On the local structure of noncommutative deformations

Zouhair Saassai *, Mohamed Boucetta
Université Cadi Ayyad, Faculté des Sciences et Techniques Gueliz, BP 549, 40000 Marrakech, Morocco

ARTICLE INFO

Article history:

Received 14 November 2013
Received in revised form 18 March 2014
Accepted 6 April 2014
Available online 13 April 2014

MSC:

primary 58B34
53D17

Keywords:

Contravariant connections
Metacurvature
Noncommutative deformations

Abstract

Let (M, π, \mathscr{D}) be a Poisson manifold endowed with a flat, torsion-free contravariant connection. We show that if \mathcal{D} is an \mathcal{F}-connection then there exists a tensor \mathbf{T} such that $\mathfrak{D T}$ is the metacurvature tensor introduced by E. Hawkins in his work on noncommutative deformations. We compute \mathbf{T} and the metacurvature tensor in this case and show that if $\mathbf{T}=0$ then near any regular point π and \mathscr{D} are defined in a natural way by a Lie algebra action and a solution of the classical Yang-Baxter equation. Moreover, when \mathfrak{D} is the contravariant Levi-Civita connection associated to π and a Riemannian metric, the Lie algebra action can be chosen in such a way that it preserves the metric. This solves the inverse problem of a result of the second author.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and main result

In [1,2] Hawkins showed that if a deformation of the graded algebra $\Omega^{*}(M)$ of differential forms on a Riemannian manifold M comes from a spectral triple describing M, then the Poisson tensor π (which characterizes the deformation) and the Riemannian metric satisfy the following conditions:
$\left(H_{1}\right)$ the associated metric contravariant connection \mathscr{D} is flat;
$\left(\mathrm{H}_{2}\right)$ the metacurvature of \mathfrak{D} vanishes;
$\left(H_{3}\right) \pi$ is compatible with the Riemannian volume μ, i.e., $d\left(i_{\pi} \mu\right)=0$.
The metric contravariant connection associated naturally to any pair of a (pseudo-)Riemannian metric and a Poisson tensor is the contravariant analogue of the classical Levi-Civita connection; it has appeared first in [3]. The metacurvature, introduced in [2], is a (2, 3)-type tensor field (symmetric in the contravariant indices and antisymmetric in the covariant indices) associated naturally to any flat, torsion-free contravariant connection.

The main result of Hawkins [2, Theorem 6.6 and also Lemma 6.5] states that if (M, π, g) is a triple satisfying $\left(H_{1}\right)-\left(H_{3}\right)$ with M compact, then around any regular point $x_{0} \in M$ the Poisson tensor can be written as

$$
\begin{equation*}
\pi=\sum_{i, j} a^{i j} X_{i} \wedge X_{j} \tag{1}
\end{equation*}
$$

where the matrix $\left(a^{i j}\right)$ is constant and invertible and $\left\{X_{1}, \ldots, X_{s}\right\}$ is a family of linearly independent commuting Killing vector fields.

On the other hand, the second author showed in [4] that if $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(M)$ is an action of a finite-dimensional real Lie algebra \mathfrak{g} on a smooth manifold M and $r \in \wedge^{2} \mathfrak{g}$ is a solution of the classical Yang-Baxter equation, then:

[^0](a) The map $D^{r}: \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{1}(M)$ given by
\[

$$
\begin{equation*}
\mathscr{D}_{\alpha}^{r} \beta:=\sum_{i, j=1}^{n} a^{i j} \alpha\left(\zeta\left(u_{i}\right)\right) \mathscr{L}_{\zeta\left(u_{j}\right)} \beta \tag{2}
\end{equation*}
$$

\]

where $\left\{u_{1}, \ldots, u_{n}\right\}$ is any basis of \mathfrak{g} and $a^{i j}$ are the components of r in this basis, depends only on r and ζ and defines a flat, torsion-free contravariant connection with respect to the Poisson tensor $\pi^{r}:=\zeta(r)$.
(b) If M is Riemannian and ζ preserves the metric, \mathscr{D}^{r} is nothing else but the metric contravariant connection associated to the metric and π^{r}.
(c) If \mathfrak{g} acts freely on M, the metacurvature of \mathscr{D}^{r} vanishes.

In this setting, (1) can be re-expressed by saying that there exists a free action $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}^{1}(U)$ of a finite-dimensional abelian Lie algebra \mathfrak{g} on an open neighborhood $U \subseteq M$ of x_{0} which preserves g, and a solution $r \in \wedge^{2} \mathfrak{g}$ of the classical Yang-Baxter equation such that $\pi=\pi^{r}$. Moreover, since ζ preserves g, then $\mathscr{D}=\mathscr{D}^{r}$ by (b). It follows that \mathscr{D} is a Poisson connection, i.e., $\mathfrak{D} \pi=0$ and hence an $\mathcal{F}^{\text {reg }}$-connection (see [5]).

Given a flat, torsion-free $\mathcal{F}^{\text {reg }}$-connection \mathcal{D} on a Poisson manifold (M, π), we shall see that there exists a (2, 2)-type tensor field \mathbf{T} on the dense open set of regular points such that
(i) $\mathcal{D T}=\mathcal{M}$ where \mathcal{M} is the metacurvature of \mathscr{D};
(ii) \mathbf{T} vanishes if and only if the exterior differential of any parallel 1-form is also parallel.

By looking at the proof of the second author's result closely, one observes that in proving (c) the second author showed that \mathscr{D}^{r} is an $\mathcal{F}^{\text {reg }}$-connection and that whenever a 1 -form is \mathscr{D}^{r}-parallel then so is its exterior differential, meaning that \mathbf{T} vanishes. Accordingly, (c) can be rephrased as follows:
(c^{\prime}) If \mathfrak{g} acts freely on M, \mathscr{D}^{r} is an $\mathcal{F}^{\text {reg }}$-connection and \mathbf{T} vanishes (and hence so does \mathcal{M}).
Note that in the case studied by Hawkins \mathbf{T} vanishes since as we saw above the action ζ is free. So it is natural to consider the following problem, inverse of the second author's result: Given a smooth manifold M endowed with a Poisson tensor π and a Riemannian metric g such that the associated metric contravariant connection is a flat $\mathcal{F}^{\text {reg }}$-connection and such that $\mathbf{T}=0$, is there a free action of a finite-dimensional Lie algebra \mathfrak{g} preserving g and a solution $r \in \wedge^{2} \mathfrak{g}$ of the classical Yang-Baxter equation such that $\pi=\pi^{r}$ and $\mathscr{D}=\mathscr{D}^{r}$?

The main result of this paper answers in the affirmative to that question in a more general setting. More precisely,
Theorem 1.1. Let (M, π, \mathscr{D}) be a Poisson manifold endowed with a flat, torsion-free contravariant connection.
(1) If \mathcal{D} is an $\mathcal{F}^{\text {reg }}$-connection and $\mathbf{T}=0$, then for any regular point x_{0} with rank $2 r$, there exists a free action $\zeta: \mathfrak{g} \rightarrow \mathfrak{X}(U)$ of a $2 r$-dimensional real Lie algebra \mathfrak{g} on a neighborhood U of x_{0}, and an invertible solution $r \in \wedge^{2} \mathfrak{g}$ of the classical Yang-Baxter equation, such that $\pi=\pi^{r}$ and $\mathfrak{D}=\mathscr{D}^{r}$.
(2) Moreover, if \mathfrak{D} is the metric contravariant connection associated to π and a Riemannian metric g, then the action can be chosen in such a way that its fundamental vector fields are Killing.

The paper is organized as follows. In Section 2, we recall some standard facts about contravariant connections and the metacurvature tensor; we also define the tensor \mathbf{T}. Section 3 is devoted to the computation of the metacurvature tensor (and the tensor \mathbf{T} as well) in the case of an $\mathcal{F}^{\text {reg }}$-connection. In Section 4, we give a proof of Theorem 1.1.

