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Let G be a connected Lie group and g its Lie algebra. We denote by ∇0 the 
torsion free bi-invariant linear connection on G given by ∇0

XY = 1
2 [X, Y ], for any 

left invariant vector fields X, Y . A Poisson structure on g is a commutative and 
associative product on g for which adu is a derivation, for any u ∈ g. A torsion free 
bi-invariant linear connections on G which have the same curvature as ∇0 are called 
special. We show that there is a bijection between the space of special connections on 
G and the space of Poisson structures on g. We compute the holonomy Lie algebra 
of a special connection and we show that the Poisson structures associated to special 
connections which have the same holonomy Lie algebra as ∇0 possess interesting 
properties. Finally, we study Poisson structures on a Lie algebra and we give a large 
class of examples which gives, of course, a large class of special connections.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A Poisson algebra is both a Lie algebra and a commutative associative algebra which are compatible in a 
certain sense. Poisson algebras play important roles in many fields in mathematics and mathematical physics, 
such as the Poisson geometry, integrable systems, non-commutative (algebraic or differential) geometry, and 
so on. Finite dimensional Poisson algebras constitute an interesting topic in algebra and were studied by 
many authors (see for instance [13,19,21]).
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More precisely, a Poisson algebra is a Lie algebra (g, [ , ]) endowed with a commutative and associative 
product ◦ such that, for any u, v, w ∈ g,

[u, v ◦ w] = [u, v] ◦ w + v ◦ [u,w]. (1)

An algebra (A, .) is called Poisson admissible if (A, [ , ], ◦) is a Poisson algebra, where

[u, v] = u.v − v.u and u ◦ v = 1
2(u.v + v.u). (2)

This paper aims to give some new insights on finite dimensional Poisson algebras based on an interesting 
geometric interpretation of these structures when the field is either R or C (see Theorem 2.1). Let us present 
briefly this geometric interpretation.

Let G be a Lie group with g = TeG its Lie algebra. The linear connection ∇0 given by ∇0
XY = 1

2 [X, Y ], 
where X, Y are left invariant vector fields, is torsion free, bi-invariant, complete and its curvature K0 is given 
by K0(X, Y ) = −1

4ad[X,Y ]. Moreover, ∇0K0 = 0 and the holonomy Lie algebra of ∇0 at e is h0 = ad[g,g]. 
The main fact (see Section 2) is that there is a bijection between the set of Poisson structures on g and the 
space of bi-invariant torsion free linear connections on G which have the same curvature as ∇0. We call such 
connections special. Moreover, we show that any special connection is semi-symmetric, i.e., its curvature 
tensor K satisfies K.K = 0 (see Proposition 2.1). In general, the holonomy Lie algebra h of a bi-invariant 
linear connection is difficult to compute, however, we show that, for a special connection, h contains h0 and 
can be easily computed (see Lemma 2.2). A special connection whose holonomy Lie algebra coincides with h0

