]) = 2(a2(v)a1(u) − a1(v)a2(u)).

By taking u = z and v = z̄ in this relation and since a2(z0) = 0, a1(z) = 0 and, by virtue 
of (3.1), [z, ̄z] = −2z0, we get a2(z)a1(z̄) = 0. Now
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a1(z̄)e1 = Re1(z̄)
(3.3)= Lz ◦ Lz0(z̄) = −z.e2 = −a2(z)e1.

This relation and a2(z)a1(z̄) = 0 imply that Re1(z̄) = 0. But g0 ⊕ Rz ⊕ Z(g) ⊂ ker Re1

so finally Re1 = 0. To complete, we will show that e1 ∈ Z(g), i.e., Le1 = ade1 = 0 and 
we will get a contradiction.

Note first that Le1 is nilpotent, Le1(h0) = 0 and Le1(g0) ⊂ g0. So Le1 induces on the 
Euclidean vector space g0/h0 a skew-symmetric nilpotent endomorphism which must 
then vanish. So Le1(g0) ⊂ h0. On the other hand, by virtue of (3.1), e1.z = [e1, z] = 0. 
So for any x ∈ g0, e1.x = [e1, x] = a(x)e1 + b(x)e2. This implies that b(x) = 〈e1.x, z〉 =
−〈x, e1.z〉 = 0. But adx is nilpotent so a(x) = 0 and we deduce that Le1(g0) = 0. So far, 
we have shown that g0 ⊕Rz ⊕ Z(g) ⊂ ker Le1 and hence its image has a dimension less 
or equal to 1. Moreover, ImLe1 ⊂ h0 and hence L2

e1 = 0 and we can conclude by using 
Lemma 2.1. �
4. Flat pseudo-Euclidean nilpotent Lie algebras of signature (2, n − 2) are obtained 
by the double extension process

In this section, based on Theorem 3.1, we will show that any flat pseudo-Euclidean 
nilpotent Lie algebra of signature (2, n − 2) can be obtained by the double extension 
process from a Lorentzian or an Euclidean flat nilpotent Lie algebra. To do so we need 
first to recall the double extension process introduced by Aubert and Medina [3]. Note 
that Propositions 3.1 and 3.2 in the paper [3] are essential in this process.

Let (B, [ , ]0, 〈 , 〉0) be a pseudo-Riemannian flat Lie algebra, ξ, D : B −→ B two 
endomorphisms of B, b0 ∈ B and μ ∈ R such that:

1. ξ is a 1-cocycle of (B, [ , ]0) with respect to the representation L : B −→ End(B)
defined by the left multiplication associated to the Levi-Civita product, i.e., for any 
a, b ∈ B,

ξ([a, b]) = Laξ(b) − Lbξ(a), (4.1)

2. D − ξ is skew-symmetric with respect to 〈 , 〉0,

[D, ξ] = ξ2 − μξ − Rb0 , (4.2)

and for any a, b ∈ B

a.ξ(b) − ξ(a.b) = D(a).b + a.D(b) −D(a.b). (4.3)

We call (ξ, D, μ, b0) satisfying the two conditions above admissible.
Given (ξ, D, μ, b0) admissible, we endow the vector space g = Re ⊕ B ⊕ Rē with the 

inner product 〈 , 〉 which extends 〈 , 〉0, for which span{e, ̄e} and B are orthogonal, 
〈e, e〉 = 〈ē, ̄e〉 = 0 and 〈e, ̄e〉 = 1. We define also on g the bracket
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[ē, e] = μe, [ē, a] = D(a) − 〈b0, a〉0e and [a, b] = [a, b]0 + 〈(ξ − ξ∗)(a), b〉0e, (4.4)

where a, b ∈ B and ξ∗ is the adjoint of ξ with respect to 〈 , 〉0. Then (g, [ , ], 〈 , 〉) is a 
flat pseudo-Euclidean Lie algebra called double extension of (B, [ , ]0, 〈 , 〉0) according 
to (ξ, D, μ, b0). Using this method, Aubert and Medina characterize a flat Lorentzian 
nilpotent Lie algebras. They show that (g, 〈 , 〉) is a flat Lorentzian nilpotent Lie algebra 
if and only if (g, 〈 , 〉) is a double extension of an Euclidean abelian Lie algebra according 
to μ = 0, D = ξ and b0 where D2 = 0.

Theorem 4.1. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent non abelian Lie algebra of 
signature (2, n −2) with n ≥ 4. Then, for any e ∈ Z(g) ∩Z(g)⊥, Le = Re = 0. Moreover, 
Z(g) + Z(g)⊥ is a two-sided ideal with respect to the Levi-Civita product.