Notation 1.2. For a smooth manifold $M, \mathcal{C}^{\infty}(M)$ will denote the space of smooth functions on $M, \Gamma(V)$ will denote the space of smooth sections of a vector bundle V over $M, \Omega^{p}(M):=\Gamma\left(\wedge^{p} T^{*} M\right)$ will denote the space of differential p-forms, and $\mathfrak{X}^{p}(M):=\Gamma\left(\wedge^{p} T M\right)$ will denote the space of p-vector fields.

For a Poisson tensor π on M, we will denote by $\pi_{\sharp}: T^{*} M \rightarrow T M$ the anchor map defined by $\beta\left(\pi_{\sharp}(\alpha)\right)=\pi(\alpha, \beta)$, and by H_{f} the Hamiltonian vector field of a function f, that is, $H_{f}:=\pi_{\sharp}(d f)$. We will also denote by $[,]_{\pi}$ the Koszul-Schouten bracket on differential forms (see, e.g., [6]); this is given on 1-forms by

$$
[\alpha, \beta]_{\pi}=\mathscr{L}_{\pi_{\sharp}(\alpha)} \beta-\mathcal{L}_{\pi_{\sharp}(\beta)} \alpha-d(\pi(\alpha, \beta)) .
$$

The symplectic foliation of (M, π) will be denoted by ℓ, and $T \delta=\operatorname{Im} \pi_{\sharp}$ will be its associated tangent distribution. Finally, we will denote by $M^{\text {reg }}$ the dense open set where the rank of π is locally constant.

2. Preliminaries

2.1. Contravariant connections

Contravariant connections on Poisson manifolds were defined by Vaismann [7] and studied in detail by Fernandes [8]. These connections play an important role in Poisson geometry (see for instance [8,9]) and have recently turned out to be useful in other branches of mathematics (e.g., [1,2]).

The definition of a contravariant connection mimics the usual definition of a covariant connection, except that cotangent vectors have taken the place of tangent vectors. More precisely, a contravariant connection on a Poisson manifold (M, π) is an \mathbb{R}-bilinear map

$$
\mathscr{D}: \Omega^{1}(M) \times \Omega^{1}(M) \rightarrow \Omega^{1}(M), \quad(\alpha, \beta) \mapsto \mathscr{D}_{\alpha} \beta
$$

such that for any $f \in \mathcal{C}^{\infty}(M)$,

$$
\mathscr{D}_{f \alpha} \beta=f \mathscr{D}_{\alpha} \beta \quad \text { and } \quad \mathscr{D}_{\alpha}(f \beta)=f \mathscr{D}_{\alpha} \beta+\pi_{\sharp}(\alpha)(f) \beta .
$$

A contravariant connection \mathfrak{D} is called an \mathcal{F}-connection [8] if it satisfies

$$
\left(\forall a \in T^{*} M, \pi_{\sharp}(a)=0\right) \Longrightarrow \mathcal{D}_{a}=0 .
$$

We call \mathscr{D} an $\mathcal{F}^{\text {reg }}$-connection if the restriction of \mathscr{D} to $M^{\text {reg }}$ is an \mathcal{F}-connection.
The torsion and the curvature of a contravariant connection \mathscr{D} are formally identical to the usual ones:

$$
\begin{aligned}
& T(\alpha, \beta)=\mathscr{D}_{\alpha} \beta-\mathscr{D}_{\beta} \alpha-[\alpha, \beta]_{\pi} \\
& R(\alpha, \beta) \gamma=\mathscr{D}_{\alpha} \mathscr{D}_{\beta} \gamma-\mathscr{D}_{\beta} \mathscr{D}_{\alpha} \gamma-\mathscr{D}_{[\alpha, \beta]_{\pi}} \gamma .
\end{aligned}
$$

These are $(2,1)$ and (3,1)-type tensor fields, respectively. When $T \equiv 0$ (resp. $R \equiv 0$), \mathfrak{D} is called torsion-free (resp. flat).
In local coordinates $\left(x^{1}, \ldots, x^{d}\right)$, the local components of the torsion and curvature tensor fields are given by

$$
\begin{align*}
& T_{k}^{i j}=\Gamma_{k}^{i j}-\Gamma_{k}^{j i}-\frac{\partial \pi^{i j}}{\partial x^{k}} \tag{3}\\
& R_{l}^{i j k}=\sum_{m=1}^{d} \Gamma_{l}^{i m} \Gamma_{m}^{j k}-\Gamma_{l}^{j m} \Gamma_{m}^{i k}+\pi^{i m} \frac{\partial \Gamma_{l}^{j k}}{\partial x^{m}}-\pi^{j m} \frac{\partial \Gamma_{l}^{i k}}{\partial x^{m}}-\frac{\partial \pi^{i j}}{\partial x^{m}} \Gamma_{l}^{m k} \tag{4}
\end{align*}
$$

where $\Gamma_{k}^{i j}$ are the Christoffel symbols defined by $\mathscr{D}_{d x^{i}} d x^{j}=\sum_{k=1}^{d} \Gamma_{k}^{i j} d x^{k}$ and $\pi^{i j}$ are the components of π.
Given a (pseudo-)Riemannian metric g on a Poisson manifold (M, π), one has a contravariant version of the Levi-Civita connection: there exists a unique torsion-free contravariant connection \mathscr{D} on M which is metric-compatible, i.e.,

$$
\pi_{\#}(\alpha) \cdot\langle\beta, \gamma\rangle=\left\langle\mathscr{D}_{\alpha} \beta, \gamma\right\rangle+\left\langle\beta, \mathscr{D}_{\alpha} \gamma\right\rangle \quad \forall \alpha, \beta, \gamma \in \Omega^{1}(M)
$$

where \langle,$\rangle denotes the metric pairing induced by g$. This connection is determined by the formula

$$
\begin{equation*}
\left\langle D_{\alpha} \beta, \gamma\right\rangle=\frac{1}{2}\left\{\pi_{\sharp}(\alpha) \cdot\langle\beta, \gamma\rangle+\pi_{\sharp}(\beta) \cdot\langle\alpha, \gamma\rangle-\pi_{\sharp}(\gamma) \cdot\langle\alpha, \beta\rangle+\left\langle[\alpha, \beta]_{\pi}, \gamma\right\rangle-\left\langle[\beta, \gamma]_{\pi}, \alpha\right\rangle+\left\langle[\gamma, \alpha]_{\pi}, \beta\right\rangle\right\}, \tag{5}
\end{equation*}
$$

and is called the metric contravariant connection (or contravariant Levi-Civita connection) associated to (π, g).

2.2. The metacurvature

In this subsection we recall briefly from [2] the definition of the metacurvature tensor and give some related formulas. Let (M, π) be a Poisson manifold. Given a torsion-free contravariant connection \mathscr{D} on M, there exists a unique bracket $\{$,$\} on the space \Omega^{*}(M)$ of differential forms, with the following properties:

1. $\{$,$\} is bilinear, degree 0$ and antisymmetric

$$
\begin{equation*}
\{\sigma, \tau\}=-(-1)^{\operatorname{deg}(\sigma) \operatorname{deg}(\tau)}\{\tau, \sigma\} \tag{6}
\end{equation*}
$$

2. $\{$,$\} satisfies the product rule$

$$
\begin{equation*}
\{\sigma, \tau \wedge \rho\}=\{\sigma, \tau\} \wedge \rho+(-1)^{\operatorname{deg}(\sigma) \operatorname{deg}(\tau)} \tau \wedge\{\sigma, \rho\} \tag{7}
\end{equation*}
$$

3. The exterior differential d is a derivation with respect to $\{$, \}, i.e.,

$$
\begin{equation*}
d\{\sigma, \tau\}=\{d \sigma, \tau\}+(-1)^{\operatorname{deg}(\sigma)}\{\sigma, d \tau\} \tag{8}
\end{equation*}
$$