will be called strongly special. So, according to the bijection above, to any real Poisson algebra corresponds 
a unique special connection on any associated Lie group. Poisson algebras whose corresponding special 
connection is strongly special are particularly interesting. We call such Poisson algebras strong. A Poisson 
algebra whose corresponding special connection is parallel is called parallel. With this interpretation in 
mind, we devote Section 3 to the study of the general properties of Poisson algebras and Poisson admissible 
algebras and we give some general methods to build new Poisson algebras from old ones (see Theorem 3.2). 
We show that any symmetric Leibniz algebra is a strong Poisson admissible algebra and the curvature of 
the corresponding special connection is parallel (see Theorem 3.1). By using the geometric interpretation 
of Poisson structures, we get a large class of Lie groups which carry a bi-invariant connection ∇ (different 
from ∇0) which has the same curvature and the same linear holonomy as ∇0 and moreover the curvature 
of ∇ is parallel. We get hence interesting examples of connections with parallel torsion and curvature. Such 
connections were studied by Nomizu [20]. Recall that symmetric Leibniz algebras constitute a subclass of 
Leibniz algebras introduced by Loday in [18]. At the end of Section 3, we show that there is no non-trivial 
Poisson structure on a semi-simple Lie algebra (see Theorem 3.3). This result generalizes a result by [13]. In 
Section 4, we show that an associative algebra is Poisson admissible if and only if the underline Lie algebra is 
2-nilpotent and we give a description of associative Poisson admissible algebras which permit to build many 
examples. Section 5 is devoted to the study of symplectic Poisson algebras. It is well-known that if (g, ω) is a 
symplectic Lie algebra there is a product αa on g which is Lie-admissible and left symmetric. When the Lie 
algebra is real, αa defines a left invariant flat torsion free linear connection ∇a on any associated Lie group G. 
By using the general method to build a torsion free symplectic connection from any torsion free connection 
introduced in [4], we get from ∇a a left invariant torsion free connection ∇s for which the left invariant 
symplectic form associated to ω is parallel. To our knowledge this connection has never been considered 
before. From ∇s we get a product αs on g. We show that (g, αa) is Poisson admissible iff (g, αs) is Poisson 
admissible and this is equivalent to g is 2-nilpotent Lie algebra and [adu, ad∗

v] = 0 for any u, v ∈ g where 
ad∗

u is the adjoint of adu with respect to ω. A symplectic Lie algebra satisfying these conditions is called 
symplectic Poisson algebra. We show that the symplectic double extension process introduced in [10] permits 
the construction of all symplectic Poisson algebras. Lie groups whose Lie algebras are symplectic Poisson 
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possess an important geometric property (see Theorem 5.2 and the following remarks). In Section 6, we 
study the problem of metrizability of special connections. Indeed, we consider a real Lie algebra (g, [ , ], 〈 , 〉)
endowed with a nondegenerate symmetric bilinear metric. We denote by � the Levi-Civita product associated 
to (g, [ , ], 〈 , 〉). We show that if 〈 , 〉 is positive definite (g, �) is Poisson admissible iff 〈 , 〉 is bi-invariant 
and in this case the associated Poisson product ◦ is trivial. We give a description of (g, [ , ], 〈 , 〉) for which 
(g, �) is Poisson admissible in the case where [g, g] is nondegenerate and 〈 , 〉 has any signature.

All vector spaces, algebras, etc. in this paper are finite dimensional and will be over a ground field K of 
characteristic 0.

2. Geometric interpretation of finite dimensional Poisson structures

We give in this section an interesting geometric interpretation of Poisson structures involving the theory 
of connections and holonomy algebras. This theory is a fundamental topic in differential geometry and 
has its origin in the work of Elie Cartan [5,6]. For a detailed account of this theory, see Ehresmann [11], 
Chern [9], Lichnerowicz [16], Nomizu [20], and Kobayashi [14]. Let us recall some classical facts about linear 
connections and state some formulas which will lead naturally to the desired interpretation.

Given a linear connection on a smooth manifold M , we consider the covariant differentiation ∇ associated 
to it. Let T∇ and K∇ be, respectively, the torsion and curvature tensor fields on M with respect to ∇:

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ] and K∇(X,Y ) = [∇X ,∇Y ] −∇[X,Y ].

For any closed curve τ at p ∈ M , the parallel displacement along τ is a linear transformation of TpM , 
and the totality of these linear transformations for all closed curves forms the holonomy group H(p). The 
restricted holonomy group H(p)0 is the subgroup consisting of parallel displacements along all closed curves 
which are homotopic to zero. Its Lie algebra is called holonomy Lie algebra. On the other hand, consider 
linear endomorphisms of TpM of the form K∇(X, Y ), (∇ZK

