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Let (G, h) be a nilpotent Lie group endowed with a left invariant Riemannian metric, 
g its Euclidean Lie algebra and Z(g) the center of g. By using an orthonormal basis 
adapted to the splitting g = (Z(g) ∩ [g, g]) ⊕ O+ ⊕ (Z(g) ∩ [g, g]⊥) ⊕ O−, where 
O+ (resp. O−) is the orthogonal of Z(g) ∩ [g, g] in [g, g] (resp. is the orthogonal of 
Z(g) ∩ [g, g]⊥ in [g, g]⊥), we show that the signature of the Ricci operator of (G, h)
is determined by the dimensions of the vector spaces Z(g) ∩ [g, g], Z(g) ∩ [g, g]⊥
and the signature of a symmetric matrix of order dim[g, g] −dim(Z(g) ∩ [g, g]). This 
permits to associate to G a subset Sign(g) of N3 depending only on the Lie algebra 
structure, easy to compute and such that, for any left invariant Riemannian metric 
on G, the signature of its Ricci operator belongs to Sign(g). We show also that for 
any nilpotent Lie group of dimension less or equal to 6, Sign(g) is actually the set 
of signatures of the Ricci operators of all left invariant Riemannian metrics on G. 
We give also some general results which support the conjecture that the last result 
is true in any dimension.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is a well established fact that there are deep relations between the topology and the geometry of a 
manifold on one side, and the curvature of a given Riemannian metric on this manifold on the other side. 
There is a long list of theorems supporting this fact (see for instance [1]) and many of them involve the 
Ricci curvature. It is a symmetric bilinear tensor and hence has a signature. In the case of a homogeneous 
Riemannian manifold this signature is the same in any point of the manifold. The determination of the 
possible signatures of the Ricci operators of G-invariant metrics on a G-homogeneous space can be useful in 
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many geometrical problems, for instance, in the study of the Ricci flow. This has led naturally to the study 
of the following open problem that constitutes the topic of this paper.

Problem 1. For a connected Lie group G, determine all the signatures of the Ricci operators for all left-
invariant Riemannian metrics on G.

This problem has been studied mainly in the low dimensions. In [9] and [4,5], Problem 1 has been solved, 
respectively, in the case of 3-dimensional Lie groups and 4-dimensional Lie groups. For Lie groups of dimen-
sion 5 there are only partial results. In [6], A.G. Kremlev, solved Problem 1 in the case of five-dimensional 
nilpotent Lie groups. In this paper, we study Problem 1 when G is nilpotent. We show that, associated to 
any nilpotent Lie group G, there is a subset Sign(g) of N3 depending only on the Lie algebra g of G, easy to 
compute and such that, for any left invariant Riemannian metric on G, the signature of its Ricci operator 
belongs to Sign(g). In the case where dimG ≤ 6, Sign(g) is actually the set of signatures of the Ricci 
operators of all left invariant Riemannian metrics on G. We give also some general results which support 
the conjecture that the last result is true in any dimension.

Now, we introduce Sign(g) and state our main results. Throughout this paper, we will use the following 
convention. The signature of a symmetric operator A on an Euclidean vector space V is the sequence 
(s−, s0, s+) where s+ =

∑
λi>0 dim ker(A −λiIV ), s− =

∑
λi<0 dim ker(A −λiIV ) and s0 = dim kerA, where 

λ1, . . . , λr are the eigenvalues of A.
Let g be a nilpotent n-dimensional Lie algebra, Z(g) its center and [g, g] its derived ideal. Put d =

dim[g, g], k = dimZ(g) and ℓ = dim(Z(g) ∩ [g, g]). We associate to g the subset of N3

Sign(g) =
{
(n− d− p + m−, p + m0, ℓ + m+)

: max(k − d, 0) ≤ p ≤ k − ℓ, m− + m0 + m+ = d− ℓ
}
. (1)

For instance, if g is 2-step nilpotent then [g, g] ⊂ Z(g) and hence Sign(g) = {(n− k, k − d, d)}. If g is a 
filiform nilpotent Lie algebra then Z(g) ⊂ [g, g], dimZ(g) = 1, dim[g, g] = n − 2 and hence

Sign(g) =
{
(2 + m−,m0, 1 + m+), m− + m0 + m+ = n− 3

}
.

The signature of the Ricci operator of a left invariant Riemannian metric on Lie group of dimension n
belongs to {(n−, n0, n+) : n− + n0 + n+ = n} whose cardinal is (n+1)(n+2)

2 . Our first main result reduces 
drastically the set of possibilities for a nilpotent Lie group.

Theorem 1. Let (G, h) be a nilpotent Lie group endowed with a left invariant Riemannian metric and g its 
Lie algebra. Then the signature of the Ricci operator of (G, h) belongs to Sign(g).

As an immediate consequence of this result, if G is 2-step nilpotent then any left invariant Riemannian 
metric on G has the signature of its Ricci operator equal to (dim g −dimZ(g), dimZ(g) −dim[g, g], dim[g, g]). 
On the other hand, Theorem 1 has the following corollary which gives a new proof to a result proved first 
in [11].

Corollary 1. Let (G, h) be a noncommutative nilpotent Lie group endowed with a left invariant Riemannian 
metric and g its Lie algebra. Then the Ricci operator of (G, h) has at least two negative eigenvalues.

Theorem 1 gives a candidate to be the set of the signatures of the Ricci operators of all left invariant 
Riemannian metrics on a nilpotent Lie group. Indeed, our second main result together with Theorem 1 solve 
Problem 1 completely for nilpotent Lie groups up to dimension 6.
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Theorem 2. Let G be a nilpotent Lie group of dimension ≤ 6 and g its Lie algebra. Then, for any 
(s−, s0, s+) ∈ Sign(g), there exists a left invariant Riemannian metric on G for which the Ricci opera-
tor has signature (s−, s0, s+).

Our third main result involves the notion of nice basis. Recall that a basis (X1, . . . , Xn) of a nilpotent 
Lie algebra g is called nice if:

1. For any i, j with i ̸= j, [Xi, Xj ] = 0 or there exists k such that [Xi, Xj ] = Ck
ijXk with Ck

ij ̸= 0.
2. If [Xi, Xj ] = Ck

ijXk and [Xs, Xr] = Ck
srXk with Ck

ij ̸= 0 and Ck
sr ̸= 0 then {i, j} ∩ {s, r} = ∅.

This notion appeared first in [8]. One of the most important property of a nice basis B is that any Euclidean 
inner product on g for which B is orthogonal has its Ricci curvature diagonal in B. The proof of Theorem 2
is based mainly on the fact that all the nilpotent Lie algebras of dimension less or equal to 6 have a nice 
basis except one. It is also known (see [7]) that any filiform Lie algebra has a nice basis.

Theorem 3. Let G be a nilpotent Lie group such that its Lie algebra g admits a nice basis and Z(g) ⊂ [g, g]
with dim[g, g] −dimZ(g) = 1. Then, for any (s−, s0, s+) ∈ Sign(g), there exists a left invariant Riemannian 
metric on G for which the Ricci operator has signature (s−, s0, s+).