4. For any $f, g \in \mathcal{C}^{\infty}(M)$ and any $\sigma \in \mathcal{C}^{\infty}(M)$,

$$
\begin{equation*}
\{f, g\}=\pi(d f, d g) \quad \text { and } \quad\{f, \sigma\}=\mathscr{D}_{d f} \sigma \tag{9}
\end{equation*}
$$

This bracket is given (on decomposable forms) by

$$
\begin{align*}
& \left\{\alpha_{1} \wedge \cdots \wedge \alpha_{k}, \beta_{1} \wedge \cdots \wedge \beta_{l}\right\} \\
& \quad=(-1)^{k+1} \sum_{i, j}(-1)^{i+j}\left\{\alpha_{i}, \beta_{j}\right\} \wedge \alpha_{1} \wedge \cdots \wedge \widehat{\alpha}_{i} \wedge \cdots \wedge \alpha_{k} \wedge \beta_{1} \wedge \cdots \wedge \widehat{\beta}_{j} \wedge \cdots \wedge \beta_{l} \tag{10}
\end{align*}
$$

where the hat denotes the absence of the corresponding factor, and the brackets $\left\{\alpha_{i}, \beta_{j}\right\}$ are given by the formula ${ }^{1}$

$$
\begin{equation*}
\{\alpha, \beta\}=-\mathscr{D}_{\alpha} d \beta-\mathscr{D}_{\beta} d \alpha+d D_{\beta} \alpha+[\alpha, d \beta]_{\pi} \tag{11}
\end{equation*}
$$

We call the bracket $\{$,$\} Hawkins bracket.$
Hawkins showed that $\{$,$\} satisfies the graded Jacobi identity,$

$$
\begin{equation*}
\{\sigma,\{\tau, \rho\}\}-\{\{\sigma, \tau\}, \rho\}-(-1)^{\operatorname{deg}(\sigma) \operatorname{deg}(\tau)}\{\tau,\{\sigma, \rho\}\}=0 \tag{12}
\end{equation*}
$$

if and only if \mathfrak{D} is flat and a certain 5-index tensor, called the metacurvature of \mathfrak{D}, vanishes identically. In fact, Hawkins showed that if \mathscr{D} is flat, then it determines a $(2,3)$-type tensor field \mathcal{M} symmetric in the contravariant indices and antisymmetric in the covariant indices, given by

$$
\begin{equation*}
\mathcal{M}(d f, \alpha, \beta)=\{f,\{\alpha, \beta\}\}-\{\{f, \alpha\}, \beta\}-\{\alpha,\{f, \beta\}\} \tag{13}
\end{equation*}
$$

The tensor \mathcal{M} is the metacurvature of \mathcal{D}.
The following formulas, due to Hawkins, will be useful later. Let α be a parallel 1 -form; since \mathscr{D} is torsion-free, $[\alpha, \eta]_{\pi}=$ $\mathscr{D}_{\alpha} \eta$ for any $\eta \in \Omega^{*}(M)$, and so, by (11), the Hawkins bracket of α and any 1 -form β is given by

$$
\begin{equation*}
\{\alpha, \beta\}=-\mathscr{D}_{\beta} d \alpha \tag{14}
\end{equation*}
$$

Using this, one can deduce easily from (13) that for any parallel 1-forms α, β and any 1-form γ,

$$
\begin{equation*}
\mathcal{M}(\gamma, \beta, \alpha)=-\mathscr{D}_{\gamma} \mathscr{D}_{\beta} d \alpha \tag{15}
\end{equation*}
$$

2.3. The tensor \mathbf{T}

We now define the tensor \mathbf{T}, an essential ingredient in our main result.
Let (M, π) be a Poisson manifold endowed with a flat, torsion-free, contravariant $\mathcal{F}^{\text {reg }}$-connection \mathscr{D}. For each $x \in M^{\text {reg }}$ and any $a, b \in T_{x}^{*} M$, define

$$
\begin{equation*}
\mathbf{T}_{x}(a, b):=\{\alpha, \beta\}(x) \quad\left(\in \bigwedge^{2} T_{x}^{*} M\right) \tag{16}
\end{equation*}
$$

where $\{$,$\} denotes the Hawkins bracket associated to \mathcal{D}$, and α and β are parallel 1-forms defined in a neighborhood of x such that $\alpha(x)=a$ and $\beta(x)=b$. (Such 1-forms exist, see Proposition 3.4.) This is independent of the choice of α and β since by (14) and (6) we have

$$
\begin{equation*}
\mathbf{T}_{x}(a, b)=-\left(\mathcal{D}_{\alpha} d \beta\right)(x)=-\left(\mathscr{D}_{\beta} d \alpha\right)(x) \tag{17}
\end{equation*}
$$

The assignment $x \mapsto \mathbf{T}_{x}$ is then a smooth (2, 2)-type tensor field on $M^{\text {reg }}$, symmetric in the contravariant indices and antisymmetric in the covariant indices, which by (15) verifies $\mathscr{D T}=\mathcal{M}$, and which clearly vanishes if and only if the exterior differential of any parallel 1-form is also parallel.

3. Computation of the tensors \mathcal{M} and T

The metacurvature tensor is rather difficult to compute in general. In the symplectic case, Hawkins has established a simple formula for the metacurvature [2, Theorem 2.4]. Bahayou and the second author have also established in [10] a formula for the metacurvature in the case of a Lie-Poisson group endowed with a left-invariant Riemannian metric. In this section we explain how to compute the metacurvature (and the tensor \mathbf{T} as well) in the case of an $\mathcal{F}^{\text {reg }}$-connection, generalizing thus Hawkins's formula.

Throughout this section, \mathscr{D} will be a torsion-free contravariant connection on a d-dimensional Poisson manifold (M, π). We begin with the following simple lemma.

Lemma 3.1. Let $U \subseteq M$ be an open set on which the rank of π is constant. Assume that \mathscr{D} is an \mathcal{F}-connection on U. Then, for any $\alpha, \beta \in \Omega^{1}(U), \pi_{\sharp}(\beta)=0$ implies $\pi_{\sharp}\left(\mathscr{D}_{\alpha} \beta\right)=0$, and in this case, $\mathscr{D}_{\alpha} \beta=\mathscr{L}_{\pi_{\sharp}(\alpha)} \beta$.

In other words, the kernel of the anchor map restricted to U is stable under \mathfrak{D}. The next lemma shows that, around any regular point, there exists a complementary subbundle of $\operatorname{Ker} \pi_{\sharp}$ which is also stable under \mathscr{D}, provided that \mathscr{D} is flat.

[^1]Lemma 3.2. If \mathcal{D} is flat and is an $\mathcal{F}^{\text {reg }}$-connection, then for any $x \in M^{\mathrm{reg}}$ and any $\mathscr{H}_{0} \subseteq T_{x}^{*} M$ such that $T_{x}^{*} M=\left(\operatorname{Ker} \pi_{\sharp}\right)_{x} \oplus \mathscr{H}_{0}$, the cotangent bundle splits smoothly around x into:

$$
T^{*} M=\left(\operatorname{Ker} \pi_{\sharp}\right) \oplus \mathscr{H}
$$

with \mathscr{H} stable under \mathfrak{D}, i.e. $\mathscr{D} \mathscr{H} \subseteq \mathscr{H}$, and $\mathscr{H}_{x}=\mathscr{H}_{0}$.
Proof. Let $\left(U ; x^{i}, y^{u}\right)(i=1, \ldots, 2 r ; u=1, \ldots, d-2 r)$ be a local chart around x such that

$$
\pi=\frac{1}{2} \sum_{i, j=1}^{2 r} \pi^{i j} \frac{\partial}{\partial x^{i}} \wedge \frac{\partial}{\partial x^{j}}
$$

and the matrix $\left(\pi^{i j}\right)_{1 \leq i, j \leq 2 r}$ is constant and invertible; let $\left(\bar{\pi}_{i j}\right)_{1 \leq i, j \leq 2 r}$ denote the inverse matrix. The restriction of $\operatorname{Ker} \pi_{\sharp}$ to U is a (rank $d-2 r$) subbundle of $T_{l u}^{*} M$, so we can choose a (arbitrary) smooth decomposition

$$
T_{l u}^{*} M=\left(\operatorname{Ker} \pi_{\sharp}\right) \oplus \mathscr{H} .
$$

