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a b s t r a c t

Let (M, π, D) be a Poisson manifold endowed with a flat, torsion-free contravariant
connection. We show that if D is an F -connection then there exists a tensor T such that
DT is the metacurvature tensor introduced by E. Hawkins in his work on noncommutative
deformations. We compute T and the metacurvature tensor in this case and show that
if T = 0 then near any regular point π and D are defined in a natural way by a Lie
algebra action and a solution of the classical Yang–Baxter equation. Moreover, when D
is the contravariant Levi-Civita connection associated to π and a Riemannian metric, the
Lie algebra action can be chosen in such a way that it preserves the metric. This solves the
inverse problem of a result of the second author.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and main result

In [1,2] Hawkins showed that if a deformation of the graded algebra Ω∗(M) of differential forms on a Riemannian
manifold M comes from a spectral triple describing M , then the Poisson tensor π (which characterizes the deformation)
and the Riemannian metric satisfy the following conditions:

(H1) the associated metric contravariant connection D is flat;
(H2) the metacurvature of D vanishes;
(H3) π is compatible with the Riemannian volume µ, i.e., d(iπµ) = 0.

Themetric contravariant connection associated naturally to any pair of a (pseudo-)Riemannianmetric and a Poisson tensor is
the contravariant analogue of the classical Levi-Civita connection; it has appeared first in [3]. Themetacurvature, introduced
in [2], is a (2, 3)-type tensor field (symmetric in the contravariant indices and antisymmetric in the covariant indices)
associated naturally to any flat, torsion-free contravariant connection.

The main result of Hawkins [2, Theorem 6.6 and also Lemma 6.5] states that if (M, π, g) is a triple satisfying (H1)–(H3)
withM compact, then around any regular point x0 ∈ M the Poisson tensor can be written as

π =


i,j

aij Xi ∧ Xj (1)

where the matrix (aij) is constant and invertible and {X1, . . . , Xs} is a family of linearly independent commuting Killing
vector fields.

On the other hand, the second author showed in [4] that if ζ : g → X1(M) is an action of a finite-dimensional real Lie
algebra g on a smooth manifoldM and r ∈ ∧

2 g is a solution of the classical Yang–Baxter equation, then:
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(a) The map D r
: Ω1(M) × Ω1(M) −→ Ω1(M) given by

D r
αβ :=

n
i,j=1

aij α(ζ (ui))Lζ (uj)β, (2)

where {u1, . . . , un} is any basis of g and aij are the components of r in this basis, depends only on r and ζ and defines a
flat, torsion-free contravariant connection with respect to the Poisson tensor π r

:= ζ (r).
(b) IfM is Riemannian and ζ preserves the metric, D r is nothing else but the metric contravariant connection associated to

the metric and π r .
(c) If g acts freely onM , the metacurvature of D r vanishes.

In this setting, (1) can be re-expressed by saying that there exists a free action ζ : g → X1(U) of a finite-dimensional abelian
Lie algebra g on an open neighborhood U ⊆ M of x0 which preserves g , and a solution r ∈ ∧

2 g of the classical Yang–Baxter
equation such that π = π r . Moreover, since ζ preserves g , then D = D r by (b). It follows that D is a Poisson connection,
i.e., Dπ = 0 and hence an F reg-connection (see [5]).

Given a flat, torsion-free F reg-connection D on a Poisson manifold (M, π), we shall see that there exists a (2, 2)-type
tensor field T on the dense open set of regular points such that

(i) DT = M where M is the metacurvature of D;
(ii) T vanishes if and only if the exterior differential of any parallel 1-form is also parallel.

By looking at the proof of the second author’s result closely, one observes that in proving (c) the second author showed
that D r is an F reg-connection and that whenever a 1-form is D r -parallel then so is its exterior differential, meaning that T
vanishes. Accordingly, (c) can be rephrased as follows:

(c′) If g acts freely on M , D r is an F reg-connection and T vanishes (and hence so does M).

Note that in the case studied by Hawkins T vanishes since as we saw above the action ζ is free. So it is natural to consider the
following problem, inverse of the second author’s result: Given a smooth manifold M endowed with a Poisson tensor π and a
Riemannian metric g such that the associated metric contravariant connection is a flat F reg-connection and such that T = 0, is
there a free action of a finite-dimensional Lie algebra g preserving g and a solution r ∈ ∧

2 g of the classical Yang–Baxter equation
such that π = π r and D = D r?

The main result of this paper answers in the affirmative to that question in a more general setting. More precisely,

Theorem 1.1. Let (M, π, D) be a Poisson manifold endowed with a flat, torsion-free contravariant connection.

