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1. Introduction

A para-complex structure on a 2n-dimensional manifold M is a field K of involutive 
endomorphisms (K2 = IdTM ) such that the eigendistributions T±M with eigenvalues ±1
have constant rank n and are integrable. In the presence of a pseudo-Riemannian metric, 
this notion leads to the notion of para-Kähler manifolds. A para-Kähler structure on a 
manifold M is a pair (g, K), where g is a pseudo-Riemannian metric and K is a parallel 
skew-symmetric para-complex structure. If (g, K) is a para-Kähler structure on M , then 
ω = g ◦ K is a symplectic structure and the ±1-eigendistributions T±M of K are two 
integrable ω-Lagrangian distributions. Thus, a para-Kähler structure can be identified 
with a bi-Lagrangian structure (ω, T±M), where ω is a symplectic structure and T±M

are two integrable Lagrangian distributions. If (M, g, K) is a para-Kähler manifold and 
J is a parallel field of skew-symmetric endomorphisms such that J2 = −IdTM and 
JK = −KJ , then (M, g, K, J) is called a hyper-para-Kähler manifold or hyper-symplectic
manifold. The notion of an almost para-complex structure (or almost product structure) 
on a manifold was introduced by Rasevskii [19] and Libermann [17]. A previous study 
[12] provided a survey of para-Kähler geometries. Hyper-para-Kähler structures were 
introduced by Hitchin [14] and they have become an important area of research recently, 
mainly because of their applications in theoretical physics (especially in dimension 4). 
For example, [9] provides a discussion of the relationship between hyper-para-Kähler 
metrics and the N = 2 superstring. When the manifold is a Lie group G, the metric and 
the para-complex structure are considered left-invariant, where they are both determined 
by their restrictions to the Lie algebra g of G. In this situation, (g, ge, Ke) is called a 
para-Kähler Lie algebra. We also recover the notion of hyper-para-Kähler Lie algebra when 
we start from a left invariant hyper-para-Kähler structure on a Lie group. Para-Kähler 
and hyper-para-Kähler Lie algebras have been studied widely [1,3,5–7].

In the present study, we consider para-Kähler and hyper-para-Kähler Lie algebras. 
We obtain some known results using a new approach, which we consider simplifies both 
the presentation and the proofs. In the final part of this study, we provide some new 
results that facilitate a better understanding of these algebras and the construction of rich 
classes of non-trivial new examples. The basic tools used in the study of para-Kähler and 
hyper-para-Kähler Lie algebras are two types of algebras: left symmetric algebras, which 
have been studied widely, and a less well-known class of left symmetric algebras endowed 
with invariant symplectic forms, which are referred to as special symplectic Lie algebras 
in [4]. We refer to these algebras as symplectic left symmetric algebras. Our study also 
considers the construction of large classes of left symmetric algebras, symplectic left 
symmetric algebras, and symplectic Lie algebras.

The remainder of this paper is organized as follows. In Sections 2 and 3, we recall 
some basic definitions and we use a new approach to obtain some known characteriza-
tions of para-Kähler Lie algebras. In particular, we consider the notion of left symmetric 
bialgebras introduced by Bai [5]. We introduce the notion of quasi-S-matrices as a gener-
alization of the S-matrices introduced by Bai. Proposition 3.7 describes the Lie algebra 
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structure of the para-Kähler Lie algebra associated with a quasi-S-matrix, which plays 
a crucial role in Sections 6–7. We also show (see Remark 2 (b)) that a quasi-S-matrix 
on a left symmetric algebra U defines a Lie triple system on U∗ (see [15,18,20] for the 
definition and properties of Lie triple systems). In Section 4, we develop some general 
methods for building new examples of para-Kähler Lie algebras. In Section 5, we provide 
a new characterization of hyper-para-Kähler Lie algebras based on a notion of the com-
patibility between two left symmetric products on a given vector space (see Theorem 5.1
and Definition 5.1). Sections 6–7 consider quasi-S-matrices on symplectic Lie algebras, 
symplectic left symmetric algebras, and pseudo-Riemannian flat Lie algebras. On a sym-
plectic Lie algebra with its canonical left symmetric product, the set of quasi-S-matrices 
is in bijection with the set of solutions of an equation that generalizes the modified 
Yang–Baxter equation (see Proposition 6.1). As a consequence, we obtain a method for 
building a new class of para-Kähler Lie algebras (see Theorem 6.1) as well as a new class 
of Lie algebras with a Lie triple system (see Remark 4). On a symplectic left symmetric 
algebra or a pseudo-Riemannian flat Lie algebra, the set of S-matrices is in bijection with 
the set of operators that generalize O-operators (see Proposition 7.1). Thus, we obtain 
a method for building a new class of para-Kähler and hyper-para-Kähler Lie algebras 
(see Theorems 7.1–7.2). We also determine a new class of Lie algebras with a Lie triple 
system (see Remark 5). In Section 8, we provide all the four-dimensional para-Kähler 
Lie algebras. We use a method that differs from the one described in [1], which has the 
advantage of simplifying the calculations greatly. In Section 9, we provide a complete 
description of associative symplectic left symmetric algebras (see Theorems 9.1–9.2).

Notations For a Lie algebra g, its bracket will be denoted by [ , ] and for any u ∈ g, adu

is the endomorphism of g given by adu(v) = [u, v]. If A : g −→ g is an endomorphism, 
the Nijenhuis torsion of A is given by

NA(u, v) := [Au,Av] −A[Au, v] −A[u,Av] + A2[u, v]. (1)

If (U, .) is an algebra, for any u ∈ U , Lu, Ru : U −→ U denote the left and the right 
multiplication by u given by Lu(v) = u.v and Ru(v) = v.u, respectively. The commutator 
of (U, .) is the bracket on U given by [u, v] = u.v − v.u. The curvature of (U, .) is the 
tensor K given by

K(u, v) := [Lu,Lv] − L[u,v].

Then, for any u, v, w ∈ U , we have the Bianchi identity
∮

[u, [v, w]] =
∮

K(u, v)w, (2)

where 
∮

denotes the cyclic sum. The product on U is called Lie-admissible if its com-
mutator is a Lie bracket, i.e., for any u, v, w ∈ U ,
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∮
[u, [v, w]] =

∮
K(u, v)w = 0.

Let V be a vector space and F is an endomorphism of V . We denote F t : V ∗ −→ V ∗ as 
the dual endomorphism. For any X ∈ V and α ∈ V ∗, we denote α(X) by ≺α, X�. The 
phase space of V is the vector space Φ(V ) := V ⊕V ∗ endowed with the two nondegenerate 
bilinear forms 〈 , 〉0 and Ω0 given by

〈u + α, v + β〉0 = ≺α, v� + ≺β, u� and Ω0(u + α, v + β) = ≺β, u�−≺α, v�.

We denote K0 : Φ(V ) −→ Φ(V ) as the endomorphism given by K0(u + α) = u − α.
Let ω ∈ ∧2V ∗, which is nondegenerate. We denote � : V −→ V ∗ as the isomorphism 

given by �(v) = ω(v, .). Put T (V ) := V × V and define 〈 , 〉1, Ω1, K1, J1 on T (V ) by

Ω1[(u, v), (w, z)] = ω(z, u) − ω(v, w), 〈(u, v), (w, z)〉1 = ω(z, u) + ω(v, w),

K1(u, v) = (u,−v) and J1(u, v) = (−v, u).

Finally, if ρ : g −→ End(V ) is a representation of a Lie algebra, we denote ρ∗ : g −→
End(V ∗) as the dual representation given by ρ∗(X)(α) = −ρ(X)t(α).

2. Some definitions

In this section, we recall some definitions of different types of algebraic structures, 
which are used throughout this study.

• A complex structure on a Lie algebra g is an isomorphism J : g −→ g that satisfies 
J2 = −Idg and NJ = 0. A complex structure J is called abelian if for any u, v ∈ g,

[Ju, Jv] = [u, v].

A para-complex structure on a Lie algebra g is an isomorphism K : g −→ g that sat-
isfies K2 = IdG, NK = 0 and dim ker(K + Idg) = dim ker(K − Idg). A para-complex 
structure K is called abelian if for any u, v ∈ g,

[Ku,Kv] = −[u, v].

A complex product structure on g is a couple (J, K), where J is a complex structure, 
K is a para-complex structure, and KJ = −JK.

• A pseudo-Riemannian Lie algebra is a finite-dimensional Lie algebra (g, [ , ]) endowed 
with a bilinear symmetric nondegenerate form 〈 , 〉. The associated Levi-Civita 
product is the product on g, (u, v) �→ u.v, which is given by Koszul’s formula

2〈u.v, w〉 = 〈[u, v], w〉 + 〈[w, u], v〉 + 〈[w, v], u〉. (3)
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This product is determined entirely by the fact that it is Lie-admissible, i.e., [u, v] =
u.v − v.u, and for any u ∈ g, the left multiplication by u is skew-symmetric with 
respect to 〈 , 〉. We say that (g, [ , ]) is flat when its Levi-Civita product has a 
vanishing curvature.

• An algebra (U, .) is called left symmetric if

ass(u, v, w) = ass(v, u, w),

where ass(u, v, w) = (u.v).w − u.(v.w). This relation is equivalent to the vanishing 
of the curvature of (U, .). Relation (2) implies that a left symmetric product is Lie-
admissible. If (U, .) is a left symmetric algebra, then the Lie algebra (U, [ , ]) has 
two representations, i.e., adU : U −→ End(U), u �→ adu and LU : U −→ End(U), 
u �→ Lu.
Any associative algebra is a left symmetric algebra and if a left symmetric algebra 
is abelian then it is associative.

• A symplectic Lie algebra is a Lie algebra (g, ω) endowed with a bilinear skew-
symmetric nondegenerate form ω such that for any u, v, w ∈ g,

ω([u, v], w) + ω([v, w], u) + ω([w, u], v) = 0.

According to a well-known result [11], the product a : g × g −→ g given by

ω(a(u, v), w) = −ω(v, [u,w]) (4)

induces a left symmetric algebra structure that satisfies a(u, v) −a(v, u) = [u, v] on g. 
We denote a as the left symmetric product associated with (g, ω).

• A symplectic left symmetric algebra is a left symmetric algebra (U, .) endowed with 
a bilinear skew-symmetric nondegenerate form ω, which is invariant, i.e., for any 
u, v, w ∈ U ,

ω(u.v, w) + ω(v, u.w) = 0.

This implies that (U, [ , ], ω) is a symplectic Lie algebra. Symplectic left symmetric 
algebras, which are called special symplectic Lie algebras in [6], play a central role 
in the study of hyper-para-Kähler Lie algebras (see Section 5).

3. Para-Kähler Lie algebras

The notion of a para-Kähler Lie algebra is very subtle and it has many equivalent def-
initions, which depend on whether we emphasize its pseudo-Riemannian metric and the 
associated Levi-Civita product, or its symplectic form and the associated left symmet-
ric product. There are also many characterizations, i.e., at least three characterizations 
in [5], where a para-Kähler Lie algebra can be characterized as the phase space of a 
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Lie algebra, as a matched pair of Lie algebras, or as a left symmetric bialgebra. In this 
section, we employ the pseudo-Riemannian viewpoint and we give a new characteriza-
tion based on the Bianchi identity (2). This characterization has the advantage that 
it leads easily to the notions of left symmetric bialgebra and the S-matrix introduced 
in [5]. At the end of this section, we introduce a generalization of the notion of S-matrix 
and we give a precise description of the para-Kähler Lie algebras associated with these 
generalized S-matrices.

A para-Kähler Lie algebra is a pseudo-Riemannian Lie algebra (g, 〈 , 〉) endowed with 
an isomorphism K : g −→ g that satisfies K2 = Idg, K is skew-symmetric with respect to 
〈 , 〉, and K is invariant with respect to the Levi-Civita product, i.e., Lu ◦K = K ◦Lu for 
any u ∈ g. A para-Kähler Lie algebra (g, 〈 , 〉, K) has a natural bilinear skew-symmetric 
nondegenerate form Ω, which is defined by Ω(u, v) = 〈Ku, v〉, and we can easily see that:

1. (g, K) is a para-complex Lie algebra,
2. (g, Ω) is a symplectic Lie algebra,
3. g = g1 ⊕ g−1 where g1 = ker(K − Idg) and g−1 = ker(K + Idg),
4. g1 and g−1 are subalgebras isotropic with respect to 〈 , 〉 and Lagrangian with 

respect to Ω,
5. for any u ∈ g, u.g1 ⊂ g1 and u.g−1 ⊂ g−1 (the dot is the Levi-Civita product).

A para-Kähler Lie algebra carries two products: the Levi-Civita product and the left 
symmetric product a associated with (g, Ω). The following proposition clarifies their 
relationship, where the proof is a simple computation.