This theorem together with Theorem 1 solve Problem 1 for a large class of nilpotent Lie groups. Indeed, 
in the list of indecomposable seven-dimensional nilpotent Lie algebras given in [10] there are more than 35 
ones satisfying the hypothesis of Theorem 3. On the other hand, we will point out the difficulty one can 
face when trying to generalize Theorem 3 when dim[g, g] − dimZ(g) ≥ 2. We will also give a method using 
the inverse function theorem to overcome this difficulty. Although, we have not succeeded yet to show that 
this method works in the general case, we will use it successfully in the proof of Theorem 2. We will refer 
to this method as inverse function theorem trick.

The results above, the tools we will use to establish them and the examples we will give support the 
following conjecture.

Conjecture 1. Let G be a nilpotent Lie group and g its Lie algebra. Then, for any (s−, s0, s+) ∈ Sign(g), 
there exists a left invariant Riemannian metric on G for which the Ricci operator has signature (s−, s0, s+).

The paper is organized as follows. In Sections 2–3, we prove a key lemma (see Lemma 1) which implies 
that, for any nilpotent Lie group (G, h) endowed with a left invariant Riemannian metric, by using an 
orthonormal basis adapted to the splitting of an Euclidean Lie algebra

g = (Z(g) ∩ [g, g]) ⊕O+ ⊕ (Z(g) ∩ [g, g]⊥) ⊕O−,

where O+ (resp. O−) is the orthogonal of Z(g) ∩ [g, g] in [g, g] (resp. is the orthogonal of Z(g) ∩ [g, g]⊥ in 
[g, g]⊥), the signature of the Ricci operator of (G, h) is determined by the dimensions of the vector spaces 
Z(g) ∩ [g, g], Z(g) ∩ [g, g]⊥ and the signature of a symmetric matrix of order dim[g, g] − dim(Z(g) ∩ [g, g]). 
Thereafter, we give a proof of Theorem 1, its corollary and Theorem 3. At the end of Section 3, we outline 
the inverse function theorem trick that we will use in the proof of Theorem 2. Section 3 is devoted to 
a proof of Theorem 2. We summarize at the end of the paper in a table all the realizable signatures of 
Ricci operators on nilpotent Lie groups up to dimension 6. It reduces, according to Theorems 1 and 2, 
to computing Sign(g) for any nilpotent Lie algebra of dimension less or equal to 6. Since we will use the 
classification of 5-dimensional and 6-dimensional Lie nilpotent algebras given by Willem A. de Graaf in [3], 
we give here the lists of these Lie algebras from [3] (Tables 1 and 2).
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Table 1
ϵ ∈ {−1, 0, 1}: List of six-dimensional nilpotent Lie algebras.

Lie algebra g Nonzero commutators
L6,2 = L5,2 ⊕ R [e1, e2] = e3
L6,3 = L5,3 ⊕ R [e1, e2] = e3, [e1, e3] = e4
L6,4 = L5,4 ⊕ R [e1, e2] = e5, [e3, e4] = e5
L6,5 = L5,5 ⊕ R [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
L6,6 = L5,6 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
L6,7 = L5,7 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L6,8 = L5,8 ⊕ R [e1, e2] = e4, [e1, e3] = e5
L6,9 = L5,9 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5
L6,10 [e1, e2] = e3, [e1, e3] = e6, [e4, e5] = e6
L6,11 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6, [e2, e5] = e6
L6,12 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6
L6,13 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5, [e1, e5] = e6, [e3, e4] = e6
L6,14 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e5] = e6, [e3, e4] = −e6
L6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e4] = e6, [e1, e5] = e6
L6,16 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6
L6,17 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6
L6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6
L6,19(ϵ) [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e3, e5] = ϵe6
L6,20 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6
L6,21(ϵ) [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = ϵe6
L6,22(ϵ) [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = ϵe6, [e3, e4] = e5
L6,23 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5
L6,24(ϵ) [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = ϵe6, [e2, e3] = e6, [e2, e4] = e5
L6,25 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6
L6,26 [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6

Table 2
List of five-dimensional nilpotent Lie algebras.

Lie algebra g Nonzero commutators
L5,2 = L3,2 ⊕ R2 [e1, e2] = e3
L5,3 = L4,3 ⊕ R [e1, e2] = e3, [e1, e3] = e4
L5,4 [e1, e2] = e5, [e3, e4] = e5
L5,5 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
L5,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
L5,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L5,8 [e1, e2] = e4, [e1, e3] = e5
L5,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5

2. Reduction of the Ricci operator of a Riemannian Lie group and Ricci signature underestimate

In this section, we prove a key lemma that will play a crucial role in the proofs of our main results.
A Lie group G together with a left-invariant Riemannian metric h is called a Riemannian Lie group. 

The metric h defines a symmetric positive definite inner product ⟨ , ⟩ = h(e) on the Lie algebra g of G, 
and conversely, any symmetric definite positive inner product on g gives rise to an unique left-invariant 
Riemannian metric on G.

We will refer to a Lie algebra endowed with a symmetric positive definite inner product as an Euclidean 
Lie algebra.

The Levi-Civita connection of (G, h) defines a product L : g × g −→ g called Levi-Civita product given 
by Koszul’s formula

2⟨Luv, w⟩ = ⟨[u, v], w⟩ + ⟨[w, u], v⟩ + ⟨[w, v], u⟩. (2)

For any u, v ∈ g, Lu : g −→ g is skew-symmetric and [u, v] = Luv − Lvu. The curvature on g is given by

K(u, v) = L[u,v] − [Lu,Lv].
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The Ricci curvature on g is defined by ric(u, v) = tr (w −→ K(u,w)v). The mean curvature vector on g
is the vector H defined by the following relation ⟨H, u⟩ = tr(adu), where adu : g −→ g, v .→ [u, v]. It is 
well-known that ric is given by

ric(u, v) = −1
2tr(adu ◦ adv) −

1
2tr(adu ◦ ad∗

v) −
1
4tr(Ju ◦ Jv) −

1
2 ⟨adHu, v⟩ − 1

2 ⟨adHv, u⟩, (3)

where Ju is the skew-adjoint endomorphism given by Juv = ad∗
vu (ad∗

u is the adjoint of adu with respect to 
⟨ , ⟩). The Ricci operator is the auto-adjoint endomorphism Ric : g −→ g given by ⟨Ric(u), v⟩ = ric(u, v). 
The signature of Ric is called Ricci signature of (G, h) or (g, ⟨ , ⟩).

We consider now the Lie subalgebra of left invariant Killing vector fields on G given by

K(⟨ , ⟩) = {u ∈ g, adu + ad∗
u = 0} .

It contains obviously the center Z(g) of g. Put K+(⟨ , ⟩) = K(⟨ , ⟩) ∩[g, g] and K−(⟨ , ⟩) = K(⟨ , ⟩) ∩[g, g]⊥. 
Denote by O+ (resp. O−) the orthogonal of K+(⟨ , ⟩) in [g, g] (resp. the orthogonal of K−(⟨ , ⟩) in [g, g]⊥). 
Then

g = K+(⟨ , ⟩) ⊕O+ ⊕K−(⟨ , ⟩) ⊕O−. (4)

We call this splitting characteristic splitting of (g, ⟨ , ⟩) and any basis of g of the form B1 ∪ B2 ∪ B3 ∪ B4
where B1, B2, B3 and B4 are, respectively, bases of K+(⟨ , ⟩), O+, K−(⟨ , ⟩), O− is called characteristic 
basis.