∇)(X, Y ), (∇W∇ZK
∇)(X, Y ), ... (all covariant 

derivatives), where X, Y, Z, W , ... are arbitrary tangent vectors at p. All these linear endomorphisms span a 
subalgebra h∇p of the Lie algebra consisting of all linear endomorphisms of TpM . We call it the infinitesimal 
holonomy Lie algebra. The Lie subgroup of GL(TpM, R) generated by h∇p is the infinitesimal holonomy group
at p. The main result is that if the infinitesimal holonomy group has the same dimension at every point p
of M (which is the case when M and ∇ are analytic), then the restricted holonomy group is equal to the 
infinitesimal holonomy group at every point (see [20]). The linear connection ∇ will be called invariant under 
parallelism in case T∇ and K∇ are both parallel with respect to ∇. The existence of a linear connection ∇
invariant under parallelism characterize (at least locally) reductive homogeneous spaces (see [15]). If ∇ is 
invariant under parallelism then

h∇p =
{∑

K∇(ui, vi), ui, vi ∈ TpM
}
. (3)

A vector field A is an infinitesimal ∇-transformation if and only if for any couple of vector fields X, Y ,

[A,∇XY ] = ∇[A,X]Y + ∇X [A, Y ]. (4)

On can see easily that this relation is equivalent to

∇2
X,Y A +

[
∇X , T∇

A

]
Y = K∇(X,A)Y, (5)

where ∇2
X,Y A = ∇X∇Y A −∇∇XY A.
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Let ∇ be another linear connections on M . One knows that S = ∇ −∇ is a tensor field of type (1, 2). 
By using a terminology due to Kostant, we will say that ∇ is rigid with respect to ∇ whenever S is parallel 
with respect to ∇. In this case, we have the following formula (see [15], Lemma 2):

K∇(X,Y ) = K∇(X,Y ) + [SX , SY ] + ST∇(X,Y ). (6)

Let G be a connected Lie group, g = TeG its Lie algebra. For any u ∈ g we denote by u+ (resp. u−) the left 
invariant (resp. the right invariant) vector field associated to u.

It is obvious that G is a reductive homogeneous space and hence, according to a result of Kostant 
(see [15], Theorem 2), G admits a linear connection invariant under parallelism. In fact G admits many such 
connections and we will use in this paper a special one, namely, the linear connection ∇0 given by

∇0
u+v+ = 1

2
[
u+, v+],

for any u, v ∈ g. This connection is torsion free, invariant under parallelism, bi-invariant, complete and its 
curvature and holonomy Lie algebra are given by

K∇0(
u+, v+)w+ = −1

4
[[
u+, v+], w+], u, v, w ∈ g, (7)

h∇
0

e = ad[g,g]. (8)

A linear connection ∇ on G is called bi-invariant if ∇ is invariant by left and right multiplication. The 
following lemma gives different characterizations of bi-invariant linear connections on G.

Lemma 2.1. Let ∇ be a linear connection on G. Then the following assertions are equivalent:

1. ∇ is a bi-invariant linear connection.
2. For any couple of left invariant (resp. right invariant) vector fields X, Y , ∇XY is left invariant (resp. 

right invariant).
3. For any couple of left invariant vector fields X, Y , ∇XY is left invariant and the product α : g ×g −→ g

given by α(u, v) = (∇u+v+)(e) satisfies

[
u, α(v, w)

]
= α

(
[u, v], w

)
+ α

(
v, [u,w]

)
. (9)

4. For any couple of right invariant vector fields X, Y , ∇XY is right invariant and the product β : g ×g −→
g given by β(u, v) = (∇u−v−)(e) satisfies

[
u, β(v, w)

]
= β

(
[u, v], w

)
+ β

(
v, [u,w]

)
.

5. ∇ is left invariant and rigid with respect to ∇0.
6. ∇ is right invariant and rigid with respect to ∇0.

Proof. Since G is connected, ∇ is bi-invariant if and only if, for any u ∈ g, u+ and u− are infinitesimal 
∇-transformations, i.e., according to (4), for any couple of vector fields X, Y ,

[
u+,∇XY

]
= ∇[u+,X]Y + ∇X

[
u+, Y

]
and

[
u−,∇XY

]
= ∇[u−,X]Y + ∇X

[
u−, Y

]
.