Proposition 3.1. Let (g, 〈 , 〉, Ω, K) be a para-Kähler Lie algebra. Then, for any u, v ∈ g1

and α, β ∈ g−1,

u.v = a(u, v) and α.β = a(α, β).

In particular, g1 and g−1 are left symmetric algebras.

Let (g, 〈 , 〉, Ω, K) be a para-Kähler Lie algebra. For any u ∈ g−1, let u∗ denote the 
element of (g1)∗ given by ≺u∗, v� = 〈u, v〉. The map u �→ u∗ realizes an isomorphism 
between g−1 and (g1)∗. Thus, we can identify (g, 〈 , 〉, Ω, K) relative to the phase space 
(Φ(g1), 〈 , 〉0, Ω0, K0). Given this identification and according to Proposition 3.1, the 
Levi-Civita product induces a product on g1 and (g1)∗, which coincides with the affine 
product a. Thus, both g1 and (g1)∗ carry a left symmetric algebra structure. For any 
u ∈ g1 and for any α ∈ (g1)∗, we denote Lu : g1 −→ g1 and Lα : (g1)∗ −→ (g1)∗ as the 
left multiplication by u and α, respectively, i.e., for any v ∈ g1 and any β ∈ (g1)∗,

Luv = u.v = a(u, v) and Lαβ = α.β = a(α, β).
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The right multiplications Ru and Rα are defined in a similar manner. The following 
proposition shows that the Levi-Civita product and the affine product on g identified 
with Φ(g1) are determined entirely by their restrictions to g1 and (g1)∗. The proof of 
this proposition is straightforward.

Proposition 3.2. Let g be a para-Kähler Lie algebra identified with Φ(g1), as described 
above. Then,

1. For any u ∈ g1 and for any α ∈ (g1)∗,

u.α = −Lt
uα and α.u = −Lt

αu.

2. For any u ∈ g1 and for any α ∈ (g1)∗,

a(u, α) = Rt
αu− adt

uα and a(α, u) = −adt
αu + Rt

uα,

where adu : g1 −→ g1 and adα : (g1)∗ −→ (g1)∗ are given by aduv = [u, v] and 
adαβ = [α, β].

Conversely, let U be a finite dimensional vector space and U∗ is its dual space. We 
suppose that both U and U∗ have the structure of a left symmetric algebra. We extend 
the products on U and U∗ to Φ(U), for any X, Y ∈ U and for any α, β ∈ U∗, by putting

(X + α).(Y + β) = X.Y − Lt
αY − Lt

Xβ + α.β. (5)

We consider the two bilinear maps ρ : U ×U∗ −→ End(U) and ρ∗ : U∗×U −→ End(U∗)
defined by

ρ(X,α) = [LX ,Lt
α] + LLt

αX + Lt
Lt
Xα and ρ∗(α,X) = [Lα,Lt

X ] + LLt
Xα + Lt

Lt
αX . (6)

Note that the endomorphism ρ∗(α, X) is the dual of ρ(X, α). Now, we give a new char-
acterization of para-Kähler Lie algebras using the Bianchi identity.

Proposition 3.3. According to the hypothesis above, the product on Φ(U) given by (5) is 
Lie-admissible if and only if

ρ(X,α)Y = ρ(Y, α)X and ρ∗(α,X)β = ρ∗(β,X)α (7)

for any X, Y ∈ U and any α, β ∈ U∗. Moreover, this product is left symmetric if and 
only if ρ(X, α) = 0, for any X ∈ U and any α ∈ U∗.

Proof. According to the Bianchi identity (2), the product given by (5) is Lie-admissible 
if and only if, for any u, v, w ∈ Φ(U),

K(u, v)w + K(v, w)u + K(w, u)v = 0,
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where K is the curvature of the product. Since the products on U and U∗ are left 
symmetric, for any X, Y, Z ∈ U and for any α, β, γ ∈ U∗,

K(X,Y )Z = K(α, β)γ = 0.

Thus, the Bianchi identity is equivalent to

K(X,Y )α + K(Y, α)X + K(α,X)Y = 0, (∗)
K(X,α)β + K(α, β)X + K(β,X)α = 0, (∗∗)

for any X, Y ∈ U and for any α, β ∈ U∗. Now, we obviously have

K(X,Y )α =
(
[LX ,LY ] − L[X,Y ]

)t
α = 0.

By contrast, a direct computation yields

K(Y, α)X = ρ(Y, α)X and K(α,X)Y = −ρ(X,α)Y.

So (∗) is equivalent to ρ(X, α)Y = ρ(Y, α)X. A similar computation shows that (∗∗) is 
equivalent to ρ∗(α, X)β = ρ∗(β, X)α. The second part of the proposition follows easily 
from the above. �
Definition 3.1. Two left symmetric products on U and U∗ that satisfy (7) are called 
Lie-extendible.

Thus, we obtain the following result.

Theorem 3.1. Let (U, .) and (U∗, .) be two Lie-extendible left symmetric products. Then, 
(Φ(U), 〈 , 〉0, K0) endowed with the Lie algebra bracket associated with the product given 
by (5) is a para-Kähler Lie algebra. Moreover, all para-Kähler Lie algebras are obtained 
in this manner.

Example 1. Let (U, .) be a left symmetric algebra. Then, the left symmetric prod-
uct on U and the trivial left symmetric product on U∗ are Lie-extendible such that 
(Φ(U), 〈 , 〉0, K0) endowed with the Lie algebra bracket associated with the left sym-
metric product

(X + α) � (Y + β) = X.Y − Lt
Xβ (8)

is a para-Kähler Lie algebra. We denote [ , ]� as the Lie bracket associated with �. We 
have

[X + α, Y + β]� = [X,Y ] − Lt
Xβ + Lt

Y α.
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This is simply the semi-direct product of (U, [ , ]) with U∗ endowed with the trivial 
bracket, and the action of U on U∗ is given by L∗

U . Moreover, it is easy to check that 
(Φ(U), [ , ]�, 〈 , 〉0) is a flat pseudo-Riemannian Lie algebra and that (Φ(U), �, Ω0) is a 
symplectic left symmetric algebra (also see Proposition 4.3 [6]).

In [5], Bai gave a characterization of para-Kähler Lie algebras, which is similar to that 
used for Lie bialgebras, where he called these structures left symmetric bialgebras. Thus, 
we present this viewpoint in a new manner using Proposition 3.3.

We consider two left symmetric algebras (U, .) and (U∗, .). The products on U and U∗, 
respectively, define by duality, two maps μ : U∗ −→ U∗ ⊗ U∗ and ξ : U −→ U ⊗ U . 
Because Lie algebras U and U∗ have two representations ΨU : U −→ End(U ⊗ U) and 
ΨU∗ : U∗ −→ End, (U∗ ⊗ U∗) given by

ΨU = LU ⊗ adU and ΨU∗ = LU∗ ⊗ adU∗ .

For any X, Y ∈ U and for any α, β ∈ U∗, a direct computation yields

≺β, ρ(X,α)Y − ρ(Y, α)X� = ΨU (X)(ξ(Y ))(α, β) − ΨU (Y )(ξ(X))(α, β)

− ξ([X,Y ])(α, β),

≺ρ∗(α,X)β − ρ∗(β,X)α, Y� = ΨU∗(α)(μ(β))(X,Y ) − ΨU∗(β)(μ(α))(X,Y )

− μ([α, β])(X,Y ).

By using Proposition 3.3, we recover a result of Bai (see [5] Theorem 4.1).

Proposition 3.4. The product on Φ(U) given by (5) is Lie-admissible if and only if ξ is 
a 1-cocycle of (U, [ , ]) with respect to the representation ΨU and μ is a 1-cocycle of 
(U∗, [ , ]) with respect to the representation ΨU∗, i.e., for any X, Y ∈ U , α, β ∈ U∗,

ξ([X,Y ]) = ΨU (X)(ξ(Y )) − ΨU (Y )(ξ(X)),

μ([α, β]) = ΨU∗(α)(μ(β)) − ΨU∗(β)(μ(α)).

Now, we consider the case where ξ is a co-boundary. Indeed, let (U, .) be a left sym-
metric algebra and ξ : U −→ U ⊗U is a co-boundary of (U, [ ]) with respect to ΨU , i.e., 
ξ = δr, where r ∈ U ⊗ U . By duality, ξ define a product on U∗ by

≺α.β,X� = r(Lt
Xα, β) + r(α, adt

Xβ) = LXr(α, β) −≺Lt
r#(α)β,X�, (9)

where r# : U∗ −→ U is given by ≺β, r#(α)� = r(α, β) and LXr(α, β) = r(Lt
Xα, β) +

r(α, Lt
Xβ).

According to Proposition 3.3, to obtain a para-Kähler Lie algebra structure on Φ(U), 
(U∗, .) must be a left symmetric algebra and the couple (U, .), (U∗, .) must be Lie-
extendible. Note that because ξ = δr, then the first equation in (7) holds. Next, we 
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determine the conditions under which the second equation in (7) holds and (U∗, .) is a 
left symmetric algebra. Put r = a + s, where a is skew-symmetric and s is symmetric, 
and define L(a) ∈ U∗ ⊗ U ⊗ U as

L(a)(X,α, β) = LXa(α, β).

It follows immediately from (9) that for any α, β ∈ U∗ and X ∈ U ,

Lt
αX = r# ◦ Lt

Xα + [X, r#(α)] and

≺[α, β], X� = ≺Lt
r#(β)α− Lt

r#(α)β,X� + 2LXa(α, β). (10)

We consider the two representations Q : U −→ End(U⊗U⊗U) and P : U −→ End(U∗⊗
U ⊗ U) given by

Q = LU ⊗ LU ⊗ adU and P = L∗
U ⊗ LU ⊗ LU .

We also define Δ(r) ∈ U ⊗ U ⊗ U � End(U∗ ⊗ U∗, U) by

Δ(r)(α, β) = r#([α, β]) − [r#(α), r#(β)]. (11)

Proposition 3.5. For any X, Y ∈ U and α, β, γ ∈ U∗, we have

≺ρ∗(α,X)β − ρ∗(β,X)α, Y� = 2P (X)(L(a))(Y, α, β),

≺ass(α, β, γ) − ass(β, α, γ), X� = ≺γ,−Q(X)(Δ(r))(α, β)

+ r# (ρ∗(α,X)β − ρ∗(β,X)α)�.

Proof. First, let us compute the associator of α, β, γ ∈ U∗ with respect to the product 
given by (9). For any X ∈ U , we have

≺ass(α, β, γ), X� = ≺α.(β.γ), X�−≺(α.β).γ,X�
= r(Lt

Xα, β.γ) + r(α, adt
X(β.γ)) − r(Lt

X(α.β), γ) − r(α.β, adt
Xγ)

= ≺β.γ, r#(Lt
Xα)� + ≺adt

X(β.γ), r#(α)�−≺γ, r#(Lt
X(α.β))�

−≺adt
Xγ, r#(α.β)�

= r(Lt
r#(Lt

Xα)β, γ) + r(β, adt
r#(Lt

Xα)γ) + r(Lt
[X,r#(α)]β, γ)

+ r(β, adt
[X,r#(α)]γ) −≺γ, r#(Lt

X(α.β))�−≺γ, [X, r#(α.β)]�

= ≺γ, r#
(
Lt

r#(Lt
Xα)β

)
� + ≺γ, [r#(Lt

Xα), r#(β)]�

+ ≺γ, r#
(
Lt

[X,r#(α)]β
)
� + ≺γ, [[X, r#(α)], r#(β)]�

−≺γ, r#(Lt
X(α.β))�−≺γ, [X, r#(α.β)]�.



S. Benayadi, M. Boucetta / Journal of Algebra 436 (2015) 61–101 71
In addition,

Q(X)(Δ(r))(α, β) = [X,Δ(r)(α, β)] − Δ(r)(L∗
Xα, β) − Δ(r)(α,L∗

Xβ)

= [X, r#([α, β])] − [X, [r#(α), r#(β)]] + r#([Lt
Xα, β])

− [r#
(
Lt
Xα

)
, r#(β)] + r#([α,Lt

Xβ]) − [r#(α), r#
(
Lt
Xβ

)
].

Thus,

≺ass(α, β, γ) − ass(β, α, γ), X� + ≺γ,Q(X)(Δ(r))(α, β)� = ≺γ, r#(A)�,

where

A = Lt
r#(Lt

Xα)β − Lt
r#(Lt

Xβ)α + Lt
[X,r#(α)]β − Lt

[X,r#(β)]α− Lt
X([α, β]) + [Lt

Xα, β]

+ [α,Lt
Xβ].

By using the first relation in (10), we obtain

A = Lt
Lt
αXβ − Lt

Lt
βX

α− Lt
X([α, β]) + [Lt

Xα, β] + [α,Lt
Xβ].