(1) If D is anF reg-connection and T = 0, then for any regular point x0 with rank 2r, there exists a free action ζ : g → X(U) of a
2r-dimensional real Lie algebra g on a neighborhood U of x0, and an invertible solution r ∈ ∧

2 g of the classical Yang–Baxter
equation, such that π = π r and D = D r .

(2) Moreover, if D is the metric contravariant connection associated to π and a Riemannian metric g, then the action can be
chosen in such a way that its fundamental vector fields are Killing.

The paper is organized as follows. In Section 2, we recall some standard facts about contravariant connections and the
metacurvature tensor; we also define the tensor T. Section 3 is devoted to the computation of themetacurvature tensor (and
the tensor T as well) in the case of an F reg-connection. In Section 4, we give a proof of Theorem 1.1.

Notation 1.2. For a smooth manifold M , C∞(M) will denote the space of smooth functions on M , Γ (V ) will denote the
space of smooth sections of a vector bundle V over M , Ωp(M) := Γ (∧p T ∗M) will denote the space of differential p-forms,
and Xp(M) := Γ (∧p TM) will denote the space of p-vector fields.

For a Poisson tensor π on M , we will denote by π♯ : T ∗M → TM the anchor map defined by β(π♯(α)) = π(α, β), and
by Hf the Hamiltonian vector field of a function f , that is, Hf := π♯(df ). We will also denote by [, ]π the Koszul–Schouten
bracket on differential forms (see, e.g., [6]); this is given on 1-forms by

[α, β]π = Lπ♯(α)β − Lπ♯(β)α − d

π(α, β)


.

The symplectic foliation of (M, π) will be denoted by S, and TS = Imπ♯ will be its associated tangent distribution. Finally,
we will denote byMreg the dense open set where the rank of π is locally constant.

2. Preliminaries

2.1. Contravariant connections

Contravariant connections on Poisson manifolds were defined by Vaismann [7] and studied in detail by Fernandes [8].
These connections play an important role in Poisson geometry (see for instance [8,9]) and have recently turned out to be
useful in other branches of mathematics (e.g., [1,2]).
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The definition of a contravariant connectionmimics the usual definition of a covariant connection, except that cotangent
vectors have taken the place of tangent vectors. More precisely, a contravariant connection on a Poisson manifold (M, π) is
an R-bilinear map

D : Ω1(M) × Ω1(M) → Ω1(M), (α, β) → Dαβ

such that for any f ∈ C∞(M),

Df αβ = f Dαβ and Dα(f β) = f Dαβ + π♯(α)(f )β.

A contravariant connection D is called an F -connection [8] if it satisfies

(∀ a ∈ T ∗M, π♯(a) = 0) H⇒ Da = 0.

We call D an F reg-connection if the restriction of D to Mreg is an F -connection.
The torsion and the curvature of a contravariant connection D are formally identical to the usual ones:

T (α, β) = Dαβ − Dβα − [α, β]π ,

R(α, β)γ = DαDβγ − DβDαγ − D[α,β]π γ .

These are (2, 1) and (3, 1)-type tensor fields, respectively. When T ≡ 0 (resp. R ≡ 0), D is called torsion-free (resp. flat).
In local coordinates (x1, . . . , xd), the local components of the torsion and curvature tensor fields are given by

T ij
k = Γ

ij
k − Γ

ji
k −

∂π ij

∂xk
, (3)

Rijk
l =

d
m=1

Γ im
l Γ jk

m − Γ
jm
l Γ ik

m + π im ∂Γ
jk
l

∂xm
− π jm ∂Γ ik

l

∂xm
−

∂π ij

∂xm
Γ mk
l , (4)

where Γ
ij
k are the Christoffel symbols defined by Ddxidx

j
=
d

k=1 Γ
ij
k dxk and π ij are the components of π .

Given a (pseudo-)Riemannian metric g on a Poisson manifold (M, π), one has a contravariant version of the Levi-Civita
connection: there exists a unique torsion-free contravariant connection D onM which is metric-compatible, i.e.,

π#(α) · ⟨β, γ ⟩ = ⟨Dαβ, γ ⟩ + ⟨β, Dαγ ⟩ ∀α, β, γ ∈ Ω1(M),

where ⟨, ⟩ denotes the metric pairing induced by g . This connection is determined by the formula

⟨Dαβ, γ ⟩ =
1
2


π♯(α) · ⟨β, γ ⟩ + π♯(β) · ⟨α, γ ⟩ − π♯(γ ) · ⟨α, β⟩ + ⟨[α, β]π , γ ⟩ − ⟨[β, γ ]π , α⟩ + ⟨[γ , α]π , β⟩


, (5)

and is called the metric contravariant connection (or contravariant Levi-Civita connection) associated to (π, g).