Proof. Recall that [g, g]⊥ = {u ∈ g, Ru = R∗
u}, put a = Z(g) + Z(g)⊥ and consider 

N(g) = {v ∈ g/ Luv = 0, ∀u ∈ Z(g)} and h0 its orthogonal. We have seen in Lemma 2.3
that both N(g) and h0 are left ideals and h0 is totally isotropic. We have seen that 
if dim h0 ≤ 1 then N(g) = g and hence any vector e ∈ Z(g) ∩ Z(g)⊥ satisfies the 
conditions required. Suppose that dim h0 = 2. We claim that Z(g) ∩Z(g)⊥ ⊂ h0. This is 
a consequence of the fact that Z(g) ∩ Z(g)⊥ ⊂ Z(g) ⊂ N(g) and the fact that N(g)/h0
is Euclidean. We distinguish two cases:

1. Z(g) ∩ Z(g)⊥ = h0 and hence a = N(g). We have that g.N(g) ⊂ N(g) and for any 
u ∈ N(g), w ∈ g and v ∈ h0, v.u = u.v = 0 and hence 〈u.w, v〉 = 0. This implies that 
N(g) is an ideal for the Lie bracket and, according to Lemma 2.2, [g, g] ⊂ N(g). We 
deduce that Z(g) ∩ Z(g)⊥ ⊂ [g, g]⊥ and hence for any e ∈ Z(g) ∩ Z(g)⊥, Le is both 
skew-symmetric and symmetric and hence Le = Re = 0.

2. dimZ(g) ∩Z(g)⊥ = 1. Since Z(g) ∩Z(g)⊥ ⊂ h0, we have N(g) ⊂ a and a = N(g) ⊕Ry. 
We have g.N(g) ⊂ a and for any u ∈ N(g), w ∈ g and v ∈ Z(g) ∩Z(g)⊥, v.u = u.v = 0
and hence 〈u.w, v〉 = 0. Thus N(g).g ⊂ a. Moreover, for any v ∈ Z(g) ∩ Z(g)⊥, 
〈y.y, v〉 = 0 and then y.y ∈ a. In particular, a.a ⊂ a and hence a is a subalgebra. 
According to Lemma 2.2, [g, g] ⊂ a and hence Z(g) ∩ Z(g)⊥ ⊂ [g, g]⊥. This implies 
that for any e ∈ Z(g) ∩ Z(g)⊥, Le = Re = 0 and a is a two-sided ideal. �

Theorem 4.2. Let (g, 〈 , 〉) be a flat pseudo-Euclidean nilpotent non abelian Lie alge-
bra of signature (2, n − 2) with n ≥ 4. Then (g, 〈 , 〉) is a double extension of a flat 
Lorentzian nilpotent Lie algebra, according to μ = 0, D, ξ and b0 where D is a nilpotent 
endomorphism.

Proof. Let e be a non-null vector in Z(g) ∩ Z(g)⊥ and put I = Re. According to Theo-
rem 4.1, I is a totally isotropic two-sided ideal with respect to the Levi-Civita product. 
Moreover, I⊥ is also a two sided ideal. Then, according to [3], (g, 〈 , 〉) is a double exten-
sion of flat Lorentzian Lie algebra (B, 〈 , 〉B) with μ = 0. From (4.4) and the fact that 
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g is nilpotent we deduce that D is a nilpotent endomorphism, and B is a nilpotent Lie 
algebra. �
Remark 2. According to [3], flat Lorentzian nilpotent Lie algebra are double extension 
of abelian Euclidean Lie algebras. Then flat pseudo-Euclidean nilpotent Lie algebras of 
signature (2, n −2) are obtained by applying twice the double extension process, starting 
from abelian Euclidean Lie algebras.

Example 1. Let (g, 〈 , 〉) be a 4-dimensional flat pseudo-Euclidean nilpotent Lie alge-
bras of signature (2, 2). According to Theorem 4.2, (g, 〈 , 〉) is a double extension of a 
2-dimensional abelian Lorentzian Lie algebra (B, 〈 , 〉B) with D2 = 0. The conditions 
(4.1)-(4.3) are equivalent to [D, ξ] = ξ2 and D− ξ is skew-symmetric, which implies that 
D = ξ. Then there exists a basis {e1, e2} of B such that the matrix of D in this basis 
has the form

(
0 α

0 0

)
, where α ∈ R.