Since G is a parallelizable by left invariant vector field and these vector fields commute with right invariant 
vector fields, these equations are equivalent to
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[
u+,∇v+w+] = ∇[u+,v+]w

+ + ∇v+
[
u+, w+] and

[
u−,∇v+w+] = 0, v, w ∈ g.

The group G is also parallelizable by right invariant vector field and hence these equations are also equivalent 
to

[
u−,∇v−w−] = ∇[u−,v−]w

− + ∇v−
[
u−, w−] and

[
u+,∇v−w−] = 0, v, w ∈ g.

On the other hand, ∇ is left invariant and rigid with respect to ∇0 is equivalent to

[
u−,∇v+w+] = 0 and ∇0

u+

(
∇−∇0)(v+, w+) = 0.

Or

∇0
u+

(
∇−∇0)(v+, w+) = ∇0

u+

(
∇v+w+ −∇0

v+w+)− (
∇∇0

u+v+w+ −∇0
∇0

u+v+w
+)

−
(
∇v+∇0

u+w+ −∇0
v+∇0

u+w+)
= 1

2
[
u+,∇v+w+]− 1

4
[
u+,

[
v+, w+]]− 1

2∇[u+,v+]w
+

− 1
4
[
w+,

[
u+, v+]]− 1

2∇v+
[
u+, v+]− 1

4
[
v+,

[
w+, u+]]

= 1
2
[
u+,∇v+w+]− 1

2∇[u+,v+]w
+ − 1

2∇v+
[
u+, v+].

A similar computation holds when one replaces left invariant vector field by right ones. Now we can get the 
desired equivalences easily. �
Remark 1. For any u, v ∈ g, u+(e) = u−(e) and [v+, u−] = 0, so we get

(
∇u+v+)(e) =

(
∇u−v+)(e) =

(
∇v+u−)(e) =

(
∇v−u−)(e).

Thus

α(u, v) = β(v, u).

Let ∇ be torsion free bi-invariant linear connection on G. As above, we define S = ∇ − ∇0. It is clear 
that S is bi-invariant and define a product ◦ on g. We have

u ◦ v = α(u, v) − 1
2 [u, v] = 1

2α(u, v) + 1
2α(v, u) = 1

2α(u, v) + 1
2β(u, v).

This product is obviously commutative and, according to Lemma 2.1 3 and 4, satisfies (1). Since ∇ is rigid 
with respect to ∇0, (6) holds and can be written for any u, v ∈ g,

K∇(u, v) = K∇0
(u, v) + [Su, Sv].

Thus K∇ = K∇0 if and only if [Su, Sv] = 0 for any u, v ∈ g, which is equivalent to ◦ is associative. Hence 
◦ defines a Poisson structure on g if and only if ∇ and ∇0 have the same curvature. So we get the desired 
interpretation.

Theorem 2.1. Let G be a connected Lie group and g its Lie algebra. Then the following assertions hold:
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1. Let ∇ be a left invariant linear connection on G and let ◦ the product on g given by

u ◦ v =
(
∇u+v+)(e) − 1

2 [u, v].

Then (g, [ , ], ◦) is a Poisson algebra if and only if ∇ is torsion free, bi-invariant and has the same 
curvature as ∇0.

2. Let ◦ be a product on g such that (g, [ , ], ◦) is a Poisson algebra. Then the linear connection on G given 
by

∇u+v+ = 1
2
[
u+, v+] + (u ◦ v)+

is torsion free, bi-invariant and has the same curvature as ∇0.

We call special a torsion free bi-invariant linear connection which has the same curvature as ∇0.
In Riemannian geometry there is a notion of semi-symmetric spaces which is a direct generalization of 

locally symmetric spaces, namely, Riemannian manifolds for which the curvature tensor K satisfies K.K = 0, 
i.e.,

∇X∇Y K −∇Y ∇XK −∇[X,Y ]K = 0, (10)

for any vector fields X, Y . Semi-Riemannian symmetric spaces were investigated first by E. Cartan [7]
and studied by many authors ([17,8,22] etc.). More generally, we call a torsion free linear connection on a 
manifold semi-symmetric if its curvature tensor satisfies (10).