Lemma 1. With the hypothesis and the notations above, let n1 = dimK+(⟨ , ⟩), n2 = dimO+, n3 =
dimK−(⟨ , ⟩) and n4 = dimO−. Then we have:

(i) K−(⟨ , ⟩) ⊂ ker Ric and if K+(⟨ , ⟩) ̸= {0} then the restriction of ric to K+(⟨ , ⟩) is positive definite.
(ii) If O− ̸= {0} then the restriction of ric to O− is negative definite and ric(K+(⟨ , ⟩), O−) = 0.
(iii) For any characteristic basis B of g, the matrix of the Ricci tensor in B is given by

Mat(ric,B) = 1
2

⎡

⎢⎢⎢⎣

Z V 0 0
V t X 0 W

0 0 0 0
0 W t 0 Y

⎤

⎥⎥⎥⎦
,

where Z, X, Y are square matrices of order n1, n2, n4, respectively, and the Ricci signature of (g, ⟨ , ⟩)
is given by

(s−, s0, s+) = (dim[g, g]⊥ − dimK−(⟨ , ⟩) + m−, dimK−(⟨ , ⟩) + m0, dimK+(⟨ , ⟩) + m+), (5)

where (m−, m0, m+) is the signature of the symmetric matrix

R(ric,B) = X − V tZ−1V −WY −1W t. (6)

Proof. First remark that, for any u ∈ g, Ju is skew-symmetric and Ju = 0 iff u ∈ [g, g]⊥. With this remark 
in mind, by using (3), we get for any u ∈ K+(⟨ , ⟩), ric(u, u) = −1

4 tr(J2
u) ≥ 0 and ric(u, u) = 0 if and only 

if Ju = 0. This shows that the restriction of ric to K+(⟨ , ⟩) is definite positive. On the other hand, for any 
u ∈ O−, by using (3) we get ric(u, u) = −1

4 tr((adu + ad∗
u)2) ≤ 0 and ric(u, u) = 0 iff u ∈ K(⟨ , ⟩). This 

shows that the restriction of ric to O− is negative definite. We have also, for any u ∈ K−(⟨ , ⟩) and any 
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v ∈ g, ric(u, v) = 0. Finally, for any u ∈ K+(⟨ , ⟩) and any v ∈ O−, ric(u, v) = 0 this completes the proof 
of (i)–(ii).

In any characteristic basis B of g, according to the results shown in (i)–(ii), the matrix R(ric, B) has the 
desired form. Put

Q =

⎡

⎢⎢⎢⎣

In1 −Z−1V 0 0
0 In2 0 0
0 0 In3 0
0 −Y −1W t 0 In4

⎤

⎥⎥⎥⎦
.

We can check easily that

Qt Mat(ric,B) Q = 1
2

⎡

⎢⎢⎢⎣

Z 0 0 0
0 R(ric,B) 0 0
0 0 0 0
0 0 0 Y

⎤

⎥⎥⎥⎦
.

This formula combined with the results in (i)–(ii) give the desired formula for the signature of ric. ✷

Definition 1. Let (G, h) be a Riemannian Lie group and (g, ⟨ , ⟩) its associated Euclidean Lie algebra.

• We call (r−, r0, r+) = (dim[g, g]⊥ − dimK−(⟨ , ⟩), dimK−(⟨ , ⟩), dimK+(⟨ , ⟩)) the Ricci signature 
underestimate of (g, ⟨ , ⟩).

• For any characteristic basis B of g, we call R(ric, B) defined by (6) reduced matrix of the Ricci curvature 
in B. It is a symmetric (s × s)-matrix with s = dim[g, g] − dimK+(⟨ , ⟩).

Note that the order of R(ric, B) is zero iff [g, g] ⊂ K(⟨ , ⟩). In this case K(⟨ , ⟩) = [g, g] ⊕K−(⟨ , ⟩) and 
we get:

Corollary 2. Let (G, h) be a Riemannian Lie group such that [g, g] ⊂ K(⟨ , ⟩). Then the signature of the 
Ricci curvature of h is given by

(s−, s0, s+) = (dim g − dimK(⟨ , ⟩),dimK(⟨ , ⟩) − dim[g, g], dim[g, g]).

Remark 1. The case where the Riemannian metric is bi-invariant (g = K(⟨ , ⟩)) is a particular case of the 
situation in Corollary 2 and in this case Z(g) = [g, g]⊥ and hence the signature is given by

(s−, s0, s+) = (0, dimZ(g),dim[g, g]).

3. Ricci signature underestimates in nilpotent Riemannian Lie groups and a proof of Theorems 1 and 3

In this section, we will show that Lemma 1 turn out to be very useful in the case of nilpotent Riemannian 
Lie groups that permits us to prove Theorems 1 and 3.

3.1. Preliminaries

Let (G, h) be a nilpotent Riemannian Lie group. The formula (3) becomes in this case quite simple

ric(u, v) = −1
2tr(adu ◦ ad∗

v) −
1
4tr(Ju ◦ Jv) = −1

2 ⟨adu, adv⟩1 + 1
4 ⟨Ju, Jv⟩1,
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where ⟨ , ⟩1 is the Euclidean product on End(g) associated to ⟨ , ⟩. In particular, if (e1, . . . , en) is an 
orthonormal basis of g then

ric(u, v) = −1
2
∑

i,j

⟨[u, ei], ej⟩⟨[v, ei], ej⟩ + 1
2
∑

i<j

⟨[ei, ej ], u⟩⟨[ei, ej ], v⟩. (7)

Moreover, since a skew-symmetric nilpotent endomorphism must vanishes then K(⟨ , ⟩) = Z(g). This simple 
fact combined with the result of Lemma 1 will have surprising consequences. Note first that, as a particular 
case of Corollary 2, we get the following result which first appeared in [2] and which solves Problem 1 for 
2-step nilpotent Lie groups.

Corollary 3. Let G be a 2-step nilpotent Lie group. Then, for any left-invariant Riemannian metric on G, 
the signature of its Ricci curvature is given by

(s−, s0, s+) = (dim g − dimZ(g),dimZ(g) − dim[g, g], dim[g, g]).

3.2. Proof of Theorem 1 and Corollary 1

Proof. Let (G, h) be a nilpotent Riemannian Lie group. We distinguish two cases.

• Z(g) ⊂ [g, g]. In this case, it is obvious that the Ricci signature underestimate of (g, ⟨ , ⟩) is given by

(r−, r0, r+) = (dim g − dim[g, g], 0, dimZ(g)).

On the other hand, by using (1), one can see easily that

Sign(g) =
{
(r− + m−, r0 + m0, r+ + m+), m− + m0 + m+ = dim[g, g] − dimZ(g)

}
.

According to Lemma 1, the Ricci signature of h belongs to Sign(g) and we obtain the result in this case. 
Corollary 1 follows from the fact that r− = dim g − dim[g, g] ≥ 2. In a nilpotent Lie algebra the derived 
ideal is always of codimension greater than 2.

• Z(g) ̸⊂ [g, g]. Choose a complement I of Z(g) ∩ [g, g] in Z(g) and a complement U of [g, g] ⊕I in g. Thus 
g = g1 ⊕ I where g1 = [g, g] ⊕U is an ideal of g and I is a central ideal. Moreover, Z(g1) = Z(g) ∩ [g, g]
and [g, g] = [g1, g1]. By using the same notations as in (1), we get that the Ricci signature underestimate 
of (g, ⟨ , ⟩) is given by

(r−, r0, r+) = (n− d− p, p, ℓ), p = dim(Z(g) ∩ [g, g]⊥).