Let 〈 , 〉B be any Lorentzian metric in B. Then according to (4.4), g = span{ē, e, e1, e2}
with the non vanishing Lie brackets

[ē, e1] = βe, [ē, e2] = αe1 + γe, [e1, e2] = δe,where α, β, γ, δ ∈ R,

and the metric in g is an extension orthogonal of 〈 , 〉B such that 〈ē, ̄e〉 = 〈e, e〉 = 0 and 
〈ē, e〉 = 1. It is easy to show that g is isomorphic to one of the following Lie algebras:

• R4: The 4-dimensional abelian Lie algebra (if α = β = γ = δ = 0).
• H3 ⊕ R: The trivial central extension of H3 (if α = 0 and (β, γ) �= (0, 0) or α �= 0

and β = δ = 0).
• The 4-dimensional filiform Lie algebra: [ē, e1] = e, [ē, e2] = e1 (if α �= 0 and (β, δ) �=

(0, 0)).

5. Flat pseudo-Euclidean 2-step nilpotent Lie algebras

A 2-step nilpotent Lie algebra is a non-abelian Lie algebra g which satisfies [g, g] ⊂
Z(g). Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. In [5], the 
author showed that if the metric 〈 , 〉 is Lorentzian, then g is a trivial central extension of 
H3, where H3 is a 3-dimensional Heisenberg Lie algebra. Let us studies some properties 
of (g, 〈 , 〉) in other signatures.

We consider N(g) =
⋂

u∈Z(g) ker Lu, and h0 := N(g)⊥. According to Lemma 2.3, 
h0 ⊂ N(g). If N(g) �= g, then N(g) is degenerate. On the other hand, for any z ∈ Z(g), 
a ∈ N(g) and u ∈ g we have
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〈u.a, z〉 = −〈a, z.u〉 = 〈z.a, u〉 = −〈a.u, z〉 = 0.

This implies that g.N(g) ⊂ Z(g)⊥ and N(g).g ⊂ Z(g)⊥. Thus

[g, N(g)] ⊂ Z(g) ∩ Z(g)⊥. (5.1)

Proposition 5.1. Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. 
Then

1. Z(g) is degenerate.
2. For any e ∈ Z(g) ∩ Z(g)⊥, Le = Re = 0.
3. For any x, y ∈ Z(g)⊥, 〈[x, y], [x, y]〉 = 0.

Proof. 1. Suppose that Z(g) is non degenerate, i.e., Z(g) ∩ Z(g)⊥ = {0}.
• If g = N(g) then according to (5.1), [g, g] = 0 which is impossible.
• If g �= N(g) then [g, N(g)] = 0 and hence N(g) = Z(g) which is impossible since 

N(g) is degenerate.
2. Let e ∈ Z(g) ∩ Z(g)⊥. Since Z(g)⊥ ⊂ [g, g]⊥, then according to (2.6), Le = Re is 

both symmetric and skew-symmetric and hence must vanish.
3. According to (2.1), we have for any x, y ∈ Z(g)⊥ x.y = 1

2 [x, y]. Using (2.3), we have 
[x, y].x = x.(y.x) − y.(x.x), then [x, y].x = 0. In particular 〈[x, y].x, y〉 = 0. Since Lx

is skew-symmetric, thus 〈[x, y], [x, y]〉 = 0. �
Proposition 5.2. Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra. 
Then (g, 〈 , 〉) is obtained by a sequence of double extension, starting from an abelian 
pseudo-Euclidean Lie algebra.

Proof. Let e be a non-null vector in Z(g) ∩ Z(g)⊥. Since Le = Re = 0, then I = Re is a 
totally isotropic two sided ideal, and I⊥ is also a two sided ideal. Thus, (g, 〈 , 〉) is a double 
extension of a pseudo-Euclidean Lie algebra (B1, 〈 , 〉1). According to (4.4), B1 is either 
abelian or 2-step nilpotent. If B1 is 2-step nilpotent, then it’s also a double extension of 
(B2, 〈 , 〉2). Since a 2-step nilpotent Lie algebra can not admit a flat Euclidean metric, 
then there exists k ∈ N∗ such that Bk is abelian. �
Proposition 5.3. Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of 
signature (p, p + q). If dim(Z(g) ∩ Z(g)⊥) = p then Z(g)⊥ is abelian.