2.2. The metacurvature

In this subsection we recall briefly from [2] the definition of the metacurvature tensor and give some related formulas.
Let (M, π) be a Poisson manifold. Given a torsion-free contravariant connection D on M , there exists a unique bracket

{, } on the space Ω∗(M) of differential forms, with the following properties:

1. {, } is bilinear, degree 0 and antisymmetric

{σ , τ } = −(−1)deg(σ )deg(τ )
{τ , σ }. (6)

2. {, } satisfies the product rule

{σ , τ ∧ ρ} = {σ , τ } ∧ ρ + (−1)deg(σ )deg(τ )τ ∧ {σ , ρ}. (7)

3. The exterior differential d is a derivation with respect to {, }, i.e.,

d{σ , τ } = {dσ , τ } + (−1)deg(σ )
{σ , dτ }. (8)

4. For any f , g ∈ C∞(M) and any σ ∈ C∞(M),

{f , g} = π(df , dg) and {f , σ } = Ddf σ . (9)

This bracket is given (on decomposable forms) by

{α1 ∧ · · · ∧ αk, β1 ∧ · · · ∧ βl}

= (−1)k+1

i,j

(−1)i+j
{αi, βj} ∧ α1 ∧ · · · ∧αi ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧βj ∧ · · · ∧ βl, (10)
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where the hatdenotes the absence of the corresponding factor, and the brackets {αi, βj} are given by the formula1

{α, β} = −Dαdβ − Dβdα + dDβα + [α, dβ]π . (11)

We call the bracket {, } Hawkins bracket.
Hawkins showed that {, } satisfies the graded Jacobi identity,

{σ , {τ , ρ}} − {{σ , τ }, ρ} − (−1)deg(σ )deg(τ )
{τ , {σ , ρ}} = 0, (12)

if and only if D is flat and a certain 5-index tensor, called the metacurvature of D , vanishes identically. In fact, Hawkins
showed that if D is flat, then it determines a (2, 3)-type tensor field M symmetric in the contravariant indices and
antisymmetric in the covariant indices, given by

M(df , α, β) = {f , {α, β}} − {{f , α}, β} − {α, {f , β}}. (13)

The tensor M is themetacurvature of D .
The following formulas, due to Hawkins, will be useful later. Let α be a parallel 1-form; since D is torsion-free, [α, η]π =

Dαη for any η ∈ Ω∗(M), and so, by (11), the Hawkins bracket of α and any 1-form β is given by

{α, β} = −Dβdα. (14)

Using this, one can deduce easily from (13) that for any parallel 1-forms α, β and any 1-form γ ,

M(γ , β, α) = −Dγ Dβdα. (15)

2.3. The tensor T

We now define the tensor T, an essential ingredient in our main result.
Let (M, π) be a Poisson manifold endowed with a flat, torsion-free, contravariant F reg-connection D . For each x ∈ Mreg

and any a, b ∈ T ∗
x M , define

Tx(a, b) := {α, β}(x)


∈

2
T ∗

x M


, (16)

where {, } denotes the Hawkins bracket associated to D , and α and β are parallel 1-forms defined in a neighborhood of x
such that α(x) = a and β(x) = b. (Such 1-forms exist, see Proposition 3.4.) This is independent of the choice of α and β
since by (14) and (6) we have

Tx(a, b) = −(Dαdβ)(x) = −(Dβdα)(x). (17)

The assignment x → Tx is then a smooth (2, 2)-type tensor field on Mreg, symmetric in the contravariant indices and
antisymmetric in the covariant indices, which by (15) verifiesDT = M, andwhich clearly vanishes if and only if the exterior
differential of any parallel 1-form is also parallel.

3. Computation of the tensors M and T

The metacurvature tensor is rather difficult to compute in general. In the symplectic case, Hawkins has established a
simple formula for the metacurvature [2, Theorem 2.4]. Bahayou and the second author have also established in [10] a
formula for the metacurvature in the case of a Lie–Poisson group endowed with a left-invariant Riemannian metric. In
this section we explain how to compute the metacurvature (and the tensor T as well) in the case of an F reg-connection,
generalizing thus Hawkins’s formula.

Throughout this section, D will be a torsion-free contravariant connection on a d-dimensional Poisson manifold (M, π).
We begin with the following simple lemma.