We have obviously p ≤ dim I = dimZ(g) − dim(Z(g) ∩ [g, g]) and

p = dimZ(g) + dim g − dim[g, g] − dim(Z(g) + [g, g]⊥) ≥ dimZ(g) − dim[g, g].

According to Lemma 1, the Ricci signature of h belongs to Sign(g) and we obtain the result in this 
case. Corollary 1 follows from the fact that

r− = dim g − dim[g, g] − dim(Z(g) ∩ [g, g]⊥)
= dim g1 − dim[g1, g1] + dim I − dim(Z(g) ∩ [g, g]⊥)
= dim g1 − dim[g1, g1] + dimZ(g) − dim(Z(g) ∩ [g, g]) − dim(Z(g) ∩ [g, g]⊥)
≥ dim g1 − dim[g1, g1] ≥ 2. ✷
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3.3. Proof of Theorem 3

Proof. We have obviously Sign(g) = {(n − d + m−, m0, d − 1 + m+) : m− + m0 + m+ = 1}, where 
d = dim[g, g] and n = dim g. Note first that we can choose a nice basis B = (Xi)ni=1 where Z(g) =
span{Xi}d−1

i=1 and [g, g] = span{Xi}di=1. Indeed, suppose that B = (Xi)ni=1 with [g, g] = span{Xi}di=1. Let 
z =

∑d
i=1 aiXi ∈ Z(g). Suppose that there exists ai ̸= 0 and Xi /∈ Z(g). Then there exists ℓ ∈ {1, . . . , n}

such that [Xℓ, Xi] ̸= 0. So we get 
∑d

j=1 aj [Xℓ, Xj ] = 0. From the properties of a nice basis we deduce that 
{[Xℓ, Xj ], j = 1, . . . , d, [Xℓ, Xj ] ̸= 0} is a linearly independent family and hence ai = 0. This shows that 
{Xi, Xi ∈ Z(g)} is basis of Z(g).

We consider the Euclidean product ⟨ , ⟩ on g for which B is orthogonal and ai = ⟨Xi, Xi⟩. It is obvious that 
B is a characteristic basis of (g, ⟨ , ⟩) and it is also nice of g so M(ric, B) is diagonal and hence R(ric, B) is also 
diagonal. According to Lemma 1, the reduced matrix has order 1 and is given by R(ric, B) = (2ric(Xd, Xd)). 
Moreover, the Ricci signature of (g, ⟨ , ⟩) is given by (n − d + m−, m0, d − 1 + m+) where (m−, m0, m+)
is the signature of R(ric, B). To complete the proof, we will show that we can choose suitable ai so that 
ric(Xd, Xd) can be either zero, positive or negative.

Denote by Ck
ij the structure constants of the Lie bracket in B. The basis (ei)ni=1 = ( 1√

ai
Xi)ni=1 is an 

orthonormal basis of g and from (7)

2ric(Xd, Xd) =
∑

i<j

(Cd
ij)2a2

d

aiaj
−

∑

i,j

(Cj
id)2aj
ai

. (8)

Note that for any (i, j), such that [Xi, Xj ] = Cd
ijXd with Cd

ij ̸= 0, i ̸= d and j ̸= d. Indeed, if i = d, we have 
[Xd, Xj ] = Cd

djXd and hence Xd is an eigenvector of adXj with the real non zero eigenvalue −Cd
di which 

is impossible since adXj is nilpotent. We have also that if [Xd, Xi] = Cj
diXj with Cj

di ̸= 0 then i ̸= d and 
j ̸= d. So

ric(Xd, Xd) = αa2
d − β.

Now since Xd ∈ [g, g] \ Z(g), α > 0, β > 0 and both α and β depend only on ai with i ̸= d. So we can 
choose ad such that ric(Xd, Xd) = 0, > 0 or < 0. This completes the proof. ✷

One can ask naturally if this theorem is still true when dim[g, g] − dimZ(g) ≥ 2. By looking to the 
proof given here, one can conjecture that the answer is true, it suffices to solve some systems of polynomial 
equations. This can be very difficult. To be precise, we will point out the difficulty one can face when 
trying to generalize Theorem 3 when dim[g, g] − dimZ(g) ≥ 2. We will also give a method to overcome this 
difficulty. Although, we have not succeeded yet to show that this method works in the general case, we will 
use it successfully in the proof of Theorem 2.

3.4. Inverse function theorem trick

Suppose that g is a nilpotent Lie algebra having a nice basis B and satisfying Z(g) ⊂ [g, g]. Write 
B = (Xi)ni=1 where (Xi)ℓi=1 is a basis of Z(g) and (Xi)di=1 is a basis of [g, g]. We have obviously

Sign(g) =
{
(n− d + m−,m0, ℓ + m+) : m− + m0 + m+ = d− ℓ

}
.

We consider the Euclidean product ⟨ , ⟩ on g for which B is orthogonal and ai = ⟨Xi, Xi⟩. It is clear that 
B is a characteristic basis of (g, ⟨ , ⟩) and it is also nice so M(ric, B) is diagonal. According to Lemma 1, the 
reduced matrix has order d − ℓ and is diagonal and given by

R(ric,B) = diag(2ric(Xℓ+1, Xℓ+1), . . . , 2ric(Xd, Xd)).
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Moreover, the signature is given by (n − d + m−, m0, ℓ + m+) where (m−, m0, m+) is the signature of 
R(ric, B). According to (8), for any i = ℓ + 1, . . . , d, we can write in a unique way

2ric(Xi, Xi) = Fi−ℓ(a1, . . . , an)
an1 . . . ani

,

where Fi−ℓ is a homogeneous polynomial on (a1, . . . , an). So to generalize Theorem 3 when d − ℓ ≥ 2, it 
suffices to find suitable values of (a1, . . . , an) such that (Fi(a1, . . . , an))d−ℓ

i=1 have all the possible signs. It is 
very difficult in the general case. We give now a situation where we can conclude.

Suppose that there exists (α1, . . . , αn) such that Fj(α1, . . . , αn) = 0 for j = 1, . . . , d − ℓ and define

F : {(x1, . . . , xd−ℓ) ∈ Rd−ℓ, xi > 0} −→ Rd−ℓ

by

F (x1, . . . , xd−ℓ) = (F1(α1, . . . ,αℓ, x1, . . . , xd−ℓ,αd+1, . . . ,αn), . . . ,
Fd−ℓ(α1, . . . ,αℓ, x1, . . . , xd−ℓ,αd+1, . . . ,αn)).

We have F (αℓ+1, . . . , αd) = 0 and if the differential DF (αℓ+1, . . . , αd) is invertible we can apply the inverse 
function theorem and hence F realizes a diffeomorphism from an open set centred in (αℓ+1, . . . , αd) into an 
open ball centred in (0, , . . . , 0). So, for a suitable choice of ai, R(ric, B) can have all the possible signatures.

So far we have shown that Theorem 3 is true when dim[g, g] − dimZ(g) ≥ 2 if there exists (α1, . . . , αn)
with α1 > 0, . . . , αn > 0 satisfying Fj(α1, . . . , αn) = 0 for j = 1, . . . , d − ℓ and detDF (αℓ+1, . . . , αd) ̸= 0.