Then clearly $\operatorname{Ker} \pi_{\sharp}=\operatorname{span}\left\{d y^{u}\right\}$, and

$$
\mathscr{H}=\operatorname{span}\left\{\theta^{i}=d x^{i}+\sum_{u=1}^{d-2 r} B_{u}^{i} d y^{u}\right\}
$$

for some functions $B_{u}^{i} \in \mathcal{C}^{\infty}(U)$. Since \mathscr{D} is a torsion-free \mathcal{F}-connection on U, one has $\mathscr{D}_{d y^{u}}=\mathscr{D} d y^{u}=0$ for all u. Thus, for any i, j,

$$
\begin{aligned}
\mathscr{D}_{\theta^{i}} \theta^{j} & =\mathcal{D}_{d x^{\prime}} d x^{j}+\sum_{u=1}^{d-2 r} \pi_{\sharp}\left(d x^{i}\right)\left(B_{u}^{j}\right) d y^{u} \\
& =\left(\sum_{k=1}^{2 r} \Gamma_{k}^{i j} d x^{k}+\sum_{u=1}^{d-2 r} \Gamma_{u}^{i j} d y^{u}\right)+\sum_{u=1}^{d-2 r} \sum_{k=1}^{2 r} \pi^{i k} \frac{\partial B_{u}^{j}}{\partial x^{k}} d y^{u} \\
& =\sum_{k=1}^{2 r} \Gamma_{k}^{i j} \theta^{k}+\sum_{u=1}^{d-2 r}\left(\Gamma_{u}^{i j}+\sum_{k=1}^{2 r}\left(\pi^{i k} \frac{\partial B_{u}^{j}}{\partial x^{k}}-\Gamma_{k}^{i j} B_{u}^{k}\right)\right) d y^{u},
\end{aligned}
$$

where $\Gamma_{k}^{i j}, \Gamma_{u}^{i j}$ are the Christoffel symbols of \mathscr{D}. Therefore, the desired decomposition exists if and only if we may find a family of local functions $\left\{B_{u}^{i}\right\}_{i, u}$ satisfying the following system of PDEs

$$
\Gamma_{u}^{i j}+\sum_{k=1}^{2 r}\left(\pi^{i k} \frac{\partial B_{u}^{j}}{\partial x^{k}}-\Gamma_{k}^{i j} B_{u}^{k}\right)=0 \quad \forall i, j, \forall u,
$$

or equivalently

$$
\begin{equation*}
\frac{\partial B_{u}^{j}}{\partial x^{i}}=\sum_{k=1}^{2 r}\left(\sum_{l=1}^{2 r} \bar{\pi}_{i l} \Gamma_{k}^{l j}\right) B_{u}^{k}-\sum_{l=1}^{2 r} \bar{\pi}_{i l} \Gamma_{u}^{l j} \quad \forall i, j, \forall u . \tag{*}
\end{equation*}
$$

In matrix notation, this is

$$
\frac{\partial}{\partial x^{i}} B_{u}=\Gamma_{i} B_{u}+Y_{i}^{u},
$$

where

$$
B_{u}=\left(\begin{array}{c}
B_{u}^{1} \\
\vdots \\
\vdots \\
B_{u}^{2 r}
\end{array}\right) ; \quad \Gamma_{i}=\left(\sum_{m=1}^{2 r} \bar{\pi}_{i m} \Gamma_{l}^{m k}\right)_{1 \leq k, l \leq 2 r} ; \quad Y_{i}^{u}=-\sum_{j=1}^{2 r} \bar{\pi}_{i j}\left(\begin{array}{c}
\Gamma_{u}^{j 1} \\
\vdots \\
\vdots \\
\Gamma_{u}^{j 2 r}
\end{array}\right) .
$$

Considering the B_{u}^{i} 's as functions with variables x^{i} and parameters y^{u}, the system above can be solved, according to Frobenius's Theorem (see, e.g., [11, Theorem 1.1]), if and only if the integrability conditions

$$
\Gamma_{i} \Gamma_{j}+\frac{\partial}{\partial x^{j}} \Gamma_{i}=\Gamma_{j} \Gamma_{i}+\frac{\partial}{\partial x^{i}} \Gamma_{j}, \quad \Gamma_{i} Y_{j}^{u}+\frac{\partial}{\partial x^{j}} Y_{i}^{u}=\Gamma_{j} Y_{i}^{u}+\frac{\partial}{\partial x^{i}} Y_{j}^{u},
$$

hold for all i, j and all u. With indices, these are respectively

$$
\begin{aligned}
& \sum_{m=1}^{2 r} \Gamma_{l}^{i m} \Gamma_{m}^{j k}-\Gamma_{l}^{j m} \Gamma_{m}^{i k}+\pi^{i m} \frac{\partial \Gamma_{l}^{j k}}{\partial x^{m}}-\pi^{j m} \frac{\partial \Gamma_{l}^{i k}}{\partial x^{m}}=0 \\
& \sum_{m=1}^{2 r} \Gamma_{u}^{i m} \Gamma_{m}^{j k}-\Gamma_{u}^{j m} \Gamma_{m}^{i k}+\pi^{i m} \frac{\partial \Gamma_{u}^{j k}}{\partial x^{m}}-\pi^{j m} \frac{\partial \Gamma_{u}^{i k}}{\partial x^{m}}=0
\end{aligned}
$$

which by (4) mean that the curvature vanishes. Thus $(*)$ has solutions (which depend smoothly on the parameters and the initial values).

Notation 3.3. Given \mathscr{H} as above, the restriction of π_{\sharp} to \mathscr{H} defines an isomorphism from \mathscr{H} onto $T \rho$; we will denote by $\varpi^{\mathscr{H}}: T \& \rightarrow \mathcal{H}$ its inverse.

Proposition 3.4. The following are equivalent:
(a) \mathcal{D} is flat and is an $\mathcal{F}^{\text {reg }}$-connection.
(b) For any $x \in M^{\text {reg }}$ and any $a \in T_{x}^{*} M$, there exists a 1 -form α defined in a neighborhood of x such that $\alpha(x)=a$ and $\mathscr{D} \alpha=0$.
(c) Around any $x \in M^{\text {reg }}$, there exists a smooth coframe $\left(\alpha^{1}, \ldots, \alpha^{d}\right)$ of M such that $\mathscr{D} \alpha^{i}=0$ for all i. Such a coframe will be called flat.
Proof. The equivalence (b) \Longleftrightarrow (c) is obvious.
(a) $\Longrightarrow(\mathrm{b})$: Let $U \subseteq M$ be an open neighborhood of x on which the rank of π is constant. Over $U, T \&$ is a (involutive) regular distribution and \mathscr{D} is a torsion-free \mathcal{F}-connection. So we can define a partial connection ∇ on $T_{\mid U} \&$ by setting for any $\alpha, \beta \in \Omega^{1}(U)$,

$$
\begin{equation*}
\nabla_{\pi_{\sharp}(\alpha)} \pi_{\sharp}(\beta)=\pi_{\sharp}\left(\mathscr{D}_{\alpha} \beta\right) . \tag{18}
\end{equation*}
$$

One verifies immediately that the curvature tensor fields R^{∇} and $R^{\mathcal{D}}$ respectively of ∇ and \mathscr{D} are related by:

$$
R^{\nabla}\left(\pi_{\sharp}(a), \pi_{\sharp}(b)\right) \pi_{\sharp}(c)=\pi_{\sharp}\left(R^{\mathcal{D}}(a, b) c\right) \quad \forall a, b, c \in T_{l U}^{*} M,
$$

and hence R^{∇} vanishes since by hypothesis $R^{\mathscr{D}}$ does. Using Frobenius's Theorem, we can then show in a way similar to the classical case that, for any $v \in T_{x} \&$, there exists a vector field X defined on some neighborhood of x such that $X(x)=v, X$ is tangent to $T \&$, that is, $X(y) \in T_{y} \&$ for any y near x, and $\nabla X=0$.