Proof. Let {e1, . . . , ep} be a basis of Z(g) ∩ Z(g)⊥, then we can write Z(g) = Z1 ⊕
span{e1, . . . , ep} where (Z1, 〈 , 〉/Z1×Z1

) is euclidean. In Z⊥
1 we can choose a totally

isotropic subspace span{ē1, . . . , ̄ep} such that, 〈ei, ̄ej〉 = 0 for i �= j, and 〈ei, ̄ei〉 = 1. 
Let B1 be the orthogonal of Z1 ⊕ span{e1, . . . , ep} ⊕ span{ē1, . . . , ̄ep}. Thus we get a 
decomposition
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g = Z1 ⊕ span{e1, . . . , ep} ⊕B1 ⊕ span{ē1, . . . , ēp}. (5.2)

We have Z(g)⊥ = B1 ⊕ span{e1, . . . , ep}, and (B1, 〈 , 〉/B1×B1
) is euclidean. Let 

{b1, . . . , br} be an orthonormal basis of B1. Since 〈[bi, bj ], [bi, bj ]〉 = 0 and Z1 is eu-
clidean, then [bi, bj ] ∈ Z(g) ∩Z(g)⊥ for all i, j ∈ {1, . . . , r}. Thus, it suffices to show that 
〈[bi, bj ], ̄ek〉 = 0 for all i, j ∈ {1, . . . , r} and k ∈ {1, . . . , p}. Let z ∈ Z(g), k ∈ {1, . . . , p}
and i, j ∈ {1, . . . , r}. We have z.ēk ∈ Z(g)⊥ and 〈z.ēk, z.ēk〉 = 0. Since B1 is euclidean, 
then z.ēk ∈ Z(g) ∩ Z(g)⊥. Thus

〈[ēk, bi], z〉 = 2〈ēk.bi, z〉 = −2〈z.ēk, bi〉 = 0,

which implies that [ēk, bi] ∈ Z(g) ∩ Z(g)⊥ and ēk.bi ∈ Z(g)⊥. We have 〈ēk.bi, bj〉 =
−1

2 〈[bi, bj ], ̄ek〉, then ēk.bi = e0 − 1
2
∑r

j=1〈[bi, bj ], ̄ek〉bj , where e0 ∈ Z(g) ∩ Z(g)⊥. Using 
the flatness of the metric, we have [ēk, bi].bi = ēk.(bi.bi) − bi.(ēk.bi). Since [ēk, bi].bi = 0, 
and bi.bi = 0, thus bi.(ēk.bi) = 0. From the facts that bi.e0 = 0 and bi.bj = 1

2 [bi, bj ], we 
deduce that

bi.(ēk.bi) = −1
2

r∑
j=1

〈[bi, bj ], ēk〉bi.bj

= −1
4

r∑
j=1

〈[bi, bj ], ēk〉[bi, bj ],

which implies that 
∑r

j=1〈[bi, bj ], ̄ek〉2 = 0, and completes the proof. �
Suppose that dimZ(g) ∩ Z(g)⊥ = 1. Then the decomposition (5.2) becomes

g = Z1 ⊕Re⊕B1 ⊕Rē, (5.3)

and the restriction of 〈 , 〉 to Z1 and B1 is nondegenerate.

Proposition 5.4. Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra such 
that dim(Z(g) ∩ Z(g)⊥) = 1. With notations as in (5.3), if the restriction of the metric 
〈 , 〉 to B1 is positive or negative definite, then dimB1 = 1, and g is a trivial central 
extension of H3, where H3 is the 3-dimensional Heisenberg Lie algebra.

Proof. Let z ∈ Z(g), and b ∈ B1. We have z.ē ∈ B1 and z.b ∈ Z(g)⊥. Since 〈 , 〉/B1×B1

is positive definite or negative definite and 〈z.ē, z.ē〉 = 0, then z.ē = 0. Thus 〈z.b, ̄e〉 = 0, 
which implies that z.b ∈ B1. Using the same argument, then we can conclude that 
z.b = 0, and Lz = 0 for any z ∈ Z(g). Let x, y ∈ B1. We have for any z ∈ Z(g)

〈[x, y], z〉 = 2〈x.y, z〉 = 0,
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thus [x, y] = αe, where α ∈ R. Using the flatness of the metric, then we get [ē, x].x =
ē.(x.x) − x.(ē.x), thus x.(ē.x) = 0. Let {b1, . . . , br} be an orthonormal basis of B1. Then

ē.x = βe∓ 1
2

r∑
i=1

〈[x, bi], ē〉bi

where β ∈ R. Thus

x.(ē.x) = ∓1
4

r∑
i=1

〈[x, bi], ē〉[x, bi] = 0,

which implies that B1 is abelian. On the other hand, we have for any z ∈ Z(g),

0 = 〈z.ē, x〉 = −1
2 〈[ē, x], z〉,

thus [ē, x] ∈ Z(g) ∩Z(g)⊥. Put [ē, bi] = αie, where αi ∈ R∗ for any i ∈ {1, . . . , r}. In fact, 
if αi = 0 then bi ∈ Z(g), which contradicts the fact that Z(g) ∩B1 = {0}. Suppose that 
dimB1 > 1. For any i ∈ {2, . . . , r}, we put b′i = bi − αi