Now, according to (6), we have

ρ∗(α,X)β = [Lα,Lt
X ]β + LLt

Xαβ + Lt
Lt
αXβ

= α.(Lt
Xβ) − Lt

X(α.β) + (Lt
Xα).β + Lt

Lt
αXβ,

so A = ρ∗(α, X)β − ρ∗(β, X)α and the second assertion follows. Furthermore, by using 
the second relation in (10), for any Y ∈ U , we obtain

≺A, Y� = −2LX.Y a(α, β) + 2LY a(Lt
Xα, β) + 2LY a(α,Lt

Xβ),

and the first assertion follows. �
Therefore, we obtain the following result.

Theorem 3.2. Let (U, .) be a left symmetric algebra and r = a + s ∈ U ⊗ U . Then, the 
product given by (9) is left symmetric and the left symmetric products on (U, U∗) are 
Lie-extendible if and only if for any X ∈ U

Q(X)(Δ(r)) = 0 and P(X)(L(a)) = 0.

In this case, (Φ(U), 〈 , 〉0, Ω0, K0) endowed with the Lie bracket associated with the 
product given by (5) is a para-Kähler Lie algebra.
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We obtain the following corollary immediately.

Corollary 3.1. If a is LU -invariant, i.e. L(a) = 0, then the product given by (9) is left 
symmetric and the left symmetric products on (U, U∗) are Lie-extendible if and only if 
Δ(r) is Q-invariant.

In fact, the statement in Theorem 3.2 is the same as that in Theorem 5.4 in [5]. 
To demonstrate this, let us investigate the relationship between Δ(r) and [[r, r]], which 
appear in Bai’s Theorem. Let (U, .) be a left symmetric algebra and r =

∑
i ai⊗bi. In [5], 

Bai defines [[r, r]] by

[[r, r]] = r13.r12 − r23.r21 + [r23, r12] − [r13, r21] − [r13, r23],

where

r13.r12 =
∑
i,j

ai.aj ⊗ bj ⊗ bi, r23.r21 =
∑
i,j

bj ⊗ ai.aj ⊗ bi,

[r23, r12] =
∑
i,j

aj ⊗ [ai, bj ] ⊗ bi, [r13, r21] =
∑
i,j

[ai, bj ] ⊗ aj ⊗ bi,

[r13, r23] =
∑
i,j

ai ⊗ aj ⊗ [bi, bj ].

Proposition 3.6. For any α, β, γ ∈ U∗, we have

[[r, r]](α, β, γ) = ≺γ,Δ(r)(α, β)�.

Proof. Recall that according to (10), for any X ∈ U ,

≺[α, β], X� = ≺Lt
r#(β)α− Lt

r#(α)β,X� + 2LXa(α, β),

a = 1
2
∑

i(ai ⊗ bi − bi ⊗ ai) is the skew-symmetric part of r. We have

r#(α) =
∑
i

≺α, ai�bi and r#(β) =
∑
i

≺β, ai�bi.

Thus,

−≺γ, [r#(α), r#(β)]� = −
∑
i,j

≺α, ai�≺β, aj�≺γ, [bi, bj ]� = −[r13, r23](α, β, γ).

Now,

r(Lt
r#(β)α, γ) =

∑
j

≺β, aj�r(Lt
bjα, γ) =

∑
i,j

≺β, aj�≺Lt
bjα, ai�≺γ, bi�

=
∑

(bj .ai) ⊗ aj ⊗ bi(α, β, γ).

i,j
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In the same manner, we obtain

−r(Lt
r#(α)β, γ) = −

∑
i,j

aj ⊗ (bj .ai) ⊗ bi(α, β, γ).

Furthermore,

2r(La(α, β), γ) = 2
∑
i

≺La(α, β), ai�≺γ, bi�

= 2
∑
i

a(Lt
ai
α, β)≺γ, bi� + 2

∑
i

a(α,Lt
ai
β)≺γ, bi�,

2
∑
i

a(Lt
ai
α, β)≺γ, bi� =

∑
i,j

(
≺Lt

ai
α, aj�≺β, bj�−≺Lt

ai
α, bj�≺β, aj�

)
≺γ, bi�

=
∑
i,j

((ai.aj) ⊗ bj ⊗ bi − (ai.bj) ⊗ aj ⊗ bi) (α, β, γ),

= r13.r12(α, β, γ) −
∑
i,j

(ai.bj) ⊗ aj ⊗ bi(α, β, γ),

2
∑
i

a(α,Lt
ai
β)≺γ, bi� =

∑
i,j

(aj ⊗ (ai.bj) ⊗ bi − bj ⊗ (ai.aj) ⊗ bi) (α, β, γ)

=
∑
i,j

aj ⊗ (ai.bj) ⊗ bi(α, β, γ) − r23.r21(α, β, γ).

By combining all of the above, we obtain the desired formula. �
Remark 1.

1. This proposition shows that the statement in Theorem 3.2 is the same as that in 
Theorem 5.4 in [5]. However, our proof is easier to obtain because the expression of 
Δ(r) is simpler to handle than that of [[r, r]]. The practical nature of Δ(r) is crucial 
later in the present study, particularly in Sections 6–7.

2. Let (U, .) be a left symmetric algebra and r ∈ U ⊗ U . According to Proposition 3.6, 
[[r, r]] = 0 iff r# is a Lie algebra endomorphism. This generalizes Theorem 6.6 in [5], 
as stated in the case when r is symmetric.
Now, suppose that r is symmetric and r# is an isomorphism. By using (10), we can 
easily see that for any X, Y, Z ∈ U ,

≺r−1
# (Z),Δ(r)(r−1

# (X), r−1
# (Y )) = B(X,Y.Z) −B(Y,X.Z) −B(Z, [X,Y ]),

where B ∈ U∗ ⊗ U∗ is given by B(X, Y ) = ≺r−1
# (X), Y�. So [[r, r]] = 0 iff B is a 

2-cocycle of (U, .). This was proved in a different way in Theorem 6.3 in [5].
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Now, let us introduce a key notion of our study, i.e., the notion of a quasi-S-matrix 
as a generalization of the S-matrix that first appeared in [5].

Let U be a left symmetric algebra. A quasi-S-matrix of U is an r ∈ U⊗U such that its 
skew-symmetric part is LU -invariant and [[r, r]] is Q-invariant. Recall that an S-matrix
of U is an r ∈ U ⊗ U , which is symmetric and it satisfies

[[r, r]] = 0. (12)

In the following, we focus on the Lie algebra structure on Φ(U) associated with a 
quasi-S-matrix. We show that Lie algebra can be described in a precise and simple 
manner. Indeed, let r be a quasi-S-matrix. Then, according to Theorem 3.2, the product 
on U∗ given by (9) is left symmetric and (Φ(U), [ , ]r, 〈 , 〉0, K0) is a para-Kähler Lie 
algebra, where

[X + α, Y + β]r = [X,Y ] − Lt
Xβ − Lt

αY + Lt
Y α + Lt

βX + [α, β].

In Example 1, we showed that Φ(U) carries a left symmetric product � and its associated 
Lie bracket [ , ]� induces a para-Kähler Lie algebra structure on Φ(U). We define a new 
bracket on Φ(U) by putting

[X + α, Y + β]�,r = [X + α, Y + β]� + Δ(r)(α, β). (13)

The following proposition was inspired by a result that appeared in [13] in the context 
of Lie bialgebras and R-matrices (see Proposition 4.2.1.1 in [13]).

Proposition 3.7. (Φ(U), [ , ]�,r) is a Lie algebra and the linear map ξ : (Φ(U), [ , ]�,r) −→
(Φ(U), [ , ]r), X + α �→ X − r#(α) + α is an isomorphism of Lie algebras.

Proof. Clearly, ξ is bijective. Let us show that ξ preserves the Lie brackets. It is clear 
that for any X, Y ∈ U , ξ ([X,Y ]�,r) = [ξ(X), ξ(Y )]r. Now, for any X ∈ U , α ∈ U∗,

ξ ([X,α]�,r) = ξ(−Lt
Xα)

= r#(Lt
Xα) − Lt

Xα

(10)= Lt
αX − [X, r#(α)] − Lt

Xα

= [X,−r#(α) + α]r

= [ξ(X), ξ(α)]r.

In addition, for any α, β ∈ U∗,

ξ ([α, β]�,r) = ξ(Δ(r)(α, β))

= Δ(r)(α, β),
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[ξ(α), ξ(β)]r = [−r#(α) + α,−r#(β) + β]r

= [r#(α), r#(β)] + [α, β] + Lt
r#(α)β − Lt

r#(β)α + Lt
αr#(β) − Lt

βr#(α)
(10)= [r#(α), r#(β)] + r#(Lt

r#(β)α) − r#(Lt
r#(α)β) + [r#(β), r#(α)]

− [r#(α), r#(β)]

= r#([α, β]) − [r#(α), r#(β)]

= Δ(r)(α, β). �
We can now transform the para-Kähler structure associated with r from (Φ(U), [ , ]r,

〈 , 〉0, K0) to Φ(U) via ξ and we obtain the following proposition.

Proposition 3.8. Let (U, .) be a left symmetric algebra and r = a + s ∈ U ⊗ U is a 
quasi-S-matrix. Then, (Φ(U), [ , ]�,r, 〈 , 〉r, Kr) is a para-Kähler Lie algebra, where

〈X + α, Y + β〉r = 〈X + α, Y + β〉0 − 2s(α, β) and

Kr(X + α) = K0(X + α) − 2r#(α).

Remark 2.

(a) In fact, using a similar method, we can generalize the result of Diatta [13]. Let 
(g, [ , ]) be a Lie algebra and r ∈ g ∧ g. On g∗ and Φ(g), we define two brackets [ , ]∗
and [ , ]r, respectively, by

[α, β]∗ = ad∗
r#(α)β − ad∗

r#(β)α and

[X + α, Y + β]r = [X,Y ] + [α, β]∗ − adt
Xβ − adt

αY + adt
Y α + adt

βX,

and [r, r] ∈ g ⊗ g ⊗ g � End(g∗ ⊗ g∗, g) by

[r, r](α, β) = r#([α, β]∗) − [r#(α), r#(β)].

It is well known that [ , ]∗ is a Lie bracket iff [r, r] is ad-invariant. In this case, [ , ]r
is a Lie bracket. Define a new bracket on Φ(g) by putting

[X + α, Y + β]�,r = [X,Y ] + ad∗
Xβ − ad∗

Y α + [r, r](α, β).

By using the same argument employed in the proof of Proposition 3.7, we can see that 
(Φ(g), [ , ]�,r) is a Lie algebra and the linear map ξ : (Φ(g), [ , ]�,r) −→ (Φ(g), [ , ]r), 
X + α �→ X − r#(α) + α is an isomorphism of Lie algebras. When [r, r] = 0, we 
recover the result of Diatta.

(b) Let (U, .) be a left symmetric algebra and r = a +s ∈ U⊗U is a quasi-S-matrix. The 
Lie algebra (Φ(U), [ , ]�,r) is a Z2-graded Lie algebra and hence L : U∗×U∗×U∗ −→
U∗ given by
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L(α, β, γ) = L∗
Δ(r)(α,β)γ

is a Lie triple system (e.g., see [15,18,20] for a definition and the properties of Lie 
triple systems).

4. Some classes of para-Kähler Lie algebras

In this section, we develop some methods for building para-Kähler Lie algebras based 
on the following proposition, where we employ the notations given in the previous section, 
particularly Proposition 3.8.

Proposition 4.1. Let (U, .) be a left symmetric algebra and r = a + s ∈ U ⊗ U , which 
is LU -invariant. Then, L(a) = 0, [[r, r]] = Δ(r) = 0 and (Φ(U), [ , , ]�, 〈 , 〉r, Kr) a 
para-Kähler Lie algebra. Moreover, the Levi-Civita product of (Φ(U), [ , , ]�, 〈 , 〉r) is �
given by (8).

Proof. Since r is LU -invariant, then a and thus L(a) = 0. The vanishing of Δ(r) is 
immediate. Thus, we can apply Proposition 3.8. To conclude, we can easily check that �
is actually the Levi-Civita product of (Φ(U), [ , , ]�, 〈 , 〉r). �

As a consequence of this proposition, we obtain the following large class of para-Kähler 
Lie algebras.

Proposition 4.2. Let (g, 〈 , 〉) be a pseudo-Riemannian flat Lie algebra, i.e., the Levi-
Civita product “.” is left symmetric. Denote � : g −→ g∗ as the isomorphism associated 
with 〈 , 〉. Then, (Φ(g), [ , , ]�, 〈 , 〉�, K�) is a para-Kähler Lie algebra, where

〈X + α, Y + β〉� = 〈X + α, Y + β〉0 − 2〈�−1(α), �−1(β)〉 and

K�(X + α) = K0(X + α) − 2�−1(α).