Lemma 3.1. Let U ⊆ M be an open set on which the rank of π is constant. Assume that D is an F -connection on U. Then, for
any α, β ∈ Ω1(U), π♯(β) = 0 implies π♯(Dαβ) = 0, and in this case, Dαβ = Lπ♯(α)β .

In other words, the kernel of the anchor map restricted to U is stable under D . The next lemma shows that, around any
regular point, there exists a complementary subbundle of Kerπ♯ which is also stable under D , provided that D is flat.

1 This formula appeared first in [10].
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Lemma 3.2. If D is flat and is anF reg-connection, then for any x ∈ Mreg and anyH0 ⊆ T ∗
x M such that T ∗

x M = (Kerπ♯)x ⊕H0,
the cotangent bundle splits smoothly around x into:

T ∗M = (Kerπ♯) ⊕ H

with H stable under D , i.e. DH ⊆ H , and Hx = H0.

Proof. Let (U; xi, yu) (i = 1, . . . , 2r; u = 1, . . . , d − 2r) be a local chart around x such that

π =
1
2

2r
i,j=1

π ij ∂

∂xi
∧

∂

∂xj

and the matrix (π ij)1≤i,j≤2r is constant and invertible; let (π̄ij)1≤i,j≤2r denote the inverse matrix. The restriction of Kerπ♯ to
U is a (rank d − 2r) subbundle of T ∗

|U
M , so we can choose a (arbitrary) smooth decomposition

T ∗

|U
M = (Kerπ♯) ⊕ H .

Then clearly Kerπ♯ = span{dyu}, and

H = span


θ i

= dxi +
d−2r
u=1

Bi
u dy

u


for some functions Bi

u ∈ C∞(U). Since D is a torsion-free F -connection on U , one has Ddyu = Ddyu = 0 for all u. Thus, for
any i, j,

Dθ iθ
j
= Ddxidx

j
+

d−2r
u=1

π♯(dxi)(Bj
u) dy

u

=


2r
k=1

Γ
ij
k dxk +

d−2r
u=1

Γ ij
u dyu


+

d−2r
u=1

2r
k=1

π ik ∂Bj
u

∂xk
dyu

=

2r
k=1

Γ
ij
k θ k

+

d−2r
u=1


Γ ij
u +

2r
k=1


π ik ∂Bj

u

∂xk
− Γ

ij
k B

k
u


dyu,

where Γ
ij
k , Γ

ij
u are the Christoffel symbols of D . Therefore, the desired decomposition exists if and only if we may find a

family of local functions {Bi
u}i,u satisfying the following system of PDEs

Γ ij
u +

2r
k=1


π ik ∂Bj

u

∂xk
− Γ

ij
k B

k
u


= 0 ∀ i, j, ∀ u,

or equivalently

∂Bj
u

∂xi
=

2r
k=1


2r
l=1

π̄ilΓ
lj
k


Bk
u −

2r
l=1

π̄ilΓ
lj
u ∀ i, j, ∀ u. (∗)

In matrix notation, this is

∂

∂xi
Bu = ΓiBu + Y u

i ,

where

Bu =


B1
u
...
...

B2r
u

 ; Γi =


2r

m=1

π̄imΓ mk
l


1≤k, l≤2r

; Y u
i = −

2r
j=1

π̄ij


Γ j1
u
...
...

Γ j 2r
u

 .

Considering the Bi
u’s as functions with variables xi and parameters yu, the system above can be solved, according to

Frobenius’s Theorem (see, e.g., [11, Theorem 1.1]), if and only if the integrability conditions

ΓiΓj +
∂

∂xj
Γi = ΓjΓi +

∂

∂xi
Γj, ΓiY u

j +
∂

∂xj
Y u
i = ΓjY u

i +
∂

∂xi
Y u
j ,
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hold for all i, j and all u. With indices, these are respectively

2r
m=1

Γ im
l Γ jk

m − Γ
jm
l Γ ik

m + π im ∂Γ
jk
l

∂xm
− π jm ∂Γ ik

l

∂xm
= 0,

2r
m=1

Γ im
u Γ jk

m − Γ jm
u Γ ik

m + π im ∂Γ
jk
u

∂xm
− π jm ∂Γ ik

u

∂xm
= 0,

which by (4) mean that the curvature vanishes. Thus (∗) has solutions (which depend smoothly on the parameters and the
initial values). �

Notation 3.3. Given H as above, the restriction of π♯ to H defines an isomorphism from H onto TS; we will denote by
ϖH

: TS → H its inverse.