α1
b1, thus [ē, b′i] = 0 and b′i ∈ Z(g)

which is a Contradiction. Then dimB1 = 1 and the only non vanishing brackets in g is 
[ē, b1] = α1e, thus g is a trivial central extension of H3. �
6. Flat pseudo-Euclidean 2-step nilpotent Lie algebras of signature (2, n − 2)

Let us start by an example which play an important role in this section. Let L4
6 be a 

6-dimensional Lie algebra defined by the non vanishing Lie brackets, giving in the basis 
{x1, . . . , x6} by

[x1, x2] = x5 , [x1, x3] = [x2, x4] = x6.

This Lie algebra appear in the classification of 2-step nilpotent Lie algebras of dimen-
sion 6, as for example in [1, pp. 3], or in [7, pp. 97], where it is denoted by L6,3.

It is clear that this Lie algebra admits no flat Euclidean or Lorentzian metrics. How-
ever, L4

6 admits a flat pseudo-Euclidean metrics of signature (2, n − 2). In fact, let 〈 , 〉0
be a pseudo-Euclidean metric of signature (2, 4) defined in the basis {x1, . . . , x6} by the 
matrix

〈 , 〉0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 a 1
0 0 b c 0 0
0 b 0 0 0 0
0 c 0 d 0 0
a 0 0 0 1

3d 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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where a, c ∈ R, b ∈ R∗ and d > 0. Straightforward calculations using (2.1) shows that, 
the only non vanishing Levi-Civita products are

x1.x1 = −1
b
x2 −

(
a

b
+ c2

b2d

)
x3 + c

bd
x4, x1.x2 = c

2bdx3 −
1
2dx4 + 1

2x5 + a

2x6,

x1.x3 = x6, x1.x4 = 1
2bx3, x1.x5 = x5.x1 = − 1

6bdx3, x2.x4 = 1
2x6,

x2.x5 = x5.x2 = 1
6dx6,

x2.x1 = c

2bdx3 −
1
2dx4 −

1
2x5 + a

2x6, x4.x1 = 1
2bx3, x4.x2 = −1

2x6.

One can verify that for any x, y ∈ L4
6, we have L[x,y] = [Lx,Ly], which shows that 

(L4
6, 〈 , 〉0) is flat. The following Theorem shows that this example, is the only non 

trivial one such that dimZ(g) ∩ Z(g)⊥ = 1.
Let (g, 〈 , 〉) be a flat pseudo-Euclidean 2-step nilpotent Lie algebra of signature 

(2, n − 2). According to Theorem 3.1, the dimension of Z(g) ∩ Z(g)⊥ is 1 or 2.

Theorem 6.1. A 2-step nilpotent Lie algebra g admits a flat pseudo-Euclidean metric of 
signature (2, n − 2) such that dimZ(g) ∩ Z(g)⊥ = 1 if and only if g is a trivial central 
extension of H3 or g is a trivial central extension of L4

6. Furthermore, in the second case, 
the restriction of the metric to L4

6 is giving by 〈 , 〉0.

Proof. If dimZ(g) ∩ Z(g)⊥ = 1, then we can split g as

g = Z1 ⊕Re⊕B1 ⊕Rē,

where Z(g) = Z1 ⊕ Re, Z(g)⊥ = Re ⊕ B1, span{e, ̄e} = (Z1 ⊕B1)⊥, 〈e, e〉 = 〈ē, ̄e〉 = 0
and 〈e, ̄e〉 = 1. We have two cases:
First case: 〈 , 〉/B1×B1 is positive or negative definite. Then according to Proposition 5.4, 
dimB1 = 1 and g is a trivial central extension of H3.
Second case: 〈 , 〉/B1×B1 is Lorentzian. Then dimB1 ≥ 2. For any z, z′ ∈ Z(g), we 
have 〈z.ē, z′.ē〉 = 0, then Rē(Z(g)) is a totally isotropic subspace. Since Rē(Z(g)) ⊂ B1
and (B1, 〈 , 〉/B1×B1) is Lorentzian, then there exists an isotropic vector b0 ∈ B1 and a 
covector λ ∈ Z(g)∗ such that z.ē = λ(z)b0 for any z ∈ Z(g).