Definition 2. We call nice a nilpotent Lie algebra g with Z(g) ⊂ [g, g] and having a nice basis for which 
there exists (α1, . . . , αn) with α1 > 0, . . . , αn > 0 satisfying Fj(α1, . . . , αn) = 0 for j = 1, . . . , d − ℓ and 
detDF (αℓ+1, . . . , αd) ̸= 0.

So, according to our study above, we have the following result.

Theorem 4. Let G be a nilpotent Lie group such that its Lie algebra g is nice. Then for any (s−, s0, s+) ∈
Sign(g) there exists a left invariant Riemannian metric on G such that its Ricci signature is (s−, s0, s+).

Remark 2. It is seems reasonable to conjecture that any nilpotent Lie algebra g with Z(g) ⊂ [g, g] and 
having a nice basis is actually nice.

We give now two examples of nice nilpotent Lie algebras.

Example 1.

1. We consider the 7-dimensional nilpotent Lie algebra labelled (12457L1) in [10] given by

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = −e6, [e1, e6] = e7, [e2, e3] = e5, [e2, e5] = −e6, [e3, e5] = −e7.

We have Z(g) = {e7} ⊂ [g, g] = {e3, e4, e5, e6, e7} and B = (e7, e3, e4, e5, e6, e1, e2) is a nice basis. Let 
compute 2ric(ei, ei) for i = 3, . . . , 6 for the metric for which B is orthogonal with ⟨ei, ei⟩ = ai. By 
applying (8), we get

2ric(e3, e3) = a2
3

a1a2
− a4

a1
− a5

a2
− a7

a5
= a2

3a5 − a2a4a5 − a1a2
5 − a1a2a7

a1a2a5
= F1(a1, . . . , a7)

a1a2a5
,



M.B. Djiadeu Ngaha et al. / Differential Geometry and its Applications 47 (2016) 26–42 35

2ric(e4, e4) = a2
4

a1a3
− a6

a1
= a2

4 − a3a6
a1a3

= F2(a1, . . . , a7)
a1a3

,

2ric(e5, e5) = a2
5

a2a3
− a6

a2
− a7

a3
= a2

5 − a3a6 − a2a7
a2a3

= F3(a1, . . . , a7)
a2a3

,

2ric(e6, e6) = a2
6

a2a5
+ a2

6
a1a4

− a7
a1

= (a1a4 + a2a5)a2
6 − a2a4a5a7

a1a2a4a5
= F4(a1, . . . , a7)

a1a2a4a5
.

The sequence 
( 7

240 ,
1127
1200 , 1, 1, 7

5 , 1, 1152
1127

)
is a solution of the equations Fi(α1, . . . , α7) = 0 for i = 1, . . . , 4

and satisfies detDF (α3, α4, α5, α6) ̸= 0 and hence this Lie algebra is nice.
2. We consider the N-graded filiform n-dimensional Lie algebra m0(n) = span{X1, . . . , Xn} with the non 

vanishing Lie brackets [X1, Xi] = Xi+1, i = 2, . . . , n − 1. We have

Sign(m0(n)) =
{
(2 + m−,m0, 1 + m+), m− + m0 + m+ = n− 3

}
.

Let ⟨ , ⟩ be the Euclidean inner product on m0(n) for which (Xi)ni=1 is an orthogonal basis with 
⟨Xi, Xi⟩ = ai. The basis B = (Xn, X3, . . . , Xn−1, X1, X2) is a characteristic basis of ⟨ , ⟩ and R(ric, B) =
diag(2ric(Xi, Xi))n−1

i=3 . By using (8), we get for any i = 3, . . . , n − 1

2ric(Xi, Xi) = a2
i

a1ai−1
− ai+1

a1
= a2

i − ai−1ai+1
a1ai−1

= Fi−2(a1, . . . , an)
a1ai−1

.

It is obvious that Fi(1, . . . , 1) = 0 and detDF (1, . . . , 1) ̸= 0 and hence m0(n) is nice.

4. Proof of Theorem 2

Proof. The proof goes as follows. There are, up to an isomorphism, 44 non abelian nilpotent Lie algebras of 
dimension less or equal to 6: 1 of dimension 3, 2 of dimension 4, 8 of dimension 5 and 33 of dimension 6 (see 
Tables 1 and 2). Among these Lie algebras, 12 are 2-step nilpotent and we can apply Corollary 3, 10 satisfy 
the hypothesis of Theorem 3 and 15 are nice in the sense of Definition 2 and we can apply Theorem 4. At 
the end, we are left with 7 Lie algebras needing each of them a special treatment.

The Lie algebras L3,2, L4,2, L5,2, L5,4, L5,8, L6,2, L6,4, L6,8, L6,22(ϵ), L6,26 are obviously 2-step nilpotent 
and we can apply Corollary 3.

The Lie algebras L4,3, L5,5, L5,9, L6,10, L6,19(0), L6,23, L6,24(ϵ) and L6,25 satisfy clearly the hypothesis 
of Theorem 3.

We will show now that the Lie algebras L5,6, L5,7, L6,12, L6,13, L6,14, L6,15, L6,16, L6,17, L6,18, L6,19(ϵ ̸= 0), 
L6,20, L6,21(0) and L6,21(ϵ ̸= 0) are nice in the sense of Definition 2 so that we can apply Theorem 3. Since the 
computations are straightforward, we will give for any Lie algebra among these Lie algebras, a nice basis B, 
the reduced matrix in B associated to the Euclidean product for which B is diagonal with ai = ⟨ei, ei⟩
and the value (α1, . . . , αn) appearing in Definition 2. Note that B0 = (e1, . . . , en) is the basis appearing in 
Tables 1 and 2.

L5,6 :
[
(e5, e3, e4, e1, e2),diag

(
a2
3 − a2a4 − a1a5

a1a2
,
a2
4 − a3a5
a1a3

)
,

(1
2 ,

1
2 , 1, 1, 1

)]
.

L5,7 :
[
(e5, e3, e4, e1, e2),diag

(
a2
3 − a2a4
a1a2

,
a2
4 − a3a5
a1a3

)
, (1, 1, 1, 1, 1)

]
.

L6,12 :
[
(e6, e3, e4, e1, e2, e5),diag

(
a2
3 − a2a4
a1a2

,
a2
4 − a3a6
a1a3

)
, (1, 1, 1, 1, 1, 1)

]
.
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L6,13 :
[
(e6, e3, e5, e1, e2, e4),diag

(
a4a2

3 − a2a4a5 − a1a2a6
a1a2a4

,
(a2a4 + a1a3)a2

5 − a2a3a4a6
a1a2a3a4

)
,

(1, 2, 2, 1, 1, 1)] .

L6,14 :
[
(e6, e3, e4, e5, e1, e2),diag

(
a4a2

3 − a2a2
4 − a1a4a5 − a1a2a6
a1a2a4

,
a2
4 − a3a5 − a1a6

a1a3
,

(a2a3 + a1a4)a2
5 − a1a3a4a6

a1a2a3a4

)
,

( 27
200 ,

3
40 , 1, 3, 5,

800
27

)]
.

L6,15 :
[
(e6, e3, e4, e5, e1, e2),diag

(
a2
3 − a2a4 − a1a5

a1a2
,
a2a2

4 − a2a3a5 − a1a3a6
a1a2a3

,

(a2a3 + a1a4)a2
5 − a2a3a4a6

a1a2a3a4

)
,

(4
3 ,

4
3 , 2, 1, 1, 1

)]
.