Moreover, the Levi-Civita product of (Φ(g), [ , , ]�, 〈 , 〉�) is � given by (8).

Proof. The Levi-Civita product defines a left symmetric algebra structure on U , and 
r ∈ U ⊗ U defined by r(α, β) = 〈�−1(α), �−1(β) is LU -invariant, which we can conclude 
by using Proposition 4.1. �

Next, we provide some methods for building pseudo-Riemannian flat Lie algebras.
Let (U, [., .], ω) be a symplectic Lie algebra and B is a nondegenerate bi-invariant 

bilinear symmetric form on U . The isomorphism D defined by

ω(X,Y ) = B(D(X), Y )

is an invertible derivation and hence U is nilpotent (see [16]). The nondegenerate sym-
metric bilinear form 〈 , 〉 given by

〈X,Y 〉 = B(D(X), D(Y ))
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satisfies

〈X.Y, Z〉 + 〈Y,X.Z〉 = 0,

where the dot designates the left symmetric product associated with ω given by (4). Thus, 
(U, 〈 , 〉) is a flat pseudo-Riemannian Lie algebra (see [8]). Therefore, any symplectic 
quadratic Lie algebra (U, B, ω) leads to a flat pseudo-Riemannian Lie algebra (U, 〈 , 〉).

More generally, let (g, [ , ], B) be a quadratic Lie algebra and r ∈ g ∧ g is a solution 
of the classical Yang–Baxter equation. The product on g∗ given by α.β = ad∗

r#(α)β is 
left symmetric and thus it induces a Lie bracket [ , ]r on g∗. In fact, this product is the 
Levi-Civita product of B∗ (the induced bilinear nondegenerate symmetric form on g∗). 
Thus, (g∗, [ , ]r, B∗) is a flat pseudo-Riemannian Lie algebra (see [10]).

Now, let us give a method for building symplectic quadratic Lie algebras.
Let n ∈ N

∗ and A be a vector space with a basis {e1, . . . , en}. On A, we consider the 
product defined by

eiej = ejei = ei+j if i + j � n, eiej = ejei = 0 if i + j > n.

The vector space A endowed with this product is a commutative and associative algebra.
Let (L, [., ]) be an arbitrary Lie algebra. Then, the following product

[X ⊗ a, Y ⊗ b]T := [X,Y ] ⊗ ab,

defines the structure of a Lie algebra on the vector space T := L ⊗ A. Moreover, the 
endomorphism δ of T defined by

δ(X ⊗ ei) := iX ⊗ ei

for any X ∈ L and any i ∈ {1, . . . , n}, is an invertible derivation of T .
Now, on the vector space U := T ⊕ T ∗, we define the structure of a symplectic 

quadratic algebra in the following manner. For any s, t ∈ T and any f, h ∈ T ∗, put

[t + f, s + h]U = [t, s]T − h ◦ adT (t) + f ◦ adT (s),

B(t + f, s + h) = f(s) + h(t),

D(t + f) = δ(t) − f ◦ δ,

ω(t + f, s + h) = B(D(t + f), s + h).

We can easily check that (U, B, ω) is a symplectic quadratic Lie algebra.

Proposition 4.3. Let (g, [ , ]) be a Lie algebra, b ∈ ∧2g is a solution of the classical 
Yang–Baxter equation on (g, [ , ]), i.e., [b, b] = 0, and r = s + a ∈ g∗ ⊗ g∗, such that 
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ad∗
b#(α)r = 0, for any α ∈ g∗. Then, (Φ(g), [ , ]b, 〈 , 〉r, Kr) is a para-Kähler Lie algebra, 

where

[X + α, Y + β]b = ad∗
b#(α)β − ad∗

b#(β)α + [b#(α), Y ] + [X, b#(β)],

〈X + α, Y + β〉r = 〈X + α, Y + β〉0 − 2s(X,Y ) and

Kr(X + α) = −K0(X + α) − 2r#(X).

Moreover, the Levi-Civita product associated with (Φ(g), [ , ]b, 〈 , 〉r) is left symmetric 
and it is given by

(X + α) �b (Y + β) = ad∗
b#(α)β + [b#(α), Y ].

Proof. It is well known that the product given by α.β = ad∗
b#(α)β on g∗ is left symmetric 

and that the condition ad∗
b#(α)r = 0 is equivalent to r is invariant with respect to 

this product on g∗. Thus, (g∗, ., r) satisfies the hypothesis of Proposition 4.1 and the 
proposition follows. �

There is an interesting case in this situation, as follows.

Corollary 4.1. Let (g, [ , ]) be a Lie algebra, b ∈ ∧2g is a solution of the classical 
Yang–Baxter equation on (g, [ , ]), and k ∈ g∗⊗g∗ is the Killing form. Then, (Φ(g), [ , ]b,
〈 , 〉k, Kk) is a para-Kähler Lie algebra.

5. Hyper-para-Kähler Lie algebras

Hyper-para-Kähler Lie algebras, which are also known as hyper-symplectic Lie alge-
bras, comprise a subclass of the class of para-Kähler Lie algebras. Based on the previous 
sections, we give a new characterization of these Lie algebras. This characterization leads 
to a notion of compatibility between two left symmetric algebra structures on a given 
vector space. Since a hyper-para-Kähler Lie algebra has a complex product structure, 
we also obtain a characterization of these structures.

A hyper-para-Kähler Lie algebra is a para-Kähler Lie algebra (g, 〈 , 〉, K) endowed 
with an endomorphism J such that J2 = −Idg, JK = −KJ , J is skew-symmetric with 
respect to 〈 , 〉 and J is invariant with respect to the Levi-Civita product. Accord-
ing to Theorem 3.1, a para-Kähler Lie algebra can be identified in the phase space of 
Lie-extendible left symmetric algebras, and thus it is natural to understand how hyper-
para-Kähler Lie algebras can be described in this setting.

Proposition 5.1. Let (U, .) and (U∗, .) be a couple of Lie-extendible left symmetric alge-
bras, (Φ(U), 〈 , 〉0, K0), the associated para-Kähler Lie algebra, and J : Φ(U) −→ Φ(U), 
an endomorphism. Then, (Φ(U), 〈 , 〉0, K0, J) is a hyper-para-Kähler Lie algebra if and 
only if a bilinear nondegenerate ω ∈ ∧2U∗ exists such that:
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(i) for any X ∈ U , α ∈ U∗, JX = �(X) and Jα = −�−1(α), where � : U −→ U∗ is the 
isomorphism given by �(X) = ω(X, .),

(ii) (U, ., ω) and (U, ◦, ω) are symplectic left symmetric algebras, where ◦ is given by

X ◦ Y = �−1(�(X).�(Y )).

Proof. From the relation JK0 = −K0J , we deduce that for any X ∈ U , JX ∈ U∗, and 
thus J defines an isomorphism � : U −→ U∗. Moreover, from J2 = −Idg, we deduce that 
Jα = −�−1α for any α ∈ U∗. The skew-symmetry of J implies that ω ∈ ∧2U∗ given by

ω(X,Y ) = ≺�(X), Y�

is skew-symmetric and it is actually nondegenerate. Now, J is invariant if and only if for 
any X, Y, ∈ U and any α, β ∈ U∗,

−Lt
X(JY ) = J(X.Y ), X.J(α) = −J(Lt

Xα), α.J(X) = −J(Lt
αX) and

−Lt
α(Jβ) = J(α.β).

This is equivalent to

Lt
X ◦ � + � ◦ LX = �−1 ◦ Lt

X + LX ◦ �−1 = 0 and

Lt
α ◦ �−1 + �−1 ◦ Lα = � ◦ Lt

α + Lα ◦ � = 0,

for any X ∈ U , α ∈ U∗. Now, it is obvious that these relations are equivalent to

Lt
X ◦ � + � ◦ LX = 0 and � ◦ Lt

α + Lα ◦ � = 0, (14)

for any X ∈ U , α ∈ U∗. We can see easily that this is equivalent to

ω(X.Y, Z) + ω(Y,X.Z) = 0 and ω(X ◦ Y,Z) + ω(Y,X ◦ Z) = 0,

for any X, Y, Z ∈ U . Thus, (U, ., ω) and (U, ◦, ω) are symplectic left symmetric algebras. 
Obviously, the converse is true. �

Now, let U be a vector space, and ω ∈ ∧2U∗ nondegenerate and •, ◦ are two products 
on U such that (U, •, ω) and (U, ◦, ω) are symplectic left symmetric algebras. Define 
J0 : Φ(U) −→ Φ(U) by J0X = �(X) and J0α = −�−1(α), and denote �(◦) as the product 
on the U∗ image by � of ◦. Let the dot denote the product on Φ(U), which extends (U, •)
and (U∗, �(◦)) by (5). By using (14), it is easy to see that for any X, Y ∈ U , α, β ∈ U∗,

(X + α).(Y + β) = X • Y + �−1(α) ◦ Y −
(
L◦
�−1(α)

)t

β − (L•
X)t β. (15)
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In Proposition 3.3, we showed that this product is Lie-admissible iff (7) holds. Given ω, 
we can identify Φ(U) as T (U). Indeed, we define ξ : T (U) −→ Φ(U) by

ξ(X, 0) = X and ξ(0, X) = �(X).

We have Ω1 = ξ∗Ω0, 〈 , 〉1 = ξ∗〈 , 〉0, K1 = ξ−1 ◦K0 ◦ ξ and J1 = ξ−1 ◦ J0 ◦ ξ. It is easy 
to check that

(X,Y ).(Z, T ) := ξ−1(ξ(X,Y ).ξ(Z, T )) = (X • Z,X • T ) + (Y ◦ Z, Y ◦ T ). (16)

Now, by using (14), we can see easily that for any X ∈ U and any α ∈ U∗,

ρ(X,α) = −K•,◦(X, �−1(α)) and ρ∗(α,X) = � ◦ K•,◦(X, �−1(α)) ◦ �−1,

where

K•,◦(X,Y ) = [L•
X ,L◦

Y ] − (L◦
X•Y − L•

Y ◦X) .

(To distinguish between • and ◦, we denote L•
X as the left multiplication by X associated 

with •, and so on). Thus, by using Proposition 3.3, we obtain the following proposition, 
which actually does not involves ω.

Proposition 5.2. Let U be a vector space and •, ◦ are two left symmetric products on U . 
The following assertions are equivalent.

1. The product given by (16) is Lie-admissible.
2. For any X, Y, Z ∈ U , K•,◦(X, Y )Z = K•,◦(Z, Y )X and K•,◦(X, Y )Z = K•,◦(X, Z)Y .

Moreover, the product given by (16) is left symmetric if and only if K•,◦ vanishes 
identically.

We can see easily that the second assertion in this proposition is equivalent to

Y ◦ [X,Z]• − [Y ◦X,Z]• − [X,Y ◦ Z]• = (Z • Y ) ◦X − (X • Y ) ◦ Z, (17)

Y • [X,Z]◦ − [Y •X,Z]◦ − [X,Y • Z]◦ = (Z ◦ Y ) •X − (X ◦ Y ) • Z, (18)

for any X, Y, Z ∈ U .
Now, let us state an important formula. Let • and ◦ be two algebra structures on a 

vector space U . A straightforward computation gives the following formula:

K•+◦(X,Y ) = K•(X,Y ) + K◦(X,Y ) + K•,◦(X,Y ) − K•,◦(Y,X), (19)

where Kx is the curvature of x.
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Definition 5.1. Two left symmetric algebras structures • and ◦ on U are called com-
patible if they satisfy (17)–(18), or equivalently K•,◦ satisfies the second assertion in 
Proposition 5.2.

The following proposition is an immediate consequence of (19).

Proposition 5.3. Let •, ◦ be two compatible left symmetric algebra structures on U . Then, 
for any a, b ∈ R, (U, a • +b ◦) is a left symmetric algebra.

Remark 3. Let •, ◦ be two compatible left symmetric algebra structures on U . As a 
consequence of Proposition 5.3, the bracket a[ , ]• + b[ , ]◦ is a Lie bracket and hence 
the two dual Poisson structures on U∗ associated with [ , ]• and [ , ]◦ are compatible 
(e.g., see [21] for a definition of compatible Poisson structures).

Finally, we obtain a characterization of hyper-para-Kähler Lie algebras. In fact, our 
method can be easily generalized to obtain a characterization of complex product struc-
tures. The characterization given in the following theorem completes the study of complex 
product structures provided in [3].

Theorem 5.1.

1. Let •, ◦ be two compatible left symmetric algebra structures on U . Then, (T (U), K1,

J1) endowed with the Lie algebra structure associated with the product given by (16)
is a complex product Lie algebra. Moreover, all complex product Lie algebras are 
obtained in this manner.