Now let $a \in T_{x}^{*} M$. According to Lemma 3.2, the cotangent bundle splits smoothly around x into: $T^{*} M=\left(\operatorname{Ker} \pi_{\sharp}\right) \oplus \mathscr{H}$ with \mathscr{H} stable under \mathcal{D}. Write $a=b+c$ with $b \in \operatorname{Ker} \pi_{\sharp}(x)$ and $c \in \mathscr{H}_{x}$. By the argument above, there exists a ∇-parallel vector field X defined in a neighborhood of x which is tangent to $T \&$ and such that $X(x)=\pi_{\sharp}(c)$. Put $\gamma=\varpi^{\mathscr{H}}(X) \in \Gamma(\mathscr{H})$; then $\gamma(x)=c$, and for any 1 -form $\phi, \pi_{\sharp}\left(\mathscr{D}_{\phi} \gamma\right)=\nabla_{\pi_{\sharp}(\phi)} X=0$ implying that $\mathscr{D} \gamma=0$. Taking $\alpha=\sum_{u=1}^{s} b_{u} d y^{u}+\gamma$, where $\left(y^{u}\right)$ is a family of local functions on M such that $\operatorname{Ker} \pi_{\sharp}=\operatorname{span}\left\{d y^{1}, \ldots, d y^{s}\right\}$ near x, and b_{u} are the coordinates of b in $\left\{d_{x} y^{1}, \ldots, d_{x} y^{s}\right\}$, we obtain finally the desired 1-form.
(c) \Longrightarrow (a): It is clear that if (c) holds, then \mathscr{D} is flat. So we need only to show that \mathscr{D} is an $\mathscr{F}^{\text {reg }}$-connection. Let $x \in M^{\text {reg }}$ be arbitrary, and let $\left(\alpha^{1}, \ldots, \alpha^{d}\right)$ be a flat coframe around x. For any $a \in \operatorname{Ker} \pi_{\sharp}(x)$ and any 1 -form $\beta=\sum_{i} f_{i} \alpha^{i}$, we have $\mathscr{D}_{a} \beta=\sum_{i} \pi_{\sharp}(a)\left(f_{i}\right) \alpha^{i}+f_{i} \mathscr{D}_{a} \alpha^{i}=0$.

The following corollary is a refinement of the preceding proposition.
Corollary 3.5. If \mathcal{D} is flat and is an $\mathcal{F}^{\text {reg }}$-connection, then around any $x \in M^{\text {reg }}$ there exists an s-foliated coordinate system with leafwise coordinates $\left\{x^{i}\right\}_{i=1}^{2 r}$ and transverse coordinates $\left\{y^{u}\right\}_{u=1}^{d-2 r}$ such that for any \mathscr{H} as in Lemma 3.2,

$$
\mathbf{F}^{*}=\left(\phi_{i}:=\varpi^{\mathscr{H}}\left(\partial / \partial x^{i}\right) ; d y^{u}\right)
$$

is a flat coframe of M near x. Such a coordinate system will be called flat.
Remark 3.6. Another equivalent way of expressing that the s-foliated coordinate system $\left(x^{i}, y^{u}\right)$ is flat is the following: $\nabla \partial / \partial x^{i}=0$ for all i, where ∇ is the (local) partial connection defined by (18).

We assume for the remainder of this section that \mathfrak{D} is flat and is an $\mathcal{F}^{\text {reg }}$-connection.
We shall compute the tensors \mathcal{M} and \mathbf{T} in the coframe \mathbf{F}^{*}. To do so, we need first to determine its dual frame. With the notations of Corollary 3.5, for each i, there exist unique functions, $A_{1}^{i}, \ldots, A_{d-2 r}^{i}$, defined in a neighborhood of x such that

$$
\begin{equation*}
d x^{i}+\sum_{u=1}^{d-2 r} A_{u}^{i} d y^{u} \in \mathscr{H} \tag{19}
\end{equation*}
$$

For any i and any u we put

$$
\begin{equation*}
X_{i}:=-H_{x^{i}}=-\pi_{\sharp}\left(d x^{i}\right), \quad Y_{u}:=\frac{\partial}{\partial y^{u}}-\sum_{i=1}^{2 r} A_{u}^{i} \frac{\partial}{\partial x^{i}} . \tag{20}
\end{equation*}
$$

Lemma 3.7. With the above notations, $\left(X_{i}, Y_{u}\right)$ is the dual frame to \mathbf{F}^{*}. Moreover, the vector fields X_{i} and Y_{u} are, respectively, Hamiltonian and Poisson, and verify

$$
\begin{align*}
& {\left[X_{i}, X_{j}\right]=-\sum_{k=1}^{2 r} \frac{\partial \pi^{i j}}{\partial x^{k}} X_{k} ; \quad\left[X_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \frac{\partial A_{u}^{i}}{\partial x^{j}} X_{j} ;} \\
& {\left[Y_{u}, Y_{v}\right]=\sum_{i, j=1}^{2 r} \bar{\pi}_{i j}\left(\frac{\partial A_{u}^{j}}{\partial y^{v}}-\frac{\partial A_{v}^{j}}{\partial y^{u}}+\sum_{k=1}^{2 r} A_{u}^{k} \frac{\partial A_{v}^{j}}{\partial x^{k}}-A_{v}^{k} \frac{\partial A_{u}^{j}}{\partial x^{k}}\right) X_{i} .} \tag{21}
\end{align*}
$$

Here, $\pi^{i j}:=\pi\left(d x^{i}, d x^{j}\right)$ and $\left(\bar{\pi}_{i j}\right)$ is the inverse matrix of $\left(\pi^{i j}\right)$.
Proof. The fact that $\left(X_{i}, Y_{u}\right)$ is the dual frame to \mathbf{F}^{*} follows immediately once we note that

$$
\begin{equation*}
\phi_{i}:=\varpi^{\mathscr{H}}\left(\partial / \partial x^{i}\right)=\sum_{j=1}^{2 r} \bar{\pi}_{i j}\left(d x^{j}+\sum_{u=1}^{d-2 r} A_{u}^{j} d y^{u}\right) . \tag{22}
\end{equation*}
$$

By definition, each of the vector fields X_{i} is Hamiltonian. To see that each Y_{u} is Poisson, observe that $\left[\phi_{i}, \phi_{j}\right]_{\pi}=\mathscr{D}_{\phi_{i}} \phi_{j}-$ $\mathscr{D}_{\phi_{j}} \phi_{i}=0$ which yields

$$
\begin{aligned}
Y_{u} \cdot \pi\left(\phi_{i}, \phi_{j}\right) & =\mathscr{L}_{\partial / \partial x^{i}} \phi_{j}\left(Y_{u}\right)-\mathcal{L}_{\partial / \partial x^{j}} \phi_{i}\left(Y_{u}\right) \\
& =-\phi_{j}\left(\left[\frac{\partial}{\partial x^{i}}, Y_{u}\right]\right)+\phi_{i}\left(\left[\frac{\partial}{\partial x^{j}}, Y_{u}\right]\right) \\
& =-\mathscr{L}_{Y_{u}} \phi_{j}\left(\frac{\partial}{\partial x^{i}}\right)+Y_{u} \cdot \pi\left(\phi_{i}, \phi_{j}\right)+\mathscr{L}_{Y_{u}} \phi_{i}\left(\frac{\partial}{\partial x^{j}}\right)-Y_{u} \cdot \pi\left(\phi_{j}, \phi_{i}\right) \\
& =-\pi\left(\phi_{i}, \mathcal{L}_{Y_{u}} \phi_{j}\right)-\pi\left(\mathscr{L}_{Y_{u}} \phi_{i}, \phi_{j}\right)+2 Y_{u} \cdot \pi\left(\phi_{i}, \phi_{j}\right),
\end{aligned}
$$