L6,16 :
[
(e6, e3, e4, e5, e1, e2),diag

(
a4a2

3 − a2a2
4 − a1a2a6

a1a2a4
,
a2
4 − a3a5 − a1a6

a1a2a3
,
a2a2

5 − a1a4a6
a1a2a4

)
,

(1
3 ,

1
3 ,

2
3 , 1, 1, 1

)]
.

L6,17 :
[
(e6, e3, e4, e5, e1, e2),diag

(
a2
3 − a2a4 − a1a6

a1a2
,
a2
4 − a3a5
a1a3

,
a2
5 − a4a6
a1a4

)
,

(1
2 ,

1
2 , 1, 1, 1, 1

)]
.

L6,18 :
[
(e6, e3, e4, e5, e1, e2),diag

(
a2
3 − a2a4
a1a2

,
a2
4 − a3a5
a1a3

,
a2
5 − a4a6
a1a4

)
, (1, 1, 1, 1, 1, 1)

]
.

L6,19(ϵ ̸= 0) :
[
(e6, e4, e5, e1, e2, e3),diag

(
a2
4 − a1a6
a1a2

,
a2
5 − a1a6
a1a3

)
, (1, 1, 1, 1, 1, 1)

]
.

L6,20 :
[
(e6, e4, e5, e1, e2, e3),diag

(
a2
4 − a1a6
a1a2

,
a2
5 − a3a6
a1a3

)
, (1, 1, 1, 1, 1, 1)

]
.

L6,21(0) :
[
(e5, e6, e3, e4, e1, e2),diag

(
a2
3 − a2a4 − a1a5

a1a2
,
a2
4 − a3a6
a1a3

)
,
(
2,
√

2, 2,
√

2, 1, 1
)]

.

L6,21(ϵ ̸= 0) :
[
(e6, e3, e4, e5, e1, e2),diag

(
a2
3 − a1a4 − a2a5

a1a2
,
a2
4 − a3a6
a1a3

,
a2
5 − a3a6
a2a3

)
,

(1
2 ,

1
2 , 1, 1, 1, 1

)]
.

To complete the proof, we treat now the seven remaining Lie algebras using a case by case approach.

• The Lie algebra L6,11.

This is the only Lie algebra in the list which has no nice basis. Its center is contained in its derived ideal. 
We have g = L6,11 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6, [e2, e5] = e6

and Sign(g) =
{
(3 + m−,m0, 1 + m+),m− + m0 + m+ = 2

}
. We consider the Euclidean inner product 

⟨ , ⟩ on L6,11 such that B = (e6, e3, e4, e1, e2, e5) is orthogonal with ai = ⟨ei, ei⟩. It is obvious that B is an 
orthogonal characteristic basis and, according to Lemma 1, the signature of ⟨ , ⟩ is (3 + m−, m0, 1 + m+)
where (m−, m0, m+) is the signature of the characteristic matrix R(ric, B). Now a direct computation using 
(7) and (6) gives

R(ric,B) =
(

a2
3−a2a4
a1a2

0
0 a2

4−a3a6
a1a3

)
.
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If we take a1 = a2 = a3 = a4 = a5 = a6 = 1 we get R(ric, B) = 0 and we can use the inverse function 
theorem trick. So, for a suitable choice of ai, R(ric, B) can have all the possible signatures which prove the 
theorem for L6,11.

• The Lie algebra L5,3.

We have g = L5,3 = span{e1, . . . , e5} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4,

and Sign(g) = {(2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)}. In this case, the parameter p in (1) has two 
values p = 0 or 1, so to realize the signatures in Sign(g), we will consider two types of Euclidean inner 
products on L5,3. The first ones are those satisfying dim(Z(g) ∩ [g, g]⊥) = 1 and the second ones are those 
satisfying dim(Z(g) ∩ [g, g]⊥) = 0.

For the first type, consider the Euclidean inner product ⟨ , ⟩ on L5,3 for which B = (e4, e3, e5, e1, e2) is 
orthogonal with ai = ⟨ei, ei⟩. Then B is a characteristic basis for ⟨ , ⟩ and it is also nice. Then according to 
Lemma 1 the Ricci signature of ⟨ , ⟩ is (2 + m−, 1 + m0, 1 + m+) where (m−, m0, m+) is the signature of 
R(ric, B). Now a direct computation using (8) gives R(ric, B) = (2ric(e3, e3)) =

(
a2
3−a2a4
a1a2

)
and, for suitable 

values of the ai, the Ricci signatures of ⟨ , ⟩ are (2, 1, 2), (2, 2, 1) or (3, 1, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5) = (e4, e3, e5 + e3 + e1, e1, e2). The non 

vanishing Lie brackets in this basis are

[f2, f3] = −f1, [f2, f4] = −f1, [f3, f4] = −f1, [f3, f5] = f2, [f4, f5] = f2.

Consider the Euclidean inner product ⟨ , ⟩ on L5,3 for which B is orthogonal and ai = ⟨fi, fi⟩. We have 
chosen B and ⟨ , ⟩ such that Z(g) ∩ [g, g]⊥ = {0}. Then B is a characteristic basis for ⟨ , ⟩. Then according 
to Lemma 1 the Ricci signature of ⟨ , ⟩ is (3 + m−, m0, 1 + m+) where (m−, m0, m+) is the signature of 
R(ric, B). Here the situation is more complicated than the first case because B is not a nice basis and the 
computation of R(ric, B), which is by the way a (1 × 1)-matrix, is complicated according to formula (6). 
We don’t need to give the general expression of R(ric, B), its value when a1 = a4 = a5 = 1 and a3 = 2 will 
suffice to our purpose. We get

R(ric,B) =
(12a4

2 + 6a3
2 + 9a2

2 − a2 − 3
4(2a2

2 + a2 + 2)

)
.

It is clear that we can choose a2 such that the signature of ⟨ , ⟩ is (3, 0, 2) or (4, 0, 1). This completes the 
proof for L5,3.

• The Lie algebra L6,3.

The treatment is similar to L5,3 with a slight difference, the parameter p takes 1 or 2. We have g =
L6,3 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4,

and Sign(g) = {(2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)}.
For the first type, consider the Euclidean inner product ⟨ , ⟩ on L6,3 for which B = (e4, e3, e5, e6, e1, e2) is 

orthogonal with ai = ⟨ei, ei⟩ and dim(Z(g) ∩[g, g]⊥) = 2. Then B is a characteristic basis for ⟨ , ⟩ and it is also 
nice. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (2 +m−, 2 +m0, 1 +m+) where (m−, m0, m+)
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is the signature of R(ric, B). Now a direct computation using (8) gives R(ric, B) = (2ric(e3, e3)) =
(

a2
3−a2a4
a1a2

)

and, for suitable values of the ai, the Ricci signatures of ⟨ , ⟩ are (2, 2, 2), (2, 3, 1) or (3, 2, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) = (e4, e3, e5, e1, e2, e6 + e3 + e1). The 

non vanishing Lie brackets in this basis are

[f2, f4] = −f1, [f2, f6] = −f1, [f4, f5] = f2, [f4, f6] = f1, [f5, f6] = −f2.