2. Let •, ◦ be two compatible left symmetric algebra structures on U and ω ∈ ∧2U∗

such that (U, ω, •) and (U, ω, ◦) are symplectic left symmetric algebras. Then, 
(T (U), 〈 , 〉1, K1, J1) endowed with the Lie algebra structure associated with the prod-
uct given by (16) is a hyper-para-Kähler Lie algebra. Moreover, all hyper-para-Kähler 
Lie algebras are obtained in this manner.

Proof.

1. To show that (T (U), K1, J1) is a complex product Lie algebra, it suffices to show that 
the Nijenhuis torsion of K1 and J1 vanishes, which is easy to check. Conversely, let 
(g, K, J) be a complex product Lie algebra. We have g = g1⊕g−1, where gi = ker(K−
iIdg) and J defines an isomorphism φ : g1 −→ g−1. We consider the product “.” on 
g given by

(u1 + u−1).(v1 + v−1) = u1 ◦ v1 + φ(u1 ◦ φ−1(v−1)) + φ−1(u−1 � φ(v1)) + u−1 � v−1,

where ◦ and � are the products on g1 and g−1, respectively, which are given by

u1 ◦ v1 = −π1J [u1, Jv1] and u−1 � v−1 = −π−1J [u−1, Jv−1],
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where πi is the projection on gi. In [3], it was shown that ◦, � are left symmetric 
and “.” is Lie-admissible. Put U = g1, • = φ−1(�) and define ξ : T (U) −→ g by 
ξ(X, 0) = X and ξ(0, X) = φ(X). We then obtain the desired isomorphism.

2. This is a consequence of the method given above. �
Example 2. Let (U, .) be a left symmetric algebra. Then, “.” is compatible with itself so 
(T (U), K1, J1) endowed with the Lie algebra bracket associated with the left symmetric 
product

(X,Y ).(Z, T ) = (X.Z + Y.Z, Y.T + X.T )

is a complex product Lie algebra. Moreover, if U carries ω such that (U, ., ω) is a sym-
plectic left symmetric algebra, then (T (U), 〈 , 〉1, K1, J1) is a hyper-para-Kähler Lie 
algebra.

The following proposition is immediate.

Proposition 5.4. Let •, ◦ be two compatible left symmetric algebra structures on U and 
(T (U), K1, J1) is the associated complex product structure. Then, the following are equiv-
alent.

(i) K1 is abelian.
(ii) J1 is abelian.
(iii) Both • and ◦ are commutative, and hence associative.

According to (17)–(18), two associative and commutative algebra structures • and ◦
on U are compatible if for any X, Y, Z ∈ U ,

(Z • Y ) ◦X − (X • Y ) ◦ Z = (Z ◦ Y ) •X − (X ◦ Y ) • Z = 0. (20)

In this case, (T (U), K1, J1) endowed with the bracket associated with the product given 
by (16) is an abelian complex product structure. A similar result is given in [3] with a 
different product.

6. Quasi-S-matrices on symplectic Lie algebras

In Section 2, we showed that finding the set of quasi-S-matrices on a given left symmet-
ric algebra yields a large class of para-Kähler Lie algebras. In this section, we investigate 
the set of quasi-S-matrices with respect to the left symmetric product associated with a 
symplectic Lie algebra.

Let (g, ω) be a symplectic Lie algebra and � : g −→ g∗ is the isomorphism given 
by �(X) = ω(X, .). The product a given by (4) is left symmetric. We associate any 
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endomorphism A : g −→ g with the tensor YB(A) ∈ End(g ⊗ g, g), which is given by

YB(A)(X,Y ) = A[AX,Y ] + A[X,AY ] − [AX,AY ]. (21)

The following proposition provides a useful characterization of quasi-S-matrices on (g, a).

Proposition 6.1. Let r ∈ g ⊗ g and a is its skew-symmetric part. Put A = r# ◦ � and 
T = a# ◦ �. Then, the following assertions hold.

(i) The tensor r is a quasi-S-matrix of (g, a) if and only if T and YB(A) are 
ad-invariant.

(ii) If r is symmetric, then it is an S-matrix of (g, a) if and only if YB(A) = 0.
(iii) If r is symmetric and invertible, then it is an S-matrix of (g, a) if and only if A−1

is a derivation of the Lie algebra g.

Proof. From (4), for any X ∈ g, we find that

� ◦ adX = L∗
X ◦ �. (22)

Moreover, for any X, Y ∈ g, we have

Δ(r)(�X, �Y ) = r#([�X, �Y ]) − [r#(�X), r#(�Y )]
(10)= A ◦ �−1 (Lt

AY �X
)
−A ◦ �−1 (Lt

AX�Y
)

+ 2A ◦ �−1 (L(a)(�X, �Y )) − [AX,AY ]
(22)= YB(A)(X,Y ) + 2A ◦ �−1 (L(a)(�X, �Y )) .

From this relation and (22), we can see easily that (i) and (ii) hold. Now, it is easy to 
show that if A is invertible, then YB(A) = 0 if and only if A−1 is a derivation of the Lie 
algebra g and (iii) holds. �

Let g be a Lie algebra. The modified Yang–Baxter equation is the equation

YB(A)(X,Y ) = t[X,Y ], for all X,Y ∈ g, (23)

where t ∈ R is a fixed parameter and the unknown A is an endomorphism of g. When 
t = 0, we obtain the operator form of the classical Yang–Baxter equation. The following 
proposition is an immediate consequence of Proposition 6.1.

Proposition 6.2. Let (g, ω) be a symplectic Lie algebra and A is a solution of the modified 
Yang–Baxter equation, which is skew-symmetric with respect to ω. Then, r = A ◦ �−1 is 
a quasi-S-matrix of (g, a).
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Theorem 6.1. Let (g, ω) be a symplectic Lie algebra and A : g −→ g. Put A = As + Aa, 
where As and Aa are the symmetric and the skew-symmetric parts of A (with respect 
to ω), respectively. If both YB(A) and As are ad-invariant, then the product ◦ on g given 
by X ◦ Y = X.[(As −Aa)Y ] − (AX).Y is left symmetric and (T (g), 〈 , 〉A, KA) endowed 
with the Lie bracket given by

[(X,Y ), (Z, T )]A = ([X,Z] + YB(A)(Y, T ), [X,T ] + [Z, Y ])

is a para-Kähler Lie algebra, where

〈(X,Y ), (Z, T )〉A = ω(T,X) + ω(Y,Z) + 2ω(AaY, T ) and

KA(X,Y ) = (X − 2AY,−Y ),

and the dot is the left symmetric product associated with (g, ω).

Proof. According to Proposition 6.1, r given by r(α, β) = −ω(A�−1(α), �−1(β)) is a 
quasi-S-matrix with respect to the left symmetric product associated with ω. By virtue 
of Corollary 3.1 and Proposition 3.8, on g∗, r defines a left symmetric Lie algebra 
structure by (9) and (Φ(g), [ , ]�,r〈 , 〉r, Kr) is a para-Kähler Lie algebra. Now, 
we consider the linear isomorphism μ : T (g) −→ Φ(g), (X, Y ) �→ (X, �(Y )). Thus, 
(T (g), [ , ]μ, μ∗〈 , 〉r, μ−1 ◦Kr ◦ μ) is a para-Kähler Lie algebra and [ , ]μ is a pull-back 
by μ of [ , ]�,r. We can check easily that this bracket is the Lie bracket given in the 
statement of the theorem, 〈 , 〉A = μ∗〈 , 〉r and KA = μ−1 ◦Kr ◦ μ.

Let us compute the pull-back by � of the left symmetric product on g∗ given by (9). 
We have

≺α,X ◦ Y� = −≺�(X).�(Y ), �−1(α)�
(9)= −r(Lt

�−1(α)�(X), �(Y )) − r(�(X), adt
�−1(α)�(Y ))

(22)= ω(A[�−1(α), X], Y ) − ω(AX, �−1(adt
�−1(α)�(Y )))

= ω([�−1(α), X], AsY ) + ω([X, �−1(α)], AaY ) + ω(Y, [�−1(α), AX])

= ≺α,X.[(As −Aa)Y ] − (AX).Y�. �
Remark 4. Actually, this theorem and Remark 2 (b) suggest the following more general 
result. Let g be a Lie algebra and A is an endomorphism of g such that YB(A) is 
ad-invariant. Then, we can check that the bracket [ , ]A on T (g) is a Lie bracket and 
hence LA : g × g × g −→ g given by

LA(X,Y, Z) = [YB(A)(X,Y ), Z]

is a Lie triple system.
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Example 3. Let (U, .) be a left symmetric algebra with an invertible derivation D. On the 
vector space Φ(U) := U ⊕ U∗, we know that we have a left symmetric structure defined 
by:

(X + α) � (Y + β) := X.Y − Lt
Xβ, ∀X,Y ∈ U,α, β ∈ U∗.

Moreover, (Φ(U), �, Γ0) is a symplectic left symmetric algebra. Now, it is easy to verify 
that the endomorphism Δ of Φ(U) defined by:

Δ(X + α) := D(X) − α ◦D,∀X ∈ U,α ∈ U∗,

is an invertible derivation of (Φ(U), �), which is skew-symmetric with respect to Γ0. In 
the following, we construct left symmetric algebras with an invertible derivation. Let 
n ∈ N

∗ and A is a vector space with a basis {e1, . . . , en}. On A, we consider the product 
defined by:

eiej = ejei := ei+j if i + j ≤ n, eiej = ejei := 0 if i + j > n.

The vector space A endowed with this product is a commutative associative algebra. Let 
(V, �) be a symmetric algebra, then (U := V ⊗ A, .) is a left symmetric algebra, where 
the product “.” is defined by:

v ⊗ ei.w ⊗ ej := v � w ⊗ eiej , ∀v, w ∈ V, i, j ∈ {1, . . . , n}.

Moreover, the endomorphism D of U defined by:

D(v ⊗ ei) := iv ⊗ ei, ∀v ∈ V, i ∈ {1, . . . , n},

is an invertible derivation of (U, .). Finally, by using the first construction, we obtain a 
symplectic left symmetric algebra (Φ(U), �, Γ0) with an invertible derivation Δ, which 
is skew-symmetric with respect to Γ0.

7. Quasi-S-matrices on a left symmetric algebra U with an invariant isomorphism 
Θ : U −→ U∗

In this section, we investigate the set of quasi-S-matrices on a left symmetric algebra U
with an invariant isomorphism Θ : U −→ U∗. The most important classes are symplectic 
left symmetric algebras and flat pseudo-Riemannian Lie algebras.

Let (U, .) be a left symmetric algebra and Θ : U −→ U∗ is an isomorphism that is 
invariant, i.e., for any X ∈ U ,

Θ ◦ LX = L∗
X ◦ Θ. (24)
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With any endomorphism A : U −→ U , we associate the tensors δ(A), O(A) ∈ End(U ⊗
U, U) given by

δ(A)(X,Y ) = X.A(Y ) − Y.A(X) −A([X,Y ]) and

O(A)(X,Y ) = [AX,AY ] − (A(AX.Y ) −A(AY.X)). (25)

We can see easily that

O(A) = NA + A ◦ δ(A), (26)

where NA is the Nijenhuis torsion of A. The following proposition gives a useful char-
acterization of quasi-S-matrices and S-matrices on (U, .). The second assertion of this 
proposition was obtained by Bai (see Corollary 6.8 [5]).

Proposition 7.1. Let r ∈ U ⊗ U and a is its skew-symmetric part. Put A = r# ◦ Θ and 
T = a# ◦ Θ. Then, the following assertions hold.

(i) The tensor r is a quasi-S-matrix of (U, .) if and only if T is LU -invariant and O(A)
is L∗

U ⊗ L∗
U ⊗ ad-invariant.

(ii) If r is symmetric, then it is an S-matrix of (U, .) if and only if O(A) = 0.
(iii) If r is symmetric and invertible, then it is an S-matrix of (U, .) if and only if 

δ(A−1) = 0.

Proof. For any X, Y ∈ U , we have

Δ(r)(ΘX,ΘY ) = r#([ΘX,ΘY ]) − [r#(ΘX), r#(ΘY )]
(10)= A ◦ Θ−1 (Lt

AY ΘX
)
−A ◦ Θ−1 (Lt

AXΘY
)

+ 2A ◦ Θ−1 (L(a)(ΘX,ΘY )) − [AX,AY ]
(24)= −[AX,AY ] −A(AY.X) + A(AX.Y ) + 2A ◦ Θ−1 (L(a)(ΘX,ΘY ))

= −O(A)(X,Y ) + 2A ◦ Θ−1 (L(a)(ΘX,ΘY )) .

From this relation and (24), we can see easily that (i) and (ii) hold. Now, it is easy to 
show that if A is invertible, then O(A) = 0 if and only if δ(A−1) = 0 and (iii) holds. �

According to the terminology used by Bai [5], if O(A) = 0, then A is called an 
O-operator for the Lie algebra (U, [ , ]) with respect to the representation LU .