hence $\mathscr{L}_{Y_{u}} \pi\left(\phi_{i}, \phi_{j}\right)=0$; in addition, we have

$$
\mathcal{L}_{Y_{u}} \pi\left(\phi_{i}, d y^{v}\right)=-\pi\left(\phi_{i}, \mathcal{L}_{Y_{u}} d y^{v}\right)=-\pi\left(\phi_{i}, d\left(Y_{u}\left(y^{v}\right)\right)\right)=0,
$$

and it is clear that we also have $\mathscr{L}_{Y_{u}} \pi\left(d y^{v}, d y^{w}\right)=0$. It follows that $\mathscr{L}_{Y_{u}} \pi=0$, which means that Y_{u} is Poisson. Finally,

$$
\left[X_{i}, X_{j}\right]=H_{\pi\left(d x^{i}, d x^{j}\right)}=-\sum_{k=1}^{2 r} \frac{\partial \pi^{i j}}{\partial x^{k}} X_{k}, \quad\left[X_{i}, Y_{u}\right]=H_{Y_{u}\left(x^{i}\right)}=\sum_{j=1}^{2 r} \frac{\partial A_{u}^{i}}{\partial x^{j}} X_{j},
$$

and the last equality of (21) follows by direct computation.
We now can give the expression of the metacurvature in the coframe \mathbf{F}^{*}.
Theorem 3.8. With the same notations as above, we have
(a) For any $u=1, \ldots, d-2 r, \mathcal{M}\left(d y^{u}, \cdot, \cdot\right)=0$.
(b) For any $i, j, k=1, \ldots, 2 r$,

$$
\begin{align*}
\mathcal{M}\left(\phi_{i}, \phi_{j}, \phi_{k}\right)= & -\sum_{l<m} \frac{\partial^{3} \pi^{l m}}{\partial x^{i} \partial x^{j} \partial x^{k}} \phi_{l} \wedge \phi_{m}+\sum_{l, u} \frac{\partial^{3} A_{u}^{l}}{\partial x^{i} \partial x^{j} \partial x^{k}} \phi_{l} \wedge d y^{u} \\
& +\sum_{u<v, l} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}\left(\bar{\pi}_{k l}\left(\frac{\partial A_{u}^{l}}{\partial y^{v}}-\frac{\partial A_{v}^{l}}{\partial y^{u}}+\sum_{m} A_{u}^{m} \frac{\partial A_{v}^{l}}{\partial x^{m}}-A_{v}^{m} \frac{\partial A_{u}^{l}}{\partial x^{m}}\right)\right) d y^{u} \wedge d y^{v} . \tag{23}
\end{align*}
$$

Proof. Part (a) is immediate from (13) and (9). For (b), on the one hand, we have by (15),

$$
\mathcal{M}\left(\phi_{i}, \phi_{j}, \phi_{k}\right)=-\mathscr{D}_{\phi_{i}} \mathscr{D}_{\phi_{j}} d \phi_{k} \quad \text { for all } i, j, k .
$$

On the other hand, using Lemma 3.7 gives

$$
\begin{align*}
d \phi_{i}= & \sum_{j<k} \frac{\partial \pi^{j k}}{\partial x^{i}} \phi_{j} \wedge \phi_{k}-\sum_{j, u} \frac{\partial A_{u}^{j}}{\partial x^{i}} \phi_{j} \wedge d y^{u} \\
& -\sum_{u<v, j} \bar{\pi}_{i j}\left(\frac{\partial A_{u}^{j}}{\partial y^{v}}-\frac{\partial A_{v}^{j}}{\partial y^{u}}+\sum_{k} A_{u}^{k} \frac{\partial A_{v}^{j}}{\partial x^{k}}-A_{v}^{k} \frac{\partial A_{u}^{j}}{\partial x^{k}}\right) d y^{u} \wedge d y^{v} \tag{24}
\end{align*}
$$

and the desired formula follows.
Likewise, we get the following expression for the tensor \mathbf{T}.
Theorem 3.9. (a) For any $u=1, \ldots, d-2 r, \mathbf{T}\left(d y^{u}, \cdot\right)=0$.
(b) For any $i, j, k=1, \ldots, 2 r$,

$$
\begin{align*}
\mathbf{T}\left(\phi_{i}, \phi_{j}\right)= & -\sum_{k<l} \frac{\partial^{2} \pi^{k l}}{\partial x^{i} \partial x^{j}} \phi_{k} \wedge \phi_{l}+\sum_{k, u} \frac{\partial^{2} A_{u}^{k}}{\partial x^{i} \partial x^{j}} \phi_{k} \wedge d y^{u} \\
& +\sum_{u<v, k} \frac{\partial}{\partial x^{i}}\left(\bar{\pi}_{j k}\left(\frac{\partial A_{u}^{k}}{\partial y^{v}}-\frac{\partial A_{v}^{k}}{\partial y^{u}}+\sum_{l} A_{u}^{l} \frac{\partial A_{v}^{k}}{\partial x^{l}}-A_{v}^{l} \frac{\partial A_{u}^{k}}{\partial x^{l}}\right)\right) d y^{u} \wedge d y^{v} . \tag{25}
\end{align*}
$$

3.1. The symplectic case

If the Poisson tensor π is invertible, i.e., $\pi=\omega^{-1}$ where ω is a symplectic 2 -form, then the flat and torsion-free contravariant connection \mathfrak{D} (which is, in this case, an \mathcal{F}-connection since the kernel of the anchor map reduces to zero) is related to a flat, torsion-free, covariant connection ∇ on M via $\pi_{\sharp}\left(\mathscr{D}_{\alpha} \beta\right)=\nabla_{\pi_{\sharp}(\alpha)} \pi_{\sharp}(\beta)$. In that case, a flat coordinate system is one with respect to whom ∇ is given trivially by partial derivatives (Remark 3.6).

Corollary 3.10. If $\pi=\omega^{-1}$, then the components of \mathcal{M} and \mathbf{T} w.r.t. any flat coordinate system (x^{1}, \ldots, x^{d}) are given respectively by

$$
\begin{align*}
& \mathcal{M}_{l m}^{i j k}=-\sum_{a, b, c, d, e} \pi^{a i} \pi^{b j} \pi^{c k} \omega_{d l} \omega_{e m} \frac{\partial^{3} \pi^{d e}}{\partial x^{a} \partial x^{b} \partial x^{c}} \tag{26}\\
& \mathbf{T}_{k l}^{i j}=-\sum_{a, b, c, d} \pi^{a i} \pi^{b j} \omega_{c k} \omega_{d l} \frac{\partial^{2} \pi^{c d}}{\partial x^{a} \partial x^{b}} . \tag{27}
\end{align*}
$$

Remark 3.11. Formula (26) has already been established by Hawkins, see [2, Theorem 2.4].
Proof. Since the kernel of π_{\sharp} reduces to zero, then by Theorems 3.8 and 3.9

$$
\mathcal{M}\left(\phi_{i}, \phi_{j}, \phi_{k}\right)=-\sum_{l<m} \frac{\partial^{3} \pi^{l m}}{\partial x^{i} \partial x^{j} \partial x^{k}} \phi_{l} \wedge \phi_{m}
$$

and

$$
\mathbf{T}\left(\phi_{i}, \phi_{j}\right)=-\sum_{k<l} \frac{\partial^{2} \pi^{k l}}{\partial x^{i} \partial x^{j}} \phi_{k} \wedge \phi_{l}
$$

and by (22) we have $\phi_{i}=\sum_{j} \bar{\pi}_{i j} d x^{j}$, and the desired formulas follow.
This means that for a symplectic manifold, \mathcal{M} (resp. T) vanishes if and only if π is polynomial of degree at most 2 (resp. 1) in the affine structure defined by ∇.