Let x, y ∈ Z(g)⊥. Recall that x.y = 1
2 [x, y] and 〈[x, y], [x, y]〉 = 0. Since Z1 is Eu-

clidean then [x, y] ∈ Z(g) ∩ Z(g)⊥. Choose a basis {b0, ̄b, b1, . . . , br} of B1 such that 
{b1, . . . , br} is orthonormal, span{b0, ̄b} and span{b1, . . . , br} are orthogonal, ̄b is isotropic 
and 〈b0, b̄〉 = 1. Then for any i ∈ {0, 1, . . . , r}, we have from (2.1)

〈[ē, bi].ē, bi〉 = −1 〈[ē, bi], [ē, bi]〉.
2
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On the other hand, we have 〈[ē, bi].ē, bi〉 = 〈λ ([ē, bi]) b0, bi〉 = 0, then [ē, bi] ∈ Z(g) ∩
Z(g)⊥.

We can write from the condition of flatness, for any x, y, z ∈ g

[x, y].z = x.(y.z) − y.(x.z). (6.1)

If we take x = ē and y = z = b0, we get b0.(ē.b0) = 0. Let i ∈ {0, 1, . . . , r}, since 
ē.b0 ∈ Z(g)⊥ and 〈ē.b0, bi〉 = −1

2 〈[b0, bi], ̄e〉, thus

ē.b0 = αe + βb0 −
1
2

r∑
i=1

〈[b0, bi], ē〉,

where α, β ∈ R. It follows that b0.(ē.b0) = −1
4
∑r

i=1〈[b0, bi], ̄e〉[b0, bi], thus∑r
i=1〈[b0, bi], ̄e〉2 = 0 which implies that [b0, bi] = 0 for any i ∈ {0, 1, . . . , r}.
If we take in (6.1), x = ē, y = b0 and z = b̄ we get b0.(ē.b̄) = 0. Using the fact that 

b0.u = 0 for any u ∈ Z(g), we deduce that b0.(ē.b̄) = −1
4〈[b̄, b0], ̄e〉[b̄, b0], thus [b̄, b0] = 0. 

Similarly, for any i ∈ {1, . . . , r}, if we take in (6.1), x = ē and y = z = ei we get

0 = bi.(ē.bi) = −1
4

r∑
j=1

〈[bi, bj ], ē〉[bi, bj ],

thus [bi, bj ] = 0 for any i, j ∈ {1, . . . , r}. It follows that span{b0, b1, . . . , br} is abelian 
and [b0, ̄b] = 0. We put

[ē, bi] = αie, [ē, b̄] = αe + z0, [b̄, bi] = βie,

where αi, βi, α ∈ R, z0 ∈ Z1 and i = 0, 1, . . . , r. If we take in (6.1), x = ē and y = z = b̄

we get z0.b̄ = −b̄(ē.b̄), then 3
2z0.b̄− 1

2
∑r

i=1 β
2
i e = 0, which implies that

3〈z0, z0〉 =
r∑

i=1
β2
i . (6.2)

We have dimB1 ≥ 3. In fact, if dimB1 = 2 then B1 = span{b0, ̄b} and (6.2) implies that 
z0 = 0. Then the Lie brackets are reduced to [ē, bi] = αie and [ē, ̄b] = αe, and as in the 
proof of Proposition 5.4 we can deduce that dimB1 = 1, which is a contradiction. The 
same argument shows that z0 �= 0. Then there exists i ∈ {1, . . . , r} such that βi �= 0. To 
simplify, we can suppose that β1 �= 0, and we have also α0 �= 0 because b0 /∈ Z(g).

Let us show that dimB1 = 3. In fact, if dimB1 ≥ 4, then we put for any i ≥ 4,

b′i = bi −
βi

b1 −
(
αiβ1 − α1βi

)
b0,
β1 α0β1
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and we can verify easily that [b′i, x] = 0 for any x ∈ g. Thus b′i ∈ Z(g) which contradicts 
the fact that Z(g) ∩ B1 = {0}. We put x1 = ē, x2 = b̄, x3 = b0

α0
, x4 = 1

β1
b1 − α1

β1α0
b0, 

x5 = αe + z0 and x6 = e. Then the only non vanishing brackets on g are

[x1, x2] = x5, [x1, x3] = [x2, x4] = x6.

It follows that g is a trivial central extension of L4
6. Furthermore, with the condition (6.2), 

one can verify that the restriction of the metric to L4
6 is given by 〈 , 〉0. Conversely, if g

splits orthogonally into g = Z1⊕L4
6, where Z1 ⊂ Z(g) and the restriction of the metric to 

L4
6 is 〈 , 〉0, and the restriction to Z1 is Euclidean, then (g, 〈 , 〉) is a flat pseudo-Euclidean 

2-step nilpotent Lie algebra of signature (2, n − 2) and dimZ(g) ∩ Z(g)⊥ = 1. �
Corollary 6.1. The Heisenberg Lie algebra H2k+1 admits a flat pseudo-Euclidean metric 
of signature (2, n − 2) if and only if k = 1.