Proposition 3.4. The following are equivalent:

(a) D is flat and is an F reg-connection.
(b) For any x ∈ Mreg and any a ∈ T ∗

x M, there exists a 1-form α defined in a neighborhood of x such that α(x) = a and Dα = 0.
(c) Around any x ∈ Mreg, there exists a smooth coframe (α1, . . . , αd) of M such that Dαi

= 0 for all i. Such a coframe will be
called flat.

Proof. The equivalence (b) ⇐⇒ (c) is obvious.
(a) H⇒ (b): Let U ⊆ M be an open neighborhood of x on which the rank of π is constant. Over U , TS is a (involutive)

regular distribution and D is a torsion-free F -connection. So we can define a partial connection ∇ on T|U S by setting for
any α, β ∈ Ω1(U),

∇π♯(α)π♯(β) = π♯(Dαβ). (18)

One verifies immediately that the curvature tensor fields R∇ and RD respectively of ∇ and D are related by:

R∇

π♯(a), π♯(b)


π♯(c) = π♯


RD(a, b)c


∀ a, b, c ∈ T ∗

|U
M,

and hence R∇ vanishes since by hypothesis RD does. Using Frobenius’s Theorem, we can then show in a way similar to the
classical case that, for any v ∈ TxS, there exists a vector field X defined on some neighborhood of x such that X(x) = v, X is
tangent to TS, that is, X(y) ∈ TyS for any y near x, and ∇X = 0.

Now let a ∈ T ∗
x M . According to Lemma 3.2, the cotangent bundle splits smoothly around x into: T ∗M = (Kerπ♯) ⊕ H

with H stable under D . Write a = b + c with b ∈ Kerπ♯(x) and c ∈ Hx. By the argument above, there exists a ∇-parallel
vector field X defined in a neighborhood of xwhich is tangent to TS and such that X(x) = π♯(c). Put γ = ϖH (X) ∈ Γ (H);
then γ (x) = c , and for any 1-form φ, π♯(Dφγ ) = ∇π♯(φ)X = 0 implying that Dγ = 0. Taking α =

s
u=1 bu dy

u
+ γ ,

where (yu) is a family of local functions on M such that Kerπ♯ = span{dy1, . . . , dys} near x, and bu are the coordinates of b
in {dxy1, . . . , dxys}, we obtain finally the desired 1-form.

(c) H⇒ (a): It is clear that if (c) holds, then D is flat. So we need only to show that D is an F reg-connection. Let x ∈ Mreg

be arbitrary, and let (α1, . . . , αd) be a flat coframe around x. For any a ∈ Kerπ♯(x) and any 1-form β =


i fi α
i, we have

Daβ =


i π♯(a)(fi) αi
+ fi Daα

i
= 0. �

The following corollary is a refinement of the preceding proposition.

Corollary 3.5. If D is flat and is an F reg-connection, then around any x ∈ Mreg there exists an S-foliated coordinate system
with leafwise coordinates {xi}2ri=1 and transverse coordinates {yu}d−2r

u=1 such that for any H as in Lemma 3.2,

F∗
=

φi := ϖH (∂/∂xi); dyu


is a flat coframe of M near x. Such a coordinate system will be called flat.

Remark 3.6. Another equivalent way of expressing that the S-foliated coordinate system (xi, yu) is flat is the following:
∇∂/∂xi = 0 for all i, where ∇ is the (local) partial connection defined by (18).

We assume for the remainder of this section that D is flat and is an F reg-connection.
We shall compute the tensors M and T in the coframe F∗. To do so, we need first to determine its dual frame. With the

notations of Corollary 3.5, for each i, there exist unique functions, Ai
1, . . . , A

i
d−2r , defined in a neighborhood of x such that

dxi +
d−2r
u=1

Ai
u dy

u
∈ H . (19)
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For any i and any uwe put

Xi := −Hxi = −π♯(dxi), Yu :=
∂

∂yu
−

2r
i=1

Ai
u

∂

∂xi
. (20)

Lemma 3.7. With the above notations, (Xi, Yu) is the dual frame to F∗. Moreover, the vector fields Xi and Yu are, respectively,
Hamiltonian and Poisson, and verify

[Xi, Xj] = −

2r
k=1

∂π ij

∂xk
Xk; [Xi, Yu] =

2r
j=1

∂Ai
u

∂xj
Xj;

[Yu, Yv] =

2r
i,j=1

π̄ij


∂Aj

u

∂yv
−

∂Aj
v

∂yu
+

2r
k=1

Ak
u
∂Aj

v

∂xk
− Ak

v

∂Aj
u

∂xk


Xi.