Example 3.12. Let (M, ω) be a symplectic manifold. If \mathscr{D} is a flat, torsion-free, Poisson connection on M w.r.t. $\pi=\omega^{-1}$, then T vanishes identically (and hence so does \mathcal{M}). In fact, the condition $\mathscr{D} \pi=0$ is equivalent to saying that the components of π w.r.t. any flat coordinate system are constant.

Example 3.13. Let G be a Lie group with Lie algebra \mathfrak{g}, and let $r \in \wedge^{2} \mathfrak{g}$ be a solution of the classical Yang-Baxter equation. For any tensor τ on \mathfrak{g}, denote by τ^{+}the corresponding left-invariant tensor field on G. Following [4, p. 71], the formula

$$
\mathscr{D}_{a^{+}}^{r} b^{+}=-\left(\mathrm{ad}_{r(a)}^{*} b\right)^{+}
$$

where $a, b \in \mathfrak{g}^{*}$, defines a left-invariant, flat, torsion-free contravariant connection \mathscr{D}^{r} on $\left(G, r^{+}\right)$, which is an \mathcal{F}-connection with vanishing \mathbf{T} by (c^{\prime}) from the introduction. It is well known (see, e.g., [12]) that if r is invertible, then the left-invariant symplectic form ω^{+}inverse of r^{+}defines a left-invariant, flat, torsion-free (covariant) connection ∇ on G via

$$
\omega^{+}\left(\nabla_{u^{+}} v^{+}, w^{+}\right)=-\omega^{+}\left(v^{+},\left[u^{+}, w^{+}\right]\right), \quad u, v, w \in \mathfrak{g}
$$

In that case, it is easily seen that \mathscr{D}^{r} and ∇ are related by: $r_{\sharp}^{+}\left(\mathscr{D}_{a^{+}}^{r} b^{+}\right)=\nabla_{r(a)} r(b)^{+}$where r_{\sharp}^{+}is the anchor map associated to r^{+}. Accordingly, r^{+}is polynomial of degree at most one with respect to the affine structure defined by ∇ since $\mathbf{T}=0$ and r is invertible, recovering thus a result of the second author and Medina (cf. [13, Theorem 1.1-(1)]).

3.2. The Riemannian case

Let \mathscr{D} be the metric contravariant connection associated to a Poisson tensor π and a Riemannian metric g on a smooth manifold M. Thanks to the metric g, the cotangent bundle splits orthogonally into

$$
T^{*} M=\operatorname{Ker} \pi_{\sharp} \oplus\left(\operatorname{Ker} \pi_{\sharp}\right)^{\perp} .
$$

Lemma 3.14. Let $U \subseteq M$ be an open set on which the rank of π is constant. Assume that \mathfrak{D} is an \mathcal{F}-connection on U. Then $\left(\text { Ker } \pi_{\left.\sharp\right|_{U}}\right)^{\perp}$ is stable under \mathscr{D}.

Thus if \mathscr{D} is flat and is an $\mathcal{F}^{\text {reg }}$-connection, then by Corollary 3.5 there exists around any $x \in M^{\text {reg }}$ an \wp-foliated chart with leafwise coordinates $\left\{x^{i}\right\}_{i=1}^{2 r}$ and transverse coordinates $\left\{y^{u}\right\}_{u=1}^{d-2 r}$ such that $\left\{\phi_{i}=\varpi^{\perp}\left(\partial / \partial x^{i}\right)\right.$; dy $\left.{ }^{u}\right\}$ is a flat coframe of M near x, where we have denoted by $\varpi^{\perp}: T \& \rightarrow\left(\operatorname{Ker} \pi_{\sharp}\right)^{\perp}$ the inverse of $\pi_{\sharp}:\left(\operatorname{Ker} \pi_{\sharp}\right)^{\perp} \rightarrow T \delta$. In this case, the functions A_{u}^{i} defined by (19) can be computed by means of the metric; indeed, using (22) and the fact that $\left\langle\phi_{i}, d y^{u}\right\rangle=0$, one has $-A_{u}^{i}=\sum_{v} g^{i v} g_{u v}$ where $g^{i v}=\left\langle d x^{i}, d y^{v}\right\rangle$ and $\left(g_{u v}\right)$ is the inverse matrix of the one whose coefficients are $g^{u v}=\left\langle d y^{u}, d y^{v}\right\rangle$.

4. Proof of Theorem 1.1

Let (x^{i}, y^{u}), with $i=1, \ldots, 2 r$ and $u=1, \ldots, d-2 r$, be a flat coordinate system around x_{0}, choose \mathscr{H} as in Lemma 3.2 , and let $\mathbf{F}^{*}=\left\{\phi_{i}, d y^{u}\right\}$ be the corresponding flat coframe and $\left\{X_{i}, Y_{u}\right\}$ its dual frame. We shall construct a family of vector fields $\left\{Z_{1}, \ldots, Z_{2 r}\right\}$ on a neighborhood U of x_{0} which span $T \&$ and commute with the X_{i} 's and the Y_{u} 's. In that case,

- The family $\left\{Z_{1}, \ldots, Z_{2 r}\right\}$ will form a $2 r$-dimensional real Lie algebra \mathfrak{g}, since by the Jacobi identity

$$
\left[\left[Z_{i}, Z_{j}\right], X_{l}\right]=\left[\left[Z_{i}, Z_{j}\right], Y_{u}\right]=0 \quad \forall i, j, l, \forall u
$$

so that $\left[Z_{i}, Z_{j}\right]=\sum_{k} c_{i j}^{k} Z_{k}$ with $c_{i j}^{k}$ being constant; it is then clear that \mathfrak{g} acts freely on U.

- The Poisson tensor π will be expressed as

$$
\pi=\frac{1}{2} \sum_{i, j} a^{i j} Z_{i} \wedge Z_{j}
$$

where the matrix $\left(a^{i j}\right)_{1 \leq i, j \leq 2 r}$ is constant and invertible: since the X_{i} 's and the Y_{u} 's are Poisson (Lemma 3.7), then writing $\pi=\frac{1}{2} \sum_{i, j} a^{i j} Z_{i} \wedge Z_{j}$ where $a^{i j} \in \mathcal{C}^{\infty}(U)$, we get $X_{k}\left(a^{i j}\right)=Y_{u}\left(a^{i j}\right)=0$.

- The connection \mathscr{D} will be given on U by

$$
\mathscr{D}_{\alpha} \beta=\sum_{i, j} a^{i j} \alpha\left(Z_{i}\right) \mathscr{L}_{Z_{j}} \beta .
$$

In fact, this is true for any $\beta \in \mathbf{F}^{*}$ since $\mathscr{L}_{Z_{i}} \phi_{j}=\mathcal{L}_{Z_{i}} d y^{u}=0$, and $\mathscr{D}_{\alpha} \beta-\sum_{i, j} a^{i j} \alpha\left(Z_{i}\right) \mathscr{L}_{Z_{j}} \beta$ is tensorial in β as $\pi_{\sharp}(\alpha)=\sum_{i, j} a^{i j} \alpha\left(Z_{i}\right) Z_{j}$.
We shall proceed in two steps. We first construct a family of vector fields which span $T \delta$ and commute with the X_{i} 's, and then construct from this the desired family.