Proof. Since Z(H2k+1) = 1, then if g = H2k+1 admits such metric then we have 
dimZ(g) ∩ Z(g)⊥ = 1. This gives the result, by virtue of Theorem 6.1. �
Remark 3. In Theorem 6.1, if g is a trivial central extension of H3, then g = Z1 ⊕ H3
and the metric 〈 , 〉 has one of the following form:

• The restriction of 〈 , 〉 to Z1 is Euclidean and its restriction to H3 is given by the 
matrix ⎛

⎜⎝ 0 0 α

0 −1 0
α 0 0

⎞
⎟⎠ , where α ∈ R.

• The restriction of 〈 , 〉 to Z1 is Lorentzian and its restriction to H3 is given by the 
matrix ⎛

⎜⎝ 0 0 α

0 1 0
α 0 0

⎞
⎟⎠ , where α ∈ R.

Theorem 6.2. A 2-step nilpotent Lie algebra g admits a flat pseudo-Euclidean metric 
〈 , 〉 of signature (2, n − 2) such that dimZ(g) ∩ Z(g)⊥ = 2 if and only if there ex-
ist an orthonormal vectors {b1, . . . , bk} in g, a linearly independent isotropic vectors 
{e1, ̄e1, e2, ̄e2} in {b1, . . . , bk}⊥, where 〈e1, e2〉 = 〈e1, ̄e2〉 = 〈ē1, e2〉 = 〈ē1, ̄e2〉 = 0 and 
〈e1, ̄e1〉 = 〈e2, ̄e2〉 = 1, such that for any i ∈ {1, . . . , k} the only non vanishing brackets 
are

[ē1, ē2] = z0,
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[ē1, bi] = αie1 + βie2, (6.3)

[ē2, bi] = γie1 + δie2,

where αi, βi, γi, δi ∈ R, and

3〈z0, z0〉 =
k∑

i=1
(γi + βi)2 − 4αiδi. (6.4)

Proof. According to Proposition 5.3, Z(g)⊥ is abelian, and we can split g into

g = Z1 ⊕ span{e1, e2} ⊕B1 ⊕ span{ē1, ē2}, (6.5)

where Z(g) = Z1 ⊕ span{e1, e2}, Z(g)⊥ = span{e1, e2} ⊕ B1, (Z1 ⊕B1)⊥ = span{e1,

e2, ̄e1, ̄e2}, span{ē1, ̄e2} is totally isotropic, 〈e1, e2〉 = 〈e1, ̄e2〉 = 〈ē1, e2〉 = 〈ē1, ̄e2〉 = 0
and 〈e1, ̄e1〉 = 〈e2, ̄e2〉 = 1.

In the proof of Proposition 5.3, we have shown that for any x, y ∈ Z(g)⊥ and k ∈
{1, 2}, [x, y] and [ēk, x] are in Z(g) ∩Z(g)⊥. Let {b1, . . . , br} be an orthonormal basis of 
B1. Then, the non vanishing brackets are:

[ē1, ē2] = z0,

[ē1, bi] = αie1 + βie2,

[ē2, bi] = γie1 + δie2,

where z0 ∈ Z(g), αi, βi, γi, δi ∈ R and i = 1, . . . , r. From (2.1) and the Lie brackets 
above, we have for any u ∈ Z(g) and v ∈ Z(g)⊥, u.v = 0. Recall that (g, 〈 , 〉) is flat if 
and only if for any x, y, z ∈ g

L[x,y](z) = [Lx,Ly] (z). (6.6)

Let x ∈ Z(g) + Z(g)⊥, y, z ∈ g and i ∈ {1, 2}. We have 〈y.z, ei〉 = 0, then y.z ∈ Z(g) +
Z(g)⊥. Thus x.(y.z) = (y.z).x = 0. On the other hand, we have x.y, y.x ∈ Z(g) ∩Z(g)⊥. 
Thus (x.y).z = (y.x).z = 0. It follows that if one of the vectors x, y or z is in Z(g) +Z(g)⊥, 
then (6.6) is satisfied. Thus (g, 〈 , 〉) is flat if and only if

L[ē1,ē2]ē1 − [Lē1 ,Lē2 ] ē1 = L[ē1,ē2]ē2 − [Lē1 ,Lē2 ] ē2 = 0.