(21)

Here, π ij
:= π(dxi, dxj) and (π̄ij) is the inverse matrix of (π ij).

Proof. The fact that (Xi, Yu) is the dual frame to F∗ follows immediately once we note that

φi := ϖH (∂/∂xi) =

2r
j=1

π̄ij


dxj +

d−2r
u=1

Aj
u dy

u

. (22)

By definition, each of the vector fields Xi is Hamiltonian. To see that each Yu is Poisson, observe that [φi, φj]π = Dφiφj −

Dφjφi = 0 which yields

Yu · π(φi, φj) = L∂/∂xiφj (Yu) − L∂/∂xjφi (Yu)

= −φj


∂

∂xi
, Yu


+ φi


∂

∂xj
, Yu


= −LYuφj


∂

∂xi


+ Yu · π(φi, φj) + LYuφi


∂

∂xj


− Yu · π(φj, φi)

= −π(φi, LYuφj) − π(LYuφi, φj) + 2Yu · π(φi, φj),

hence LYuπ (φi, φj) = 0; in addition, we have

LYuπ (φi, dyv) = −π(φi, LYudy
v) = −π(φi, d(Yu(yv))) = 0,

and it is clear that we also have LYuπ (dyv, dyw) = 0. It follows that LYuπ = 0, which means that Yu is Poisson. Finally,

[Xi, Xj] = Hπ(dxi,dxj) = −

2r
k=1

∂π ij

∂xk
Xk, [Xi, Yu] = HYu(xi) =

2r
j=1

∂Ai
u

∂xj
Xj,

and the last equality of (21) follows by direct computation. �

We now can give the expression of the metacurvature in the coframe F∗.

Theorem 3.8. With the same notations as above, we have

(a) For any u = 1, . . . , d − 2r, M(dyu, ·, · ) = 0.
(b) For any i, j, k = 1, . . . , 2r,

M(φi, φj, φk) = −


l<m

∂3 π lm

∂xi∂xj∂xk
φl ∧ φm +


l,u

∂3 Al
u

∂xi∂xj∂xk
φl ∧ dyu

+


u<v, l

∂2

∂xi∂xj


π̄kl


∂Al

u

∂yv
−

∂Al
v

∂yu
+


m

Am
u

∂Al
v

∂xm
− Am

v

∂Al
u

∂xm


dyu ∧ dyv. (23)

Proof. Part (a) is immediate from (13) and (9).
For (b), on the one hand, we have by (15),

M(φi, φj, φk) = −DφiDφjdφk for all i, j, k.
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On the other hand, using Lemma 3.7 gives

dφi =


j<k

∂π jk

∂xi
φj ∧ φk −


j,u

∂Aj
u

∂xi
φj ∧ dyu

−


u<v, j

π̄ij


∂Aj

u

∂yv
−

∂Aj
v

∂yu
+


k

Ak
u
∂Aj

v

∂xk
− Ak

v

∂Aj
u

∂xk


dyu ∧ dyv, (24)

and the desired formula follows. �

Likewise, we get the following expression for the tensor T.

Theorem 3.9. (a) For any u = 1, . . . , d − 2r, T(dyu, · ) = 0.
(b) For any i, j, k = 1, . . . , 2r,

T(φi, φj) = −


k<l

∂2 π kl

∂xi∂xj
φk ∧ φl +


k,u

∂2 Ak
u

∂xi∂xj
φk ∧ dyu

+


u<v, k

∂

∂xi


π̄jk


∂Ak

u

∂yv
−

∂Ak
v

∂yu
+


l

Al
u
∂Ak

v

∂xl
− Al

v

∂Ak
u

∂xl


dyu ∧ dyv. (25)

3.1. The symplectic case

If the Poisson tensor π is invertible, i.e., π = ω−1 where ω is a symplectic 2-form, then the flat and torsion-free
contravariant connection D (which is, in this case, an F -connection since the kernel of the anchor map reduces to zero)
is related to a flat, torsion-free, covariant connection ∇ on M via π♯(Dαβ) = ∇π♯(α)π♯(β). In that case, a flat coordinate
system is one with respect to whom ∇ is given trivially by partial derivatives (Remark 3.6).

Corollary 3.10. If π = ω−1, then the components of M and Tw.r.t. any flat coordinate system (x1, . . . , xd) are given respectively
by

M
ijk
lm = −


a,b,c,d,e

π aiπ bjπ ckωdlωem
∂3 πde

∂xa∂xb∂xc
, (26)

Tij
kl = −


a,b,c,d

π aiπ bjωckωdl
∂2 π cd

∂xa∂xb
. (27)

Remark 3.11. Formula (26) has already been established by Hawkins, see [2, Theorem 2.4].