Consider the Euclidean inner product ⟨ , ⟩ on L6,3 for which B is orthogonal and ai = ⟨fi, fi⟩. We have 
chosen B and ⟨ , ⟩ such that dim(Z(g) ∩[g, g]⊥) = 1. Then B is a characteristic basis for ⟨ , ⟩. Then according 
to Lemma 1 the Ricci signature of ⟨ , ⟩ is (3 + m−, 1 + m0, 1 + m+) where (m−, m0, m+) is the signature 
of R(ric, B). Here the situation is more complicated than the first case because B is not a nice basis and 
the computation of R(ric, B), which is by the way a (1 × 1)-matrix, is complicated according to formula (6). 
We don’t need to give the general expression of R(ric, B), its value when a1 = a3 = a4 = a5 = a6 = 1 will 
suffice to our purpose. We get

R(ric,B) =
(
−4a5

2 + 2a3
2 + 3a2 − 2

1 − a2 − 2a3
2

)
.

It is clear that we can choose a2 such that the signature of ⟨ , ⟩ is (3, 1, 2) or (4, 1, 1). This completes the 
proof for L6,3.

• The Lie algebra L6,5.

The treatment is similar to L5,3. We have g = L6,5 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5

and Sign(g) = {(3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)}.
For the first type, consider the Euclidean inner product ⟨ , ⟩ on L6,5 for which B = (e5, e3, e6, e1, e2, e4) is 

orthogonal with ai = ⟨ei, ei⟩ and dim(Z(g) ∩[g, g]⊥) = 1. Then B is a characteristic basis for ⟨ , ⟩ and it is also 
nice. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (3 +m−, 1 +m0, 1 +m+) where (m−, m0, m+)
is the signature of R(ric, B). Now a direct computation using (8) gives R(ric, B) = (2ric(e3, e3)) =

(
a2
3−a2a5
a1a2

)

and, for suitable values of the ai, the Ricci signatures of ⟨ , ⟩ are (3, 1, 2), (3, 2, 1) or (4, 1, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e1, e2, e4, e6 + e3 + e1). The 

non vanishing Lie brackets in this basis are

[f2, f3] = −f1, [f2, f6] = −f1, [f3, f4] = f2, [f3, f6] = f1, [f4, f5] = f1, [f4, f6] = −f2.

Consider the Euclidean inner product ⟨ , ⟩ on L6,5 for which B is orthogonal and ai = ⟨fi, fi⟩. We have 
chosen B and ⟨ , ⟩ such that Z(g) ∩ [g, g]⊥ = {0}. Then B is a characteristic basis for ⟨ , ⟩. Then according 
to Lemma 1 the Ricci signature of ⟨ , ⟩ is (4 + m−, m0, 1 + m+) where (m−, m0, m+) is the signature of 
R(ric, B). Here the situation is more complicated than the first case because B is not a nice basis and the 
computation of R(ric, B), which is by the way a (1 × 1)-matrix, is complicated according to formula (6). 
We don’t need to give the general expression of R(ric, B), its value when a1 = a3 = a4 = a5 = a6 = 1 will 
suffice to our purpose. We get

R(ric,B) =
(4a6

2 + 6a5
2 + 6a4

2 − a3
2 − 3a2

2 − 3a2 − 1
a2(2a3

2 + 3a3
2 + 2a2 + 1)

)
.

It is clear that we can choose a2 > 0 such that the signature of ⟨ , ⟩ is (4, 0, 2) or (5, 0, 1). This completes 
the proof for L6,5.
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• The Lie algebra L6,9.

The treatment is similar to L5,3 and L6,5. We have g = L6,9 = span{e1, . . . , e6} with the non vanishing 
Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

and Sign(g) = {(2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)}.
For the first type, consider the Euclidean inner product ⟨ , ⟩ on L6,9 for which B = (e5, e4, e3, e6, e1, e2)

is orthogonal with ai = ⟨ei, ei⟩ and dim(Z(g) ∩ [g, g]⊥) = 1. Then B is a characteristic basis for ⟨ , ⟩
and it is also nice. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (2 + m−, 1 + m0, 2 + m+)
where (m−, m0, m+) is the signature of R(ric, B). Now a direct computation using (8) gives R(ric, B) =
(2ric(e3, e3)) =

(
a2
3−a2(a4+a5)

a1a2

)
and, for suitable values of the ai, the Ricci signatures of ⟨ , ⟩ are (2, 1, 3), 

(2, 2, 2) or (3, 1, 2).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) = (e5, e4, e3, e1, e2, e6 + e3 + e1). The 

non vanishing Lie brackets in this basis are

[f3, f4] = −f2, [f3, f5] = −f1, [f3, f6] = −f2, [f4, f5] = f3, [f4, f6] = f2, [f5, f6] = f1 − f3.

Consider the Euclidean inner product ⟨ , ⟩ on L6,9 for which B is orthogonal and ai = ⟨fi, fi⟩. We have 
chosen B and ⟨ , ⟩ such that Z(g) ∩ [g, g]⊥ = {0}. Then B is a characteristic basis for ⟨ , ⟩. Then according 
to Lemma 1 the Ricci signature of ⟨ , ⟩ is (3 + m−, m0, 2 + m+) where (m−, m0, m+) is the signature of 
R(ric, B). Here the situation is more complicated than the first case because B is not a nice basis and the 
computation of R(ric, B), which is by the way a (1 × 1)-matrix, is complicated according to formula (6). 
We don’t need to give the general expression of R(ric, B), its value when a1 = a2 = a3 = a5 = a6 = 1 will 
suffice to our purpose. We get

R(ric,B) =
(12 − a4 − 35a2

4
2(8a4 + 3)a4

)
.

It is clear that we can choose a4 such that the signature of ⟨ , ⟩ is (3, 0, 3) or (4, 0, 2). This completes the 
proof for L6,9.

• The Lie algebra L6,6.

The situation here is different from the precedent cases. We still have two types of Euclidean products 
but the order of the reduced matrix of the Ricci curvature is 2. We have g = L6,6 = span{e1, . . . , e6} with 
the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5

and Sign(g) = {(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)}.
For the first type, consider the Euclidean inner product ⟨ , ⟩ on L6,6 for which B = (e5, e3, e4, e6, e1, e2)

is orthogonal with ai = ⟨ei, ei⟩ and dim(Z(g) ∩ [g, g]⊥) = 1. Then B is a characteristic basis for ⟨ , ⟩ and 
it is also nice. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (2 + m−, 1 + m0, 1 + m+) where 
(m−, m0, m+) is the signature of R(ric, B) = diag(2ric(e3, e3), 2ric(e4, e4)). Now a direct computation using 
(7) gives

2ric(e3, e3) = a2
3 − a2a4 − a1a5

a1a2
and 2ric(e4, e4) = a2

4 − a3a5
a1a3

.
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If we take a1 = 6, a2 = 5, a3 = 4, a4 = 2, a5 = a6 = 1, we get R(ric, B) = 0 and we can apply the inversion 
theorem trick to get that for a suitable choice of the ai the Ricci signature of ⟨ , ⟩ is (2, 1, 3), (2, 2, 2), 
(2, 3, 1), (3, 1, 2), (3, 2, 1) or (4, 1, 1).

For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) and the Euclidean inner product ⟨ , ⟩
on L6,6 for which B is orthogonal and ai = ⟨fi, fi⟩. We choose B and ⟨ , ⟩ such that Z(g) ∩ [g, g]⊥ = {0}.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3). The non vanishing Lie brackets in this basis are

[f2, f4] = −f3, [f2, f5] = −f1, [f3, f4] = −f1, [f4, f5] = f2, [f4, f6] = f3, [f5, f6] = f1.