Proposition 2.1. Any special connection is semi-symmetric.

Proof. Let ∇ be a special connection on a Lie group G. According to Theorem 2.1, its curvature K is given 
by

K(X,Y )Z = −1
4
[
[X,Y ], Z

]
,

for any left invariant vector fields X, Y, Z. Now, it was shown in [22], p. 532 that Eq. (10) is equivalent to

[
K(U, V ),K(X,Y )

]
= K

(
K(U, V )X,Y

)
+ K

(
X,K(U, V )Y

)
,

for any left invariant vector fields X, Y, U, V . By replacing K in this relation by its expression above we get 
the desired result. �

Let ∇ be a left invariant linear connection on G. The holonomy Lie algebra is the smallest subalgebra 
h∇ of End(g) which contains all K∇(u, v) and satisfying [∇u, h∇] ⊂ h∇ for any u ∈ g (see [20]). It is clear 
that it is difficult to compute h∇ explicitly. However, the holonomy algebra of a special linear connection 
can be computed easily.

Lemma 2.2. Let ∇ be a special connection on G. Then the holonomy Lie algebra of ∇ is given by

h∇e = ad[g,g] + L[[g,g],g] = ad[g,g] + R[[g,g],g],

where L, R : g −→ End(g) are given by Lu = α(u, .) and Ru = α(., u) and α(u, v) = (∇u+v+)(e).
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Proof. This is a consequence of the following formulas which hold for any special connection. We have, for 
any u, v ∈ g,

[adu,Lu] = L[u,v], [adu,Ru] = R[u,v], [Lu,Lv] = L[u,v] −
1
4ad[u,v],

[Ru,Rv] = −R[u,v] −
1
4ad[u,v].

These formulas will be stated rigorously in the next section. �
A special connection which has also the same holonomy Lie algebra as ∇0 is called strongly special.

3. Poisson algebras and Poisson admissible algebras

In this section, we study Poisson algebras and Poisson admissible algebras in algebraic point of view, 
having in mind the results of the previous section.

Let (g, [ , ]) be a finite-dimensional Lie algebra and α : g × g −→ g a product on g. For any u ∈ g, we 
define Lu, Ru : g −→ g by

Luv = α(u, v) and Ruv = α(v, u).

Suppose that α is Lie-admissible, i.e., for any u, v ∈ g,

α(u, v) − α(v, u) = [u, v].

Suppose also that α is bi-invariant, i.e., it satisfies (9). It is obvious that the product ◦ on g given by

u ◦ v = α(u, v) − 1
2 [u, v] = 1

2α(u, v) + 1
2α(v, u) (11)

is commutative. It is also bi-invariant which is equivalent to

[Su, adv] = S[u,v], (∗)

for any u, v ∈ g where Suv = u ◦ v. If we denote by Kα the curvature of α, we get that

Kα(u, v) := [Lu,Lv] − L[u,v]

=
[
Su + 1

2adu, Sv + 1
2adv

]
− S[u,v] −

1
2ad[u,v]

(∗)= [Su, Sv] −
1
4ad[u,v].

This formula is the infinitesimal analogous of (6). The product ◦ being commutative, it is associative if, for 
any u, v ∈ g, [Su, Sv] = 0. Thus we have the following result.

Proposition 3.1. Let α : g × g −→ g a Lie-admissible product on g and ◦ given by (11). Then (g, [ , ], ◦) is a 
Poisson algebra if and only if α is bi-invariant and, for any u, v ∈ g,

Kα(u, v) = −1
4ad[u,v].

According to this proposition and Lemma 2.2, we can introduce the following definition.
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Definition 3.1. Let g be a finite dimensional Lie algebra.