Proof. Since the kernel of π♯ reduces to zero, then by Theorems 3.8 and 3.9

M(φi, φj, φk) = −


l<m

∂3 π lm

∂xi∂xj∂xk
φl ∧ φm

and

T(φi, φj) = −


k<l

∂2 π kl

∂xi∂xj
φk ∧ φl

and by (22) we have φi =


j π̄ijdxj, and the desired formulas follow. �

This means that for a symplectic manifold, M (resp. T) vanishes if and only if π is polynomial of degree at most 2 (resp. 1)
in the affine structure defined by ∇ .

Example 3.12. Let (M, ω) be a symplecticmanifold. IfD is a flat, torsion-free, Poisson connection onM w.r.t.π = ω−1, then
T vanishes identically (and hence so does M). In fact, the condition Dπ = 0 is equivalent to saying that the components of
π w.r.t. any flat coordinate system are constant.

Example 3.13. Let G be a Lie group with Lie algebra g, and let r ∈ ∧
2 g be a solution of the classical Yang–Baxter equation.

For any tensor τ on g, denote by τ+ the corresponding left-invariant tensor field on G. Following [4, p. 71], the formula

D r
a+ b+

= −(ad∗

r(a)b)
+,
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where a, b ∈ g∗, defines a left-invariant, flat, torsion-free contravariant connectionD r on (G, r+), which is anF -connection
with vanishing T by (c′) from the introduction. It is well known (see, e.g., [12]) that if r is invertible, then the left-invariant
symplectic form ω+ inverse of r+ defines a left-invariant, flat, torsion-free (covariant) connection ∇ on G via

ω+(∇u+v+, w+) = −ω+(v+, [u+, w+
]), u, v, w ∈ g.

In that case, it is easily seen that D r and∇ are related by: r+

♯ (D r
a+b

+) = ∇r(a)+ r(b)+ where r+

♯ is the anchor map associated
to r+. Accordingly, r+ is polynomial of degree at most one with respect to the affine structure defined by ∇ since T = 0 and
r is invertible, recovering thus a result of the second author and Medina (cf. [13, Theorem 1.1-(1)]).

3.2. The Riemannian case

Let D be the metric contravariant connection associated to a Poisson tensor π and a Riemannian metric g on a smooth
manifoldM . Thanks to the metric g , the cotangent bundle splits orthogonally into

T ∗M = Kerπ♯ ⊕ (Kerπ♯)
⊥.

Lemma 3.14. Let U ⊆ M be an open set on which the rank of π is constant. Assume that D is an F -connection on U. Then
(Kerπ♯|U

)⊥ is stable under D .

Thus if D is flat and is an F reg-connection, then by Corollary 3.5 there exists around any x ∈ Mreg an S-foliated chart
with leafwise coordinates {xi}2ri=1 and transverse coordinates {yu}d−2r

u=1 such that

φi = ϖ⊥(∂/∂xi); dyu


is a flat coframe of

M near x, where we have denoted by ϖ⊥
: TS → (Kerπ♯)

⊥ the inverse of π♯ : (Kerπ♯)
⊥

→ TS. In this case, the functions
Ai
u defined by (19) can be computed by means of the metric; indeed, using (22) and the fact that ⟨φi, dyu⟩ = 0, one has

−Ai
u =


v g

ivguv where g iv
= ⟨dxi, dyv

⟩ and (guv) is the inverse matrix of the one whose coefficients are guv
= ⟨dyu, dyv

⟩.

4. Proof of Theorem 1.1

Let (xi, yu), with i = 1, . . . , 2r and u = 1, . . . , d − 2r , be a flat coordinate system around x0, choose H as in Lemma 3.2,
and let F∗

= {φi, dyu} be the corresponding flat coframe and {Xi, Yu} its dual frame. We shall construct a family of vector
fields {Z1, . . . , Z2r} on a neighborhood U of x0 which span TS and commute with the Xi’s and the Yu’s. In that case,

• The family {Z1, . . . , Z2r} will form a 2r-dimensional real Lie algebra g, since by the Jacobi identity

[[Zi, Zj], Xl] = [[Zi, Zj], Yu] = 0 ∀ i, j, l, ∀ u,

so that [Zi, Zj] =


k c
k
ij Zk with ckij being constant; it is then clear that g acts freely on U .