There are two interesting cases, as follows.

(i) The isomorphism Θ is skew-symmetric. In this case, (U, ., ω) is a symplectic left 
symmetric algebra where ω(X, Y ) = ≺Θ(X), Y�.
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(ii) The isomorphism Θ is symmetric. In this case, (U, ., 〈 , 〉) is a flat pseudo-Rie-
mannian Lie algebra where 〈X, Y 〉 = ≺Θ(X), Y�.

Proposition 7.2. Let (U, .) be a left symmetric algebra and Θ : U −→ U∗ is an invariant
isomorphism, and r ∈ U⊗U . Put A = r# ◦Θ and denote by ◦ the product on U pull-back 
by Θ of the product on U∗ given by (9). Then, the following assertions hold.

1. If Θ is skew-symmetric, then for any X, Y ∈ U ,

X ◦ Y = [AX,Y ] + A(Y.X) + Q(X,Y ), (27)

where Q : U × U −→ U is defined by

≺α,Q(X,Y )� = −ω(δ(As −Aa)(Θ−1(α), Y ), X), ∀α ∈ U∗,

and As and Aa are the symmetric and skew-symmetric parts of A with respect to the 
2-form ω associated with Θ, respectively.

2. If Θ is symmetric, then for any X, Y ∈ U ,

X ◦ Y = Y.AX + AX.Y −A(Y.X) + P (X,Y ), (28)

where P : U × U −→ U is defined by

≺α, P (X,Y )� = 〈δ(As −Aa)(Θ−1(α), Y ), X〉, ∀α ∈ U∗,

and As and Aa are the symmetric and the skew-symmetric parts of A with respect 
to the 2-form 〈 , 〉 associated with Θ, respectively.

3. If Θ is skew-symmetric and r is a quasi-S-matrix, then (U, ◦, ω) is a symplectic left 
symmetric algebra if and only if δ(Aa) = 0.

Proof.

1. Suppose that Θ is skew-symmetric and define ω by ω(X, Y ) = ≺Θ(X), Y�. Thus, 
for any α, β ∈ U∗,

r(α, β) = −ω(A ◦ Θ(α), β).

We have

≺α,X ◦ Y� = ≺α,Θ−1(Θ(X).Θ(Y ))�
= −≺Θ(X).Θ(Y ),Θ−1(α)�
(9)= −r(Lt

Θ−1(α)Θ(X),Θ(Y )) − r(Θ(X), adt
Θ−1(α)Θ(Y ))
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(24)= r(Θ(Θ−1(α).X),Θ(Y )) + ω(AX,Θ−1
(
adt

Θ−1(α)Θ(Y )
)
)

= ω(Y,A(Θ−1(α).X)) − ω(Y, [Θ−1(α), AX])

= ω((As −Aa)Y,Θ−1(α).X) − ω(Y, [Θ−1(α), AX])

= −ω(Θ−1(α).(As −Aa)Y,X) − ω(Y, [Θ−1(α), AX])

= −ω(δ((As −Aa)(Θ−1(α), Y ), X) − ω(Y.(As −Aa)(Θ−1(α)), X)

− ω((As −Aa)([Θ−1(α), Y ], X) − ω(Y, [Θ−1(α), AX])

= −ω(δ((As −Aa)(Θ−1(α), Y ), X) + ω(Θ−1(α), A(Y.X))

− ω([Θ−1(α), Y ], AX) − ω(Y, [Θ−1(α), AX])
(a)= −ω(δ((As −Aa)(Θ−1(α), Y ), X) + ≺α,A(Y.X)) + [AX,Y ]�.

In (a), we employ the fact that ω is a 2-cocycle with respect to the Lie bracket.
2. Suppose that Θ is symmetric and define 〈 , 〉 as 〈X, Y 〉 = ≺Θ(X), Y�. Therefore, 

for any α, β ∈ U∗,

r(α, β) = 〈A ◦ Θ(α), β〉.

For any α ∈ U∗ and X, Y ∈ U , we have

≺α,X ◦ Y� = ≺α,Θ−1(Θ(X).Θ(Y ))�
= ≺Θ(X).Θ(Y ),Θ−1(α)�
(9)= r(Lt

Θ−1(α)Θ(X),Θ(Y )) + r(Θ(X), adt
Θ−1(α)Θ(Y ))

(24)= −r(Θ(Θ−1(α).X),Θ(Y )) + 〈AX,Θ−1
(
adt

Θ−1(α)Θ(Y )
)
〉

= −〈Y,A(Θ−1(α).X)〉 + 〈Y, [Θ−1(α), AX]〉
= −〈(As −Aa)Y,Θ−1(α).X〉 + 〈Y, [Θ−1(α), AX]〉
= 〈Θ−1(α).(As −Aa)Y,X〉 + 〈Y, [Θ−1(α), AX]〉
= 〈δ((As −Aa)(Θ−1(α), Y ), X〉 + 〈Y.(As −Aa)(Θ−1(α)), X〉

+ 〈(As −Aa)([Θ−1(α), Y ], X〉 + 〈Y, [Θ−1(α), AX]〉
= 〈δ((As −Aa)(Θ−1(α), Y ), X〉 − 〈Θ−1(α), A(Y.X)〉

+ 〈[Θ−1(α), Y ], AX〉 + 〈Y, [Θ−1(α), AX]〉
= 〈δ((As −Aa)(Θ−1(α), Y ), X〉 − α(A(Y.X))

− 〈Y.Θ−1(α), AX〉 − 〈Y,AX.Θ−1(α)〉
= 〈δ((As −Aa)(Θ−1(α), Y ), X〉 − ≺α,A(Y.X)�

+ ≺α, Y.AX + AX.Y�.
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3. Suppose that Θ is skew-symmetric and r is a quasi-S-matrix. For any X, Y, Z ∈ U , 
we have

ω(X ◦ Y,Z) +ω(Y,X ◦ Z) = ω([AX,Y ], Z) + ω(A(Y.X), Z) + ω(Q(X,Y ), Z)

+ ω(Y, [AX,Z]) + ω(Y,A(Z.X)) + ω(Y,Q(X,Z))

= −ω(X, (As −Aa)[Y,Z] − Y.(As −Aa)Z

+ Z.(As −Aa)Y ) − Θ(Z)(Q(X,Y )) + Θ(Y )(Q(X,Z))

= −ω(X, δ((As −Aa))(Y,Z)) +ω(δ((As −Aa))(Y,Z), X)

− ω(δ((As −Aa))(Z, Y ), X)

= −3ω(X, δ(As −Aa))(Y,Z)).

To conclude, we remark that since r is a quasi-S-matrix, then its skew-symmetric 
part is LU -invariant and hence δ(As) = 0. �

The proof of the following two theorems is similar to that of Theorem 6.1. The second 
part of Theorem 7.1 is based on the third part of Proposition 7.2 and (26).

Theorem 7.1. Let (U, ., ω) be a symplectic left symmetric algebra and A is an endomor-
phism of U . We denote As and Aa as the symmetric and the skew-symmetric parts of A
with respect to ω, respectively. The following assertions hold.

1. If O(A) is L∗
U ⊗ L∗

U ⊗ ad-invariant and As is LU -invariant, then:
(i) the product on U given by (27) is left symmetric,

(ii) (T (U), [ , ]A, KA, JA) is a complex product structure and (T (U), [ , ]A, 〈 , 〉A,
KA) is a para-Kähler Lie algebra.

2. If As is LU -invariant, δ(Aa) = 0 and NA is L∗
U⊗L∗

U⊗ad-invariant, then (T (U), [ , ]A,
〈 , 〉A, KA, JA) is a hyper-para-Kähler Lie algebra.

In the above, [ , ]A, 〈 , 〉A, KA, JA are given by

[(X,Y ), (Z, T )]A = ([X,Z] + O(A)(T, Y ), X.T − Z.Y ),

JA(X,Y ) = (−Y + AX −A2Y,X −AY ),

〈(X,Y ), (Z, T )〉A = ω(T,X) + ω(Y,Z) + 2ω(AaY, T ), KA(X,Y ) = (X − 2AY,−Y ).

Theorem 7.2. Let (g, 〈 , 〉) be a flat pseudo-Riemannian Lie algebra and A is an endomor-
phism of g. We denote As and Aa as the symmetric and the skew-symmetric parts of A
with respect to 〈 , 〉, respectively. If O(A) is L∗

g⊗L∗
g⊗ad-invariant and Aa is Lg-invariant, 

then the product given by (28) on g is left symmetric. Moreover, (T (g), [ , ]A, KA, JA) is 
a complex product structure and (T (g), [ , ]A, 〈 , 〉A, KA) is a para-Kähler Lie algebra, 
where
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[(X,Y ), (Z, T )]A = ([X,Z] + O(A)(T, Y ), X.T − Z.Y ),

JA(X,Y ) = (−Y + AX −A2Y,X −AY ),

〈(X,Y ), (Z, T )〉A = 〈T,X〉 + 〈Y,Z〉 + 2〈AsY, T 〉, KA(X,Y ) = (X − 2AY,−Y ).

In this case, the dot is the Levi-Civita product and Lg is its associated representation.

Remark 5. As in Remark 4, we obtain the following more general result. Let (U, .) be a 
left symmetric algebra and A is an endomorphism of U such that O(A) is L∗

U ⊗ L∗
U ⊗

ad-invariant. Then, we can check that the bracket [ , ]A on T (U) is a Lie bracket and 
hence LA : g × g × g −→ g given by

LA(X,Y, Z) = O(A)(X,Y ).Z

is a Lie triple system.

8. Four-dimensional hyper-para-Kähler Lie algebras

In this section, we determine all of the four-dimensional hyper-para-Kähler Lie alge-
bras up to an isomorphism. First, we need to determine the two-dimensional symplectic 
left symmetric algebras and the compatible couples of these algebras. Four-dimensional 
hyper-para-Kähler Lie algebras were classified in [1] using a vast computation (see 
also [2]), but we employ a new method that reduces the calculations significantly.

Let (U, ., ω) be a symplectic left symmetric algebra. We have

Ru.v = Rv ◦ Ru + [Lu,Rv], (29)

L[u,v] = [Lu,Lv], (30)

Lu + La
u = 0, (31)

where La
u is the adjoint of Lu with respect to ω. Put

U.U = span {u.v, u, v ∈ U} ,
D(U.U) = span {u.v − v.u, u, v ∈ U} ,
S(U.U) = span {u.v + v.u, u, v ∈ U} .

Clearly, we have

U.U = D(U.U) + S(U.U) and (U.U)⊥ = {u ∈ U,Ru = 0} . (32)

The sign ⊥ designates the orthogonal with respect to ω.

Proposition 8.1. Let (U, ., ω) be an abelian symplectic left symmetric algebra. Then, 
U.U ⊂ (U.U)⊥.
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Proof. For any u ∈ U , we have Ru = Lu and thus from (29)–(30) for any u, v ∈ U , we 
obtain

Ru.v = Ru ◦ Rv = Rv ◦ Ru.

Moreover, Ra
u = −Ru and thus Ru.v = 0, and the proposition follows from (32). �

Proposition 8.2. Let (U, ., ω) be a two-dimensional non-trivial abelian symplectic left 
symmetric algebra. Then, a basis {e1, e2} of U exists such that

ω = e∗1 ∧ e∗2, Re1 = Le1 = 0 and e2.e2 = ae1, a �= 0.

Proof. From Proposition 8.1, we find that U.U = (U.U)⊥ = span{e1}. Select e2 such 
that ω(e1, e2) = 1 and the proposition follows. �
Proposition 8.3. Let (U, ., ω) be a two-dimensional non-abelian symplectic left symmetric 
algebra. Then, a basis {e1, e2} of U exists such that

ω = e∗1 ∧ e∗2, e1.e1 = 0, e2.e2 = ae2 and e1.e2 = −e2.e1 = ae1, a �= 0.

Proof. By necessity, we have dimD(U.U) = 1. We distinguish two cases, as follows.

1. First case: dimU.U = 1. In this case, U.U = D(U.U) = span{e1}. If S(U.U) = {0}, 
then we can select e2 such that ω(e1, e2) = 1. Since e1.e1, e2.e2 ∈ S(U.U), then 
e1.e1 = e2.e2 = 0. Moreover, since U.U = (U.U)⊥, then Re1 = 0. Now, e1.e2 ∈
S(U.U) and then e1.e2 = 0. Thus, the product is trivial.
If S(U.U) �= {0}, then U.U = D(U.U) = S(U.U) = span{e1}. Select e2 such that 
ω(e1, e2) = 1. We have Re1 = 0, e2.e2 = ae1 and e1.e2 = be1. The relation L[e1,e2]e2 =
[Le1 , Le2 ](e2) implies that b = 0 and hence [e1, e2] = 0, which is impossible. In 
conclusion, this case is impossible.