1. A product α on g is called quasi-canonical if it is Lie-admissible and, for any u, v ∈ g,

[Lu, adv] = L[u,v] and Kα(u, v) = −1
4ad[u,v].

2. The holonomy Lie algebra of a quasi-canonical product α on g is the subalgebra of the Lie algebra 
End(g) given by

hα = ad[g,g] + L[g,[g,g]] = ad[g,g] + R[g,[g,g]].

3. A quasi-canonical product α is called parallel if its curvature is parallel, i.e.,

L[u,[v,w]] = ad[aduv,w] + ad[v,aduw].

4. A quasi-canonical product α is called strongly quasi-canonical if hα = ad[g,g], i.e., L[g,[g,g]] ⊂ ad[g,g].

It is obvious that any parallel quasi-canonical product is strongly quasi-canonical.
According to Proposition 3.1 there is a correspondence between the set of Poisson products on a Lie 

algebra g and the set of quasi-canonical products on g. We call parallel (resp. strong) a Poisson product 
whose corresponding quasi-canonical product is parallel (resp. strongly quasi-canonical). The corresponding 
quasi-canonical product to the trivial Poisson product is α0(u, v) = 1

2 [u, v].
Let α be a quasi-canonical product on a Lie algebra g. Then (9) is equivalent to

[adu,Lv] = L[u,v], (12)

or

[adu,Rv] = R[u,v], (13)

for any u, v ∈ g. Since adu = Lu − Ru, we get when we replace adu in (12) that

Kα(u, v) = [Ru,Lv]. (14)

Note that the curvature of α vanishes if and only if α is associative. In this case, the Lie algebra g is 
2-nilpotent because Kα(u, v) = −1

4ad[u,v].
Let us give now some properties of Poisson admissible algebras. Recall that an algebra (A, .) is called 

Poisson admissible if (A, [ , ], ◦) is a Poisson algebra, where

[u, v] = u.v − v.u and u ◦ v = 1
2(u.v + v.u).

Note that

u.v = 1
2[u, v] + u ◦ v.

Remark 2.

1. For any Poisson admissible algebra (A, .) we denote by gA the associated Lie algebra.
2. Any Lie algebra is (trivially) Poisson admissible.
3. Any associative commutative algebra is Poisson admissible. In this case gA is abelian.
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Proposition 3.2. Let (A, .) be an algebra. For any u ∈ A, we denote by Lu, Ru : A −→ A the endomorphisms 
given by Luv = u.v and Ruv = v.u. Then the following conditions are equivalent:

1. (A, .) is a Poisson admissible algebra.
2. For any u, v ∈ A,

[Lu,Lv] + [Ru,Rv] + 2[Lu,Rv] = 0 and K(u, v) = [Ru,Lv],

where K(u, v) := [Lu, Lv] − L[u,v].
3. For any u, v ∈ A,

[Ru,Rv] + L[u,v] + 3[Lu,Rv] = 0.

4. For any u, v ∈ A,

[Lu,Lv] − R[u,v] + 3[Ru,Lv] = 0.

Proof. For any u, v ∈ A, put Luv = Rvu = u.v, [u, v] = u.v − v.u, u ◦ v = 1
2 (u.v + v.u) and K(u, v) =

[Lu, Lv] − L[u,v].
The algebra (A, .) is Poisson admissible if and only if (A, [ , ]) is a Lie algebra and “.” is quasi-canonical 

with respect to (A, [ , ]). This is equivalent to

• K(u, v)w + K(v, w)u + K(w, u)v = 0 (Bianchi identity),
• K(u, v) (14)= [Ru, Lv],
• [Lu + Ru, Lv + Rv] = 0 (the associativity of ◦),

for any u, v ∈ A. Since from the second condition we deduce that [Ru, Lv] = −[Rv, Lu] (the flexibility), the 
conditions above are equivalent to

• K(u, v)w + K(v, w)u + K(w, u)v = 0,
• [Lu, Lv] − L[u,v] = [Ru, Lv],
• [Lu, Lv] + [Ru, Rv] + 2[Lu, Rv] = 0.