Straightforward calculations using (2.1) give

z0.ē1 = −1
2 〈z0, z0〉e2, ē2.ē1 = −1

2z0 −
1
2

r∑
i=1

(βi + γi)bi, ē1.ē1 = −
r∑

i=1
αibi,

ē1bi = αie1 + 1(βi + γi)e2, ē2bi = 1(βi + γi)e1 + δie2.
2 2
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Thus the condition L[ē1,ē2]ē1 − [Lē1 ,Lē2 ] ē1 = 0 is equivalent to (6.3). Similarly, we show 
that the second condition L[ē1,ē2]ē2 − [Lē1 ,Lē2 ] ē2 = 0 is also equivalent to (6.3). This 
completes the proof. �
Corollary 6.2. If a 2-step nilpotent Lie algebra g admits a flat pseudo-Euclidean metric 
of signature (2, n − 2), then dim[g, g] � 3.

7. Examples

In this section, we show that any 6-dimensional 2-step nilpotent Lie algebra, which is 
not a trivial central extension of H5, admits a flat pseudo-Euclidean metric of signature 
(2, n −2), where H5 is a 5-dimensional Heisenberg Lie algebra. For this, we use the table 
below which give all 6-dimensional 2-step nilpotent Lie algebras (see [1, pp. 3]). Note 
that H5 (resp. H3) is denoted in this table by L4

5 (resp. L3).

Lie algebra Nonzero commutators
L3 ⊕ 3L1 [x1, x2] = x3
L1

5 ⊕ L1 [x1, x2] = x3, [x1, x4] = x5
L4

5 ⊕ L1 [x1, x3] = x5, [x2, x4] = x5
L3 ⊕ L3 [x1, x2] = x3, [x4, x5] = x6
L4

6 [x1, x2] = x5, [x1, x3] = x6, [x2, x4] = x6
L5

6(−1) [x1, x3] = x5, [x1, x4] = x6, [x2, x4] = x5, [x2, x3] = −x6
L3

6 [x1, x3] = x6, [x1, x2] = x4, [x2, x3] = x5

The result is evident for L3⊕3L1 and L4
6 (Theorem 6.1). Let 〈 , 〉 be a pseudo-Euclidean 

metric of signature (2, n − 2) given by the matrix

〈 , 〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Using Theorem 6.2, let us show that, for all those Lie algebras L1
5 ⊕L1, L3 ⊕L3, L5

6(−1)
and L3

6 there exists a basis B such that the metric given in B by 〈 , 〉 is flat.

• For L1
5 ⊕ L1, with our notations we put B = {e1, ̄e1, e2, ̄e2, z0, b1} where e1 = x6, 

ē1 = x1, e2 = x5, ē2 = x2, z0 = x3 and b1 = x4. One can verify easily that in 
this basis, the Lie brackets and the metric verify the conditions (6.3) and (6.4), thus (
L1

5 ⊕ L1, 〈 , 〉
)

is flat.
• For L3 ⊕ L3, we put B = {e1, ̄e1, e2, ̄e2, b1, b2} where e1 = x3, ē1 = x1, e2 = x6, 

ē2 = x4, b1 = x1 and b2 = x5.
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• For L5
6(−1), we put B = {e1, ̄e1, e2, ̄e2, b1, b2} where e1 = x5+x6, ē1 = x1, e2 = −2x6, 

ē2 = x2, b1 = x4 and b2 = −(3 +
√

15)x4 − x3.
• For L3

6, we put B = {e1, ̄e1, e2, ̄e2, z0, b1} where e1 = x4, ē1 = x1, e2 = 4
3x5, ē2 = x3, 

z0 = x6 and b1 = x2.

For g = L4
5 ⊕L1, it is clear that this algebra can not admit flat pseudo-Euclidean metric 

of signature (2, n − 2) such that dimZ(g) ∩ Z(g)⊥ = 1 (Theorem 6.1). Suppose that it 
admits such metric with dimZ(g) ∩ Z(g)⊥ = 2 (Theorem 6.2). We have dim[g, g] = 1
and dimZ(g) = 2. Then dimZ(g)⊥ = 4 and dimB1 = 2. Put [g, g] = Re1, thus the Lie 
brackets satisfy

[ē1, ē2] = αe1, [ē1, bi] = αie1, [ē2, bi] = γie1, i = 1, 2.

The condition (6.4) implies that γ1 = γ2 = 0. Then α, α1, α2 ∈ R∗. The fact that α = 0, 
for example, implies that ē2 ∈ Z(g). Put b′2 = b2 − α2

α1
b1, then b′2 ∈ Z(g), which is a 

contradiction. It follows that L4
5 ⊕ L1 can not admit flat pseudo-Euclidean metrics of 

signature (2, n − 2).
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