2. Second case: dimU.U = 2. In this case, U.U = D(U.U) ⊕ S(U.U). Select a basis 
{e1, e2} of U such that e1 ∈ D(U.U), e2 ∈ S(U.U), and ω(e1, e2) = 1. Since e1 ∈
D(U.U)⊥ and e2 ∈ S(U.U)⊥, then we obtain

ω(e1.e2 + e2.e1, e2) = 0,

ω(e1.e2 + e2.e1, e1) = 2ω(e1.e2, e1),

= −2ω(e2, e1.e1) = 0.

Thus, e1.e2 = −e2.e1 and hence [e1, e2] = 2e1.e2. So e1.e2 = −e2.e1 = ae1. In 
addition, e1.e1, e2.e2 ∈ S(U.U) so e1.e1 = be2 and e2.e2 = ce2. Now, the relation 
La
e2 = −Le2 implies that c = a and the relation L[e1,e2] = [Le1 , Le2 ] implies that 

b = 0, and thus the proposition follows. �
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Remark 6. From Propositions 8.2 and 8.3, we can deduce that if (U, ., ω) is an abelian 
symplectic left symmetric algebra, so D(U.U) = 0 and thus U.U = S(U.U) is an 
ω-isotropic one dimensional vector space. However, if (U, ., ω) is a non-abelian sym-
plectic left symmetric algebra, then U = U.U = D(U.U) ⊕ S(U.U), where D(U.U) and 
S(U.U) are one-dimensional ω-isotropic vector spaces. This remark plays a crucial role 
in the proof of Theorem 8.1.

Recall that two symplectic left symmetric structures (U, �, ω) and (U, ◦, ω) are called 
compatible if K�,◦ satisfies the second assertion of Proposition 5.2. It is obvious that if 
(U, �, ω) is a symplectic left symmetric algebra, then it is compatible with (U, α�, ω) for 
any α ∈ K. We refer to this case as trivially compatible.

Theorem 8.1. Let (U, �, ω) and (U, ◦, ω) be two symplectic left symmetric structures over a 
two-dimensional vector space U . Then, (U, �, ω) and (U, ◦, ω) are non-trivially compatible 
if and only if one of the following holds.

1. A basis {e1, e2} exists such that

L�
e1 =

(
0 a

0 0

)
, L�

e2 =
(
−a −b

0 a

)
, L◦

e1 = 0 and L◦
e2 =

(
0 b

0 0

)
,

ω = e∗1 ∧ e∗2 with a �= 0 and b �= 0.
2. A basis {e1, e2} exists such that

L�
e1 =

(
0 a

0 0

)
, L�

e2 =
(
−a b

0 a

)
, L◦

e1 =
(

0 c

0 0

)
, L◦

e2 =
(
−c −b

0 c

)
.

ω = e∗1 ∧ e∗2, with a �= 0, b �= 0 and c �= 0.

Proof. The proof is based on an adequate use of the fact that the sum of two compatible 
symplectic left symmetric structures is left symmetric (see Proposition 5.3) and the use 
of Propositions 8.2–8.3 and Remark 6.

First, we can check that if � and ◦ have one of the forms above, then they are sym-
plectic and compatible. Suppose that (U, �, ω) and (U, ◦, ω) are non-trivially compatible. 
We distinguish three cases, as follows.

1. Both � and ◦ are abelian. Then, � + ◦ defines an abelian symplectic left symmetric 
algebra structure on U , and thus by virtue of Proposition 8.2, a �= 0 and a basis 
{e1, e2} of U exists such that ω = e∗1 ∧ e∗2

e1 � e1 + e1 ◦ e1 = e1 � e2 + e1 ◦ e2 = 0, e2 � e2 + e2 ◦ e2 = ae1. (∗)

Moreover, (U � U)⊥ = U � U and (U ◦ U)⊥ = U ◦ U .
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Suppose that e1 ◦ e1 �= 0. Then, from (∗), as given above, we obtain U � U =
U ◦ U = span{e1}, and by (32) L�

e1 = L◦
e1 = 0, which contradicts e1 ◦ e1 �= 0. Thus, 

e1 ◦ e1 = e1 � e1 = 0. The same argument shows that e1 ◦ e2 = e1 � e2 = 0 and hence 
L�
e1 = L◦

e1 = 0, which by virtue of (32) implies that U �U = U ◦U = span{e1}. Thus, 
b �= 0 and c �= 0 exists such that e2 � e2 = be1 and e2 ◦ e2 = ce1. Finally, ◦ = b

c� and 
this case is not possible.

2. The product � is not abelian and ◦ is abelian. Then, � +◦ defines a non-abelian sym-
plectic left symmetric algebra structure on U , and hence by virtue of Proposition 8.3, 
a �= 0 and a basis {e1, e2} of U exists such that ω = e∗1 ∧ e∗2 and

e1 � e1 + e1 ◦ e1 = 0, e2 � e2 + e2 ◦ e2 = ae2,

e1 � e2 + e1 ◦ e2 = −e2 � e1 − e2 ◦ e1 = ae1. (∗∗)

Moreover, U = D(U � U) ⊕ S(U � U) and U ◦ U = S(U ◦ U) = (U ◦ U)⊥. By adding 
the two last relations in (∗∗), we obtain

e1 � e2 + e2 � e1 = 2e1 ◦ e2.

So e1 ◦e2 ∈ S(U �U). If e1 ◦e2 �= 0, it spans U ◦U and hence from the second relation 
in (∗∗), we deduce that e2 ∈ S(U � U) and thus U ◦ U = span{e2}. Therefore, by 
(32), L◦

e2 = 0, which contradicts e1 ◦ e2 �= 0. Thus, e1 ◦ e2 = 0.
Now, suppose that e1 ◦ e1 �= 0. From the second relation in (∗∗), we deduce that 
U ◦ U = span{e2} and thus L◦

e2 = 0. We deduce that

e1 � e1 = −e1 ◦ e1 = be2, e1 � e2 = −e2 � e1 = ae1.

From the relation L�
[e1,e2]e1 = [L�

e1 , L
�
e2 ]e1, we deduce that b = 0 and ◦ = 0, and thus 

we must have e1 ◦ e1 = 0.
Therefore, we have shown that L◦

e1 = 0 and thus U ◦ U = span{e1}, e2 ◦ e2 = be1. 
We deduce that

e1 � e1 = 0, e2 � e2 = ae2 − be1, e1 � e2 = −e2 � e1 = ae1.

Therefore, we find that � and ◦ satisfy the first form in the theorem.
3. Both � and ◦ are non-abelian. According to Proposition 5.3, � +◦ and � −◦ define two 

symplectic left symmetric algebra structures on U , one of which must be non-abelian. 
Thus, we can suppose that � + ◦ is non-abelian by replacing ◦ by −◦ if this is 
necessary. By virtue of Proposition 8.3, a �= 0 and a basis {e1, e2} of U exists such 
that ω = e∗1 ∧ e∗2, and

e1 � e1 + e1 ◦ e1 = 0, e2 � e2 + e2 ◦ e2 = ae2,

e1 � e2 + e1 ◦ e2 = −e2 � e1 − e2 ◦ e1 = ae1. (∗∗∗)
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Moreover, U = D(U � U) ⊕ S(U � U) = D(U ◦ U) ⊕ S(U ◦ U). Put

v = e1 � e2 + e2 � e1 = −e1 ◦ e2 − e2 ◦ e1.

If v �= 0, then it spans S(U � U) and S(U ◦ U); thus, from (∗ ∗∗) above, we obtain 
S(U � U) = S(U ◦ U) = span{e2}. Therefore,

L�
e1 =

(
0 c

b 0

)
, L�

e2 =
(
−c 0
d c

)
, L◦

e1 =
(

0 a− c

−b 0

)
, L◦

e2 =
(
c− a 0
−d a− c

)
.

The relations

L�
[e1,e2] = [L�

e1 ,L
�
e2 ] and L◦

[e1,e2] = [L◦
e1 ,L

◦
e2 ] (∗∗∗∗)

are equivalent to d2 = 4bc = 4b(c −a), which is equivalent to d = b = 0. This implies 
that ◦ = a−c

c �. This case is impossible and hence v = 0.
If w = e1 � e1 = −e1 ◦ e1 �= 0, then it spans S(U �U) and S(U ◦U); thus, from (∗ ∗∗), 
we obtain S(U � U) = S(U ◦ U) = span{e2}. Therefore,

L�
e1 =

(
0 c

b 0

)
, L�

e2 =
(
−c 0
0 c

)
, L◦

e1 =
(

0 a− c

−b 0

)
, L◦

e2 =
(
c− a 0

0 a− c

)
.

In this case, (∗ ∗∗∗) implies that b = 0 and hence ◦ = a−c
c �. This case is impossible 

and hence w = 0. In summary, we have shown that

e1 � e2 + e2 � e1 = −e1 ◦ e2 − e2 ◦ e1 = e1 � e1 = −e1 ◦ e1 = 0.

So

L�
e1 =

(
0 c

0 0

)
, L�

e2 =
(
−c d

0 c

)
, L◦

e1 =
(

0 a− c

0 0

)
, L◦

e2 =
(
c− a −d

0 a− c

)
.

Thus, � and ◦ satisfy the second form in the theorem.
Finally, a direct computation shows that for � and ◦, as in the first form in the 
theorem, we have

K�,◦(e1, e1) = K�,◦(e1, e2) = K�,◦(e2, e1) = 0 and K�,◦(e2, e2) = −2
(

0 ab

0 0

)
,

and for the second form,

K�,◦(e1, e1) =K�,◦(e1, e2) =K�,◦(e2, e1) = 0 and K�,◦(e2, e2) = 2
(

0 ab + bc

0 0

)
.
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In both cases, K�,◦ satisfies the second assertion of Proposition 5.2 and the theorem 
is proved. �

Based on the above, we now give all the four-dimensional hyper-para-Kähler Lie al-
gebras.

Theorem 8.2. Any (g, Ω, K, J) four-dimensional hyper-para-Kähler Lie algebra is isomor-
phic to (R4, [ , ], Ω0, K0, J0), where in the canonical basis (e1, e2, f1, f2), we have

Ω0 = f∗
2 ∧ e∗1 + e∗2 ∧ f∗

1 , K0ei = ei, K0fi = −fi, J0ei = fi, J0fi = −ei,

and the non-vanishing Lie brackets have one of the following expressions:

(i) [e2, f2] = a(f1 − e1), a �= 0.
(ii) [e1, e2] = 2ae1, [e1, f2] = a(e1 + f1), [e2, f1] = −a(e1 + f1), [e2, f2] = a(f2 − e2) and 

[f1, f2] = 2af1, a �= 0.
(iii) [e1, e2] = 2ae1, [e1, f2] = af1 and [e2, f2] = −b(e1 + f1), a �= 0, b �= 0.
(iv) [e1, e2] = 2ae1, [e1, f2] = af1 + ce1, [e2, f1] = −c(f1 + e1), [e2, f2] = b(e1 + f1) −

ce2 + af2 and [f1, f2] = 2cf1, a �= 0, b �= 0, c �= 0.

9. Symplectic associative algebras

In this section, we consider an important subclass of the class of symplectic left sym-
metric algebras. In order to introduce this subclass, we begin by providing a geometric 
interpretation of symplectic left symmetric algebras.

Let (U, ., ω) be a symplectic left symmetric algebra. The product is Lie-admissible and 
the bracket [u, v] = u.v − v.u is a Lie bracket on U . Moreover, since

ω(u.v, w) + ω(v, u.w) = 0

for any u, v, w ∈ U , a direct computation yields

ω([u, v], w) + ω([v, w], u) + ω([w, u], v) = 0,

and thus (U, [ , ], ω) is a symplectic Lie algebra. Let G be the simply connected Lie 
group associated with (U, [ , ]). For any u ∈ U , we denote u� as the left invariant vector 
field on G associated with u. The formulae

ω�(u�, v�) = ω(u, v) and ∇u�v� = (u.v)�

define a left invariant symplectic form on G, and a flat and torsion-free left invariant 
connection. Moreover, ∇ is symplectic, i.e., ∇ω� = 0. The connection ∇ is right invariant 
iff for any u, v, w ∈ U ,

[u�,∇v�w�] = ∇[u�,v�]w
� + ∇v� [u�, w�].
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A straightforward computation shows that this relation is equivalent to the associativity 
of the left symmetric product on U .

A symplectic associative algebra is a symplectic left symmetric algebra that is as-
sociative. We have seen that there is a correspondence between the set of symplectic 
associative algebras and symplectic Lie groups endowed with a bi-invariant affine struc-
ture, for which the symplectic form is parallel.

In the following, we give accurate descriptions of symplectic associative algebras (see 
Theorems 9.1–9.2).