• The Poisson tensor π will be expressed as

π =
1
2


i,j

aij Zi ∧ Zj

where the matrix (aij)1≤i,j≤2r is constant and invertible: since the Xi’s and the Yu’s are Poisson (Lemma 3.7), then writing
π =

1
2


i,j a

ij Zi ∧ Zj where aij ∈ C∞(U), we get Xk(aij) = Yu(aij) = 0.
• The connection D will be given on U by

Dαβ =


i,j

aijα(Zi) LZjβ.

In fact, this is true for any β ∈ F∗ since LZiφj = LZidy
u

= 0, and Dαβ −


i,j a
ijα(Zi) LZjβ is tensorial in β as

π♯(α) =


i,j a
ijα(Zi)Zj.

We shall proceed in two steps. We first construct a family of vector fields which span TS and commute with the Xi’s, and
then construct from this the desired family.

To start, observe that by virtue of Theorem 3.9 and Lemma 3.7 we have

[Xi, Xj] =

2r
k=1

λk
ij Xk, [Xi, Yu] =

2r
j=1

µ
j
iu Xj, [Yu, Yv] =

2r
i=1

ν i
uv Xi,

where λk
ij, µ

j
iu, ν i

uv are Casimir functions. Let T ⊆ M be a smooth transversal to TS intersecting x0; this is parametrized
by the yu’s. Fixing y ∈ T , the restrictions Xy

1 , . . . , X
y
2r of X1, . . . , X2r to the symplectic leaf Sy passing through y form a Lie

algebra gy which acts freely and transitively on Sy. Therefore, according to [14], there exists a free transitive Lie algebra
anti-homomorphism Γ̂y : gy → X1(Sy) whose image is

Γ̂y(gy) =

T ∈ X1(Sy) : [T , Xy

i ] = 0 ∀ i = 1, . . . , 2r

,
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and such that Γ̂y(X
y
i )(y) = Xi(y) for all i. Setting for any i,

Ti(z) := Γ̂y(X
y
i )(z), z ∈ Sy

and varying y along T , we get a family of linearly independent vector fields {T1, . . . , T2r}which are tangent to TS and verify

[Ti, Xj] = 0 for all i, j,

and such that Ti(y) = Xi(y) for all i and all y ∈ T . Note that T1, . . . , T2r are smooth since the solutions of the system

[T , Xi] = 0, i = 1, . . . , 2r

depend smoothly on the parameter y ∈ T and the initial values along T . It is also worth noting that since the µ
j
iu’s are

Casimir, we have

[Xi, [Tj, Yu]] = 0 for all i, j and all u,

so that

[Ti, Yu] =

2r
j=1

γ
j
iu Tj,

where γ
j
iu are Casimir functions; in addition, since the ν i

uv ’s are Casimir, we have

[Ti, [Yu, Yv]] = 0 for all i and all u, v

implying

∂γ i
ju

∂yv

−
∂γ i

jv

∂yu
+

2r
k=1

γ i
kuγ

k
jv − γ i

kvγ
k
ju = 0 (∗)

for all i, j and all u, v.
Now we would like to find an invertible matrix ξ = (ξ i

j )1≤i,j≤2r where ξ i
j are Casimir functions such that the vector fields

Zi :=

2r
j=1

ξ
j
i Tj, i = 1, . . . , 2r

verify

[Zi, Yu] = 0 for all i and all u.

If such a matrix exists, the family {Z1, . . . , Z2r} is clearly the desired one. Since the functions ξ i
j are searched to be Casimir,

the condition for the Zi’s to commute with the Yu’s can be rewritten as

∂ξ i
j

∂yu
=

2r
k=1

γ i
ku ξ k

j ∀ i, j, ∀ u,

or in matrix notation
∂

∂yu
ξj = Γu ξj,

where ξj is the jth column vector of ξ and Γu := (γ i
ju)1≤i,j≤2r . So we need to solve this system. Since the functions γ i

ju are
Casimir and ξ i

j are searched to be Casimir, we only need to solve it on T . According to Frobenius’s Theorem, this system has
solutions if and only if the following integrability condition

ΓuΓv +
∂

∂yv
Γu = ΓvΓu +

∂

∂yu
Γv

holds for all u, v, which is nothing else but (∗). It then suffices to take ξ i
j (x0) = δi

j (Kronecker delta) as initial conditions to
conclude.

Finally, if D is the metric contravariant connection with respect to π and a Riemannian metric g , we choose H =

(Kerπ♯)
⊥. In this case, we have

LZig (φj, φk) = LZig (φj, dyu) = LZig (dyu, dyv) = 0

since LZiφj = LZidy
u

= 0 and since g(φi, φj) and g(dyu, dyv) are Casimir functions. This shows that the vector fields Zi are
Killing. �
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