Then B is a characteristic basis for ⟨ , ⟩ and is not nice. Then, according to Lemma 1, the Ricci 
signature of ⟨ , ⟩ is (3 + m−, m0, 1 + m+) where (m−, m0, m+) is the signature of R(ric, B). Now, 
a direct computation using (7) and (6) gives

R(ric,B) = diag
(

a2
2

a4a5
,
−a1a2a6 + a2

3 (a2 + a6)
a2a4a6

)
.

Thus, for suitable values of ai, the signatures (3, 0, 3) and (4, 0, 2) are realizable as the Ricci signature 
of ⟨ , ⟩.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3 + e1). The non vanishing Lie brackets are

[f2, f4] = −f3, [f2, f5] = −f1, [f2, f6] = −f3, [f3, f4] = −f1, [f3, f6] = −f1, [f4, f5] = f2, [f4, f6] = f3,

[f5, f6] = −f2 + f1.

Then B is a characteristic for ⟨ , ⟩. According to Lemma 1, the Ricci signature of ⟨ , ⟩ is (3 + m−, m0,

1 +m+) where (m−, m0, m+) is the signature of R(ric, B). Here the situation is more complicated than 
the first case because B is not a nice basis and the computation of R(ric, B), which is by the way a 
(2 × 2)-matrix, is complicated according to formula (6). We don’t need to give the general expression of 
R(ric, B), its value when a1 = 3, a2 = a4 = a5 = 2 = a6 = 1 will suffice to our purpose. We get

R(ric,B) = diag
(
−18 + 66a3 + 121a2

3 + 120a3
3 + 73a4

3 + 24a5
3

18 + 36a3 + 34a2
3 + 22a3

3 + 6a4
3

,
−57 + 8a2

3
8

)

It is clear that for suitable values of a3, the signature (5, 0, 1) is realizable as the Ricci signature of ⟨ , ⟩. 
This completes the proof for L6,6.

• The Lie algebra L6,7.

The treatment is similar to L6,6. We have g = L6,7 = span{e1, . . . , e5} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5

and Sign(g) = {(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)}.
For the first type, consider the Euclidean inner product ⟨ , ⟩ on L6,7 for which B = (e5, e3, e4, e6, e1, e2)

is orthogonal with ai = ⟨ei, ei⟩ and dim(Z(g) ∩ [g, g]⊥) = 1. Then B is a characteristic basis for ⟨ , ⟩ and 
it is also nice. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (2 + m−, 1 + m0, 1 + m+) where 
(m−, m0, m+) is the signature of R(ric, B) = diag(2ric(e3, e3), 2ric(e4, e4)). Now a direct computation using 
(7) gives

2ric(e3, e3) = a2
3 − a2a4
a1a2

and 2ric(e4, e4) = a2
4 − a3a5
a1a3

.
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Table 3
Realizable Ricci signatures on nilpotent Lie groups of dimension ≤ 6.

Lie algebra g Realizable Ricci signatures
L3,2 (2, 0, 1)
L4,2 (2, 1, 1)
L4,3 (2, 1, 1), (2, 0, 2), (3, 0, 1)
L5,2 (2, 2, 1)
L5,3 (2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)
L5,4 (4, 0, 1)
L5,5 (3, 0, 2), (3, 1, 1), (4, 0, 1)
L5,6, L5,7 (2, 0, 3), (2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)
L5,8 (3, 0, 2)
L5,9 (2, 0, 3), (2, 1, 2), (3, 0, 2)
L6,2 (2, 3, 1)
L6,3 (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)
L6,4 (4, 1, 1)
L6,5 (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)
L6,6, L6,7 (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), 

(4, 0, 2), (4, 1, 1), (5, 0, 1)
L6,8 (3, 1, 2)
L6,9 (2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)
L6,10 (4, 0, 2), (4, 1, 1), (5, 0, 1)
L6,11, L6,12, L6,13, L6,20, 

L6,19(ϵ), ϵ ∈ {−1, 1}
(3, 0, 3), (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,14, L6,15, L6,16, L6,17, 
L6,18, L6,21(ϵ), ϵ ∈ {−1, 1}

(2, 0, 4), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), 
(3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,19(0), L6,23, L6,25, 
L6,24(ϵ), ϵ ∈ {−1, 0, 1}

(3, 0, 3), (3, 1, 2), (4, 0, 2)

L6,21(0) (2, 0, 4), (2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)
L6,22(ϵ), ϵ ∈ {−1, 0, 1} (4, 0, 2)
L6,26 (3, 0, 3)

If we take a1 = a2 = a3 = a4 = a5 = a6 = 1 we get R(ric, B) = 0 and we can apply the inversion theorem 
trick to get that for a suitable choice of the ai the Ricci signature of ⟨ , ⟩ is (2, 1, 3), (2, 2, 2), (2, 3, 1), 
(3, 1, 2), (3, 2, 1) or (4, 1, 1).

For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) and the Euclidean inner product ⟨ , ⟩
on L6,7 for which B is orthogonal and ai = ⟨fi, fi⟩. We choose B and ⟨ , ⟩ such that Z(g) ∩ [g, g]⊥ = {0}.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3). The non vanishing Lie brackets in this basis are

[f2, f4] = −f3, [f3, f4] = −f1, [f4, f5] = f2, [f4, f6] = f3.

Then B is a characteristic basis for ⟨ , ⟩ and is not nice. Then according to Lemma 1 the Ricci signature of 
⟨ , ⟩ is (3 +m−, m0, 1 +m+) where (m−, m0, m+) is the signature of R(ric, B). Now a direct computation 
using (7) and (6) gives

R(ric,B) = diag
(

a2
2

a4a5
,
a2a2

3 +
(
−a1a2 + a2

3
)
a6

a2a4a6

)
.

Thus for suitable values of ai, the signatures (3, 0, 3) and (4, 0, 2) are realizable as the Ricci signature 
of ⟨ , ⟩.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3 + e1). The non vanishing brackets are

[f2, f4] = −f3, [f2, f6] = −f3, [f3, f4] = −f1, [f3, f6] = −f1, [f4, f5] = f2, [f4, f6] = f3, [f5, f6] = −f2

Then B is a characteristic for ⟨ , ⟩. Then according to Lemma 1 the Ricci signature of ⟨ , ⟩ is (3 + m−,

m0, 1 + m+) where (m−, m0, m+) is the signature of R(ric, B). Here the situation is more complicated 
than the first case because B is not a nice basis and the computation of R(ric, B), which is by the way 



42 M.B. Djiadeu Ngaha et al. / Differential Geometry and its Applications 47 (2016) 26–42

a (2 × 2)-matrix, is complicated according to formula (6). We don’t need to give the general expression 
of R(ric, B), its value when a1 = 2, a2 = a3 = a4 = a6 = 1 will suffice to our purpose. We get

R(ric,B) = diag
(8 + 17a5 − 12a2

5
4(1 + 3a5)a5

,−2
)

It is clear that we can choose a5 such that the signature of ⟨ , ⟩ is (5, 0, 1). This completes the proof for 
L6,7. ✷

We end this work by giving all the realizable Ricci signatures on nilpotent Lie groups up to dimension 6 
(Table 3).
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