Let (U, ., ω) be an associative symplectic algebra. Then, for any u, v ∈ U ,

Luv = Lu ◦ Lv.

Since La
u = −Lu, then for any u ∈ U , we obtain

Luv = Lu ◦ Lv = −Lv ◦ Lu = −Lvu. (33)

Proposition 9.1. Let (U, ., ω) be an associative symplectic algebra. Then, U4 = 0 and 
J = U2 + (U2)⊥ is a co-isotropic two-sided ideal of U that satisfies J 2 = 0.

Proof. It is obvious that J is a co-isotropic two-sided ideal. For any u, v, w ∈ U ,

Luvw = Lu ◦ Lv ◦ Lw

(33)= Lw ◦ Lu ◦ Lv

= Lw ◦ Luv

(33)= −Luv ◦ Lw

= −Luvw,

and thus Luvw = 0 and U4 = 0. Recall that

(U2)⊥ = {u ∈ U,Ru = 0} .

So U2.(U2)⊥ = (U2)⊥.(U2)⊥ = 0. In addition, for any u ∈ (U2)⊥ and any v, w ∈ U ,

u.v.w
(33)= −v.u.w = 0,

so (U2)⊥.U2 = 0. In conclusion, J 2 = 0. �
According to this proposition, to study associative symplectic algebras, we need to 

distinguish two cases that depend on the triviality of U3.
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Model of associative symplectic algebras with U3 = 0 Let V be a vector space and (I, s)
is a symplectic vector space. Let m : V ∗ −→ V � V and n : I −→ V � V be two linear 
maps (V � V is the space of bilinear symmetric forms on V ∗).

The space U1 = V ⊕ I ⊕ V ∗ carries a symplectic form ω, for which I and V ⊕ V ∗ are 
orthogonal, ω|I×I = s, and for any u ∈ V , α ∈ V ∗, ω(α, u) = −ω(u, α) = α(u). Define a 
product on U such that V ∗.V ∗, I.V ∗ ⊂ V by

≺γ, α.β� = m(α)(β, γ) and ≺β, i.α� = n(i)(α, β), (34)

for any α, β, γ ∈ V ∗, and i ∈ I (all the others products vanish).
It is easy to see that (U1, ., ω) is an associative symplectic algebra and U3

1 = 0. We refer 
to this algebra as an associative symplectic algebra of type one. In fact, all associative 
symplectic algebras with U3 = 0 are of this form.

Theorem 9.1. Any associative symplectic algebra with U3 = 0 is isomorphic to an asso-
ciative symplectic algebra of type one.

Proof. The condition that U3 = 0 is equivalent to U2 ⊂ (U2)⊥. Put V = U2 and select 
I a complement of V in (U2)⊥. The restriction on ω to I defines a symplectic form, 
such as s. The orthogonal I⊥ of I is a symplectic space that contains V as a Lagrangian 
subspace, so we can choose a Lagrangian complement W of V in I⊥. The linear map 
W −→ V ∗, u �→ ω(u, .) is an isomorphism, so we can identify (U, ω) as V ⊕ I ⊕ V ∗

endowed with the symplectic form described above. Since V.U = U.V = 0 and for any 
u ∈ I, Ru = 0 and thus we find that the product on U is given by (34), which completes 
the proof. �
Model of associative symplectic algebras with U3 �= 0 Let V = V0 ⊕ V1 and I = I0 ⊕ I1
be two vector spaces such that (I0, s0), (I1, s1) are symplectic vector spaces. Put V ∗ =
V 0

0 ⊕ V 0
1 where V 0

0 and V 0
1 are the annihilators of V0 and V1, respectively.

Let a : V1 −→ V0 � V0, b : I0 −→ V0 � V0, c : I1 −→ V � V and d : V ∗ −→ V � V

be linear maps (V0 � V0 (resp. V1 � V1) in the space of bilinear symmetric forms on V 0
1

(resp. V 0
0 )). Finally, let F : V ∗ × V 0

1 −→ I0 be a bilinear map.
The space U2 = V ⊕ I ⊕ V ∗ carries a symplectic form ω, for which I and V ⊕ V ∗ are 

orthogonal, ω|I×I = s0 ⊕ s1, and for any u ∈ V , α ∈ V ∗, ω(α, u) = −ω(u, α) = α(u).
Now, we define a product on U2 that satisfies

V1.V
0
1 , I0.V

0
1 , V

∗.I0 ⊂ V0, I1.V
∗ ⊂ V, V ∗.V 0

0 ⊂ V, V ∗.V 0
1 ⊂ V ⊕ I0,

and it is given by

≺β1, v1.α1� = a(v1)(α1, β1), v1 ∈ V1, α1, β1 ∈ V 0
1 ,

≺β1, i0.α1� = b(i0)(α1, β1), i0 ∈ I0, α1, β1 ∈ V 0
1 ,
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≺β1, α.i0� = s0(i0, F (α, β1)), i0 ∈ I0, α ∈ V ∗, β1 ∈ V 0
1 ,

≺β, i1.α� = c(i1)(α, β), i1 ∈ I1, α, β ∈ V ∗,

α.β0 = E(α, β0), α ∈ V ∗, β0 ∈ V 0
0 ,

α.β1 = E(α, β1) + F (α, β1), α ∈ V ∗, β1 ∈ V 0
1 .

≺γ,E(α, β)� = d(α)(β, γ).

With this product U2, becomes an algebra for which the left multiplication is symplectic. 
Now, this product is associative iff for any α ∈ V ∗, β1, γ1, μ1 ∈ V 0

1 , β0 ∈ V 0
0 ,

a(E1(α, β1))(γ1, μ1) + b(F (α, β1))(γ1, μ1) = s0(F (β1, γ1), F (α, μ1)), (35)

a(E1(α, β0))(γ1, μ1) = s0(F (β0, γ1), F (α, μ1)). (36)

In this case, U3
2 = 0 iff

s0(F (β1, γ1), F (α, μ1)) = s0(F (β0, γ1), F (α, μ1)) = 0.

When (35) and (36) hold, and U3
2 �= 0, we refer to (U2, ., ω) as an associative symplectic 

algebra of type two.

Theorem 9.2. Any associative symplectic algebra with U3 �= 0 is isomorphic to an asso-
ciative algebra of type two.

Proof. Since U4 = 0 and U3 ⊂ U2, then

U3 ⊂ U2 ⊂ (U3)⊥ and U3 ⊂ (U2)⊥ ⊂ (U3)⊥.

Put V0 = U3 and select a complement V1 of V0 in V = U2 ∩ (U2)⊥. Select I0 and I1 as 
two subspaces of U such that

U2 = V ⊕ I0 and (U2)⊥ = V ⊕ I1.

We find that I0 ∩ I1 = {0}, ω(I0, I1) = 0, I0, I1 are symplectic and I = I0 ⊕ I1 is also 
symplectic. Denote s0 and s1 as the restrictions on ω to I0 and I1, respectively. Now, I⊥
is symplectic and it contains V as a Lagrangian subspace, so we can select a Lagrangian 
subspace W of the I⊥ complement of V . The linear map W −→ V ∗, u �→ ω(u, .) realizes 
an isomorphism. Finally, we identify

U = V ⊕ (I1 ⊕ I2) ⊕ V ∗

with the symplectic form given by

ω(V, V ) = ω(V, I) = ω(V ∗, V ∗) = ω(V ∗, I) = 0 and ω|I×I = ω1 ⊕ ω2,
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and for any u ∈ V , α ∈ V ∗, ω(α, u) = −ω(u, α) = α(u). Denote V 0
0 and V 0

1 as the 
annihilators of V0 and V1, respectively.

Next, we consider the product’s properties. In Proposition 9.1, we showed that J =
V ⊕ (I0 ⊕ I1) satisfies J 2 = 0. Obviously, for any u ∈ V0, Lu = Ru = 0, and from (32), 
for any u ∈ V ⊕ I1, we have Ru = 0. Since U2.V ∗ ⊂ V0 and because the symplectic form 
is invariant, we obtain U2.V 0

0 = 0. Since V ∗.U2 ⊂ V0, then from the invariance of the 
symplectic form, we find that V ∗.V 0

0 ⊂ V . Thus, we can put

≺β1, v1.α1� = a(v1)(α1, β1), v1 ∈ V1, α1, β1 ∈ V 0
1 ,

≺β1, i0.α1� = b(i0)(α1, β1), i0 ∈ I0, α1, β1 ∈ V 0
1 ,

≺β1, α.i0� = s0(i0, F (α, β1)), i0 ∈ I0, α ∈ V ∗, β1 ∈ V 0
1 ,

≺β, i1.α� = c(i1)(α, β), i1 ∈ I1, α, β ∈ V ∗,

α.β0 = E(α, β0), α ∈ V ∗, β0 ∈ V 0
0 ,

α.β1 = E(α, β1) + F (α, β1), α ∈ V ∗, β1 ∈ V 0
1 .

The invariance of the symplectic form implies that a(v1), b, c(i1), and d(α) are sym-
metric, where d(α)(β, γ) = γ(E(α, β)). The associativity of this product is equivalent 
to α.(β.γ) = (α.β).γ for any α, β, γ ∈ V ∗. Obviously, this is true when γ ∈ V 0

0 , so the 
associativity is equivalent to

μ1(α.(β0.γ1)) = μ1((α.β0).γ1) and ≺μ1, α.(β1.γ1)� = ≺μ1, (α.β1).γ1�

for any α ∈ V ∗, α1, β1, μ1 ∈ V 0
1 and β0 ∈ V 0

0 , which is equivalent to

s0(F (β0, γ1), F (α, μ1)) = a(E1(α, β0))(γ1, μ1),

s0(F (β1, γ1), F (α, μ1)) = a(E1(α, β1))(γ1, μ1) + b(F (α, β1))(γ1, μ1).

This completes the proof. �
Corollary 9.1. Let (U, ., ω) be an associative symplectic algebra. Then,

(i) If dimU = 2, then (U, ., ω) is isomorphic to an associative symplectic algebra of type 
one of the form V ⊕ V ∗ with dimV = 1.

(ii) If dimU = 4, then (U, ., ω) is isomorphic to an associative symplectic algebra of type 
one, either of the form V ⊕ V ∗ with dimV = 2 or V ⊕ I ⊕ V ∗ with dimV = 1.

A six-dimensional associative algebra U3 �= 0 is isomorphic to V ⊕ I0 ⊕ V ∗ with 
dimV = 2 and V = V0 ⊕ V1. Select a basis (e0, e1) of V such that ei ∈ Vi and a basis 
(f1, f2) of I0 such that s1(f1, f2) = 1. Eqs. (35) and (36) are equivalent to
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a(E1(e∗0, e∗1))(e∗1, e∗1) + b(F (e∗0, e∗1))(e∗1, e∗1) = s(F (e∗1, e∗1), F (e∗0, e∗1)),

a(E1(e∗0, e∗0))(e∗1, e∗1) = s(F (e∗0, e∗1), F (e∗0, e∗1)),

a(E1(e∗1, e∗1))(e∗1, e∗1) + b(F (e∗1, e∗1))(e∗1, e∗1) = s(F (e∗1, e∗1), F (e∗1, e∗1)),

a(E1(e∗1, e∗0))(e∗1, e∗1) = s(F (e∗0, e∗1), F (e∗1, e∗1)).

Put

F (e∗0, e∗1) = af1 + bf2 and F (e∗1, e∗1) = cf1 + df2.

Thus,

a(E1(e∗0, e∗1))(e∗1, e∗1) + ab(f1)(e∗1, e∗1) + bb(f2)(e∗1, e∗1) = cb− ad,

a(E1(e∗0, e∗0))(e∗1, e∗1) = 0,

a(E1(e∗1, e∗1))(e∗1, e∗1) + cb(f1)(e∗1, e∗1) + db(f2)(e∗1, e∗1) = 0,

a(E1(e∗1, e∗0))(e∗1, e∗1) = ad− cb,

which is equivalent to

ab(f1)(e∗1, e∗1) + bb(f2)(e∗1, e∗1) = −a(E1(e∗1, e∗0))(e∗1, e∗1) − a(E1(e∗0, e∗1))(e∗1, e∗1),

cb(f1)(e∗1, e∗1) + db(f2)(e∗1, e∗1) = −a(E1(e∗1, e∗1))(e∗1, e∗1),

a(E1(e∗0, e∗0))(e∗1, e∗1) = 0,

a(E1(e∗1, e∗0))(e∗1, e∗1) = ad− cb.

Put a(e1)(e∗1, e∗1) = α �= 0, E1(e∗0, e∗0) = 0 and δ = ad − cb �= 0, E1(e∗i , e∗j ) = aije1. Thus,

b(f1)(e∗1, e∗1) = −αδ−1(aa11 − c(a10 + a01)) and

b(f2)(e∗1, e∗1) = αδ−1(ba11 − d(a10 + a01)).
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