To start, observe that by virtue of Theorem 3.9 and Lemma 3.7 we have

$$
\left[X_{i}, X_{j}\right]=\sum_{k=1}^{2 r} \lambda_{i j}^{k} X_{k}, \quad\left[X_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \mu_{i u}^{j} X_{j}, \quad\left[Y_{u}, Y_{v}\right]=\sum_{i=1}^{2 r} v_{u v}^{i} X_{i},
$$

where $\lambda_{i j}^{k}, \mu_{i u}^{j}$, $v_{u v}^{i}$ are Casimir functions. Let $\mathcal{T} \subseteq M$ be a smooth transversal to $T \&$ intersecting x_{0}; this is parametrized by the y^{u} 's. Fixing $y \in \mathcal{T}$, the restrictions $X_{1}^{y}, \ldots, X_{2 r}^{y}$ of $X_{1}, \ldots, X_{2 r}$ to the symplectic leaf s_{y} passing through y form a Lie algebra \mathfrak{g}_{y} which acts freely and transitively on s_{y}. Therefore, according to [14], there exists a free transitive Lie algebra anti-homomorphism $\hat{\Gamma}_{y}: \mathfrak{g}_{y} \rightarrow \mathfrak{X}^{1}\left(\ell_{y}\right)$ whose image is

$$
\hat{\Gamma}_{y}\left(\mathfrak{g}_{y}\right)=\left\{T \in \mathfrak{X}^{1}\left(f_{y}\right):\left[T, X_{i}^{y}\right]=0 \forall i=1, \ldots, 2 r\right\},
$$

and such that $\hat{\Gamma}_{y}\left(X_{i}^{y}\right)(y)=X_{i}(y)$ for all i. Setting for any i,

$$
T_{i}(z):=\hat{\Gamma}_{y}\left(X_{i}^{y}\right)(z), \quad z \in \ell_{y}
$$

and varying y along \mathcal{T}, we get a family of linearly independent vector fields $\left\{T_{1}, \ldots, T_{2 r}\right\}$ which are tangent to $T \&$ and verify

$$
\left[T_{i}, X_{j}\right]=0 \quad \text { for all } i, j
$$

and such that $T_{i}(y)=X_{i}(y)$ for all i and all $y \in \mathcal{T}$. Note that $T_{1}, \ldots, T_{2 r}$ are smooth since the solutions of the system

$$
\left[T, X_{i}\right]=0, \quad i=1, \ldots, 2 r
$$

depend smoothly on the parameter $y \in \mathcal{T}$ and the initial values along \mathcal{T}. It is also worth noting that since the $\mu_{i u}^{j}$,s are Casimir, we have

$$
\left[X_{i},\left[T_{j}, Y_{u}\right]\right]=0 \quad \text { for all } i, j \text { and all } u
$$

so that

$$
\left[T_{i}, Y_{u}\right]=\sum_{j=1}^{2 r} \gamma_{i u}^{j} T_{j}
$$

where $\gamma_{i u}^{j}$ are Casimir functions; in addition, since the $\nu_{u v}^{i}$'s are Casimir, we have

$$
\left[T_{i},\left[Y_{u}, Y_{v}\right]\right]=0 \quad \text { for all } i \text { and all } u, v
$$

implying

$$
\begin{equation*}
\frac{\partial \gamma_{j u}^{i}}{\partial y_{v}}-\frac{\partial \gamma_{j v}^{i}}{\partial y_{u}}+\sum_{k=1}^{2 r} \gamma_{k u}^{i} \gamma_{j v}^{k}-\gamma_{k v}^{i} \gamma_{j u}^{k}=0 \tag{*}
\end{equation*}
$$

for all i, j and all u, v.
Now we would like to find an invertible matrix $\xi=\left(\xi_{j}^{i}\right)_{1 \leq i, j \leq 2 r}$ where ξ_{j}^{i} are Casimir functions such that the vector fields

$$
Z_{i}:=\sum_{j=1}^{2 r} \xi_{i}^{j} T_{j}, \quad i=1, \ldots, 2 r
$$

verify
$\left[Z_{i}, Y_{u}\right]=0 \quad$ for all i and all u.
If such a matrix exists, the family $\left\{Z_{1}, \ldots, Z_{2 r}\right\}$ is clearly the desired one. Since the functions ξ_{j}^{i} are searched to be Casimir, the condition for the Z_{i} 's to commute with the Y_{u} 's can be rewritten as

$$
\frac{\partial \xi_{j}^{i}}{\partial y^{u}}=\sum_{k=1}^{2 r} \gamma_{k u}^{i} \xi_{j}^{k} \quad \forall i, j, \forall u
$$

or in matrix notation

$$
\frac{\partial}{\partial y^{u}} \xi_{j}=\Gamma_{u} \xi_{j}
$$

where ξ_{j} is the j th column vector of ξ and $\Gamma_{u}:=\left(\gamma_{j u}^{i}\right)_{1 \leq i, j \leq 2 r}$. So we need to solve this system. Since the functions $\gamma_{j u}^{i}$ are Casimir and ξ_{j}^{i} are searched to be Casimir, we only need to solve it on \mathcal{T}. According to Frobenius's Theorem, this system has solutions if and only if the following integrability condition

$$
\Gamma_{u} \Gamma_{v}+\frac{\partial}{\partial y^{v}} \Gamma_{u}=\Gamma_{v} \Gamma_{u}+\frac{\partial}{\partial y^{u}} \Gamma_{v}
$$

holds for all u, v, which is nothing else but $(*)$. It then suffices to take $\xi_{j}^{i}\left(x_{0}\right)=\delta_{j}^{i}$ (Kronecker delta) as initial conditions to conclude.

Finally, if \mathcal{D} is the metric contravariant connection with respect to π and a Riemannian metric g, we choose $\mathscr{H}=$ $\left(\operatorname{Ker} \pi_{\sharp}\right)^{\perp}$. In this case, we have

$$
\mathscr{L}_{Z_{i}} g\left(\phi_{j}, \phi_{k}\right)=\mathscr{L}_{z_{i}} g\left(\phi_{j}, d y^{u}\right)=\mathscr{L}_{Z_{i}} g\left(d y^{u}, d y^{v}\right)=0
$$

since $\mathscr{L}_{Z_{i}} \phi_{j}=\mathcal{L}_{Z_{i}} d y^{u}=0$ and since $g\left(\phi_{i}, \phi_{j}\right)$ and $g\left(d y^{u}, d y^{v}\right)$ are Casimir functions. This shows that the vector fields Z_{i} are Killing.

Acknowledgment

The authors are very indebted to the referee for numerous corrections and suggestions which contributed to improve the paper.

References

[1] E. Hawkins, Noncommutative rigidity, Comm. Math. Phys. 246 (2004) 211-235.
[2] E. Hawkins, The structure of noncommutative deformations, J. Differential Geom. 77 (2007) 385-424.
[3] M. Boucetta, Compatibilités des structures pseudo-riemanniennes et des structrues de Poisson, C. R. Acad. Sci. Paris, Sér. I 333 (2001) $763-768$.
[4] M. Boucetta, Solutions of the classical Yang-Baxter equation and noncommutative deformations, Lett. Math. Phys. 83 (2008) 69-81.
[5] M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl. 20(3) (2004) $279-291$.
[6] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in: Elie Cartan et les Mathématiques d'aujourd'hui, in: Astérisque hors Série, 1985, pp. 257-271.
[7] I. Vaismann, Lectures on the Geometry of Poisson Manifolds, in: Progr. in Math., vol. 118, Birkhäsher, Berlin, 1994.
[8] R.L. Fernandes, Connections in Poisson geometry I: holonomy and invariants, J. Differential Geom. 54 (2000) 303-366.
[9] M. Crainic, I. Marcut, On the existence of symplectic realizations, J. Symplectic Geom. 9 (4) (2011) 435-444.
[10] A. Bahayou, M. Boucetta, Metacurvature of Riemannian Poisson-Lie groups, J. Lie Theory 19 (2009) 439-462.
[11] H.A. Hakopian, M.G. Tonoyan, Partial differential analogs of ordinary differential equations and systems, New York J. Math. 10 (2004) $89-116$.
[12] Bon-Yao Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc. 197 (1974) 145-159.
[13] M. Boucetta, A. Medina, Polynomial Poisson structures on affine solvmanifolds, J. Symplectic Geom. 9 (3) (2011) 387-401.
[14] D.V. Alekseevsk, P.W. Michor, Differential geometry of \mathfrak{g}-manifolds, Differential Geom. Appl. 5 (1995) 371-403.

[^0]: * Corresponding author.

 E-mail addresses: z.saassai@gmail.com, z.saassai@hotmail.fr (Z. Saassai), mboucetta2@yahoo.fr (M. Boucetta).

[^1]: 1 This formula appeared first in [10].