So statement 1 implies statement 2. Now it is obvious that statement 2 implies statement 3.
Let us show now that the third condition implies the first one. Note first that

K(u, v)w = ass(v, u, w) − ass(u, v, w) (∗)

where

ass(u, v, w) = (u.v).w − u.(v.w) = [Rw,Lu](v). (∗∗)

Moreover, the third condition implies that ass(u, v, w) = −ass(w, v, u) and hence the product “.” is Lie-
admissible if and only if

ass(u, v, w) + ass(v, w, u) + ass(w, u, v) = 0. (∗ ∗ ∗)
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Now from 3 we deduce that

3ass(u, v, w) = Ru ◦ Rw(v) − Rw ◦ Ru(v) + Rv ◦ Rw(u) − Rv ◦ Ru(w)

and we get easily that “.” is Poisson-admissible and consequently K(u, v) = [Ru, Lv]. Now this relation and 
3 implies that

[Lu,Lv] + [Ru,Rv] + 2[Lu,Rv] = 0.

The condition 4 is equivalent to 3 is a consequence of the following remark. If (A, .) is an algebra and � is 
the product given by u �v = −v.u then (A, .) is Poisson admissible if and only if (A, �) is Poisson admissible. 
In this case the structures of Lie algebras of (A, .) and (A, �) coincident. �

Poisson admissible algebras are a subclass of Lie-admissible flexible algebras studied in [1]. Recall that 
an algebra is called flexible if its associator satisfies

ass(u, v, w) + ass(w, v, u) = 0,

for any u, v, w. The third characterization of Poisson admissible algebras in Proposition 3.2 appears first 
in [19].

Corollary 3.1. An associative algebra (A, .) is Poisson admissible if and only if gA is a 2-nilpotent Lie 
algebra.

An algebra (A, .) is called LR-algebra if, for any u, v ∈ A,

[Lu,Lv] = [Ru,Rv] = 0.

It follows from Proposition 3.2 that an LR-algebra is Poisson admissible if and only if it is associative.
Let us introduce now an important class of strong Poisson admissible algebras. A left Leibniz algebra is 

an algebra (A, .) such that for any u ∈ A, the left multiplication Lu is a derivation, i.e., for any v, w ∈ A,

u.(v.w) = (u.v).w + v.(u.w).

This is equivalent to one of the two following relations

[Lu,Lv] = Luv or [Lu,Rv] = Ruv. (15)

A right Leibniz algebra is an algebra (A, .) such that, for any u ∈ A, the right multiplication Ru is a 
derivation, i.e., for any v, w ∈ A,

(v.w).u = (v.u).w + v.(w.u).

This is equivalent to one of the two following relations

[Ru,Rv] = Rvu or [Ru,Lv] = Lvu. (16)

An algebra which is left and right Leibniz is called symmetric Leibniz algebra. Leibniz algebras were 
introduced by Loday in [18]. Many examples of symmetric Leibniz algebras can be found in [2]. By using 
(15) and (16), we get the following proposition.
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Proposition 3.3. The following assertions are equivalent:

1. (A, .) is a symmetric Leibniz algebra.
2. For any u, v ∈ A, [Lu, Lv] = Luv = −Ruv.
3. For any u, v ∈ A, [Ru, Rv] = Rvu = −Lvu.

Any Lie algebra is a symmetric Leibniz algebra and any Leibniz algebra is Lie-admissible. However, the 
class of symmetric Leibniz algebras contains strictly the class of Lie algebras. We can state now one of our 
main result.

Theorem 3.1. Let (A, .) be a symmetric Leibniz algebra. Then (A, .) is Poisson admissible, the multiplication 
“.” is parallel on (A, [ , ]) and hence strongly quasi-canonical.

Proof. Put

Q = [Ru,Rv] + L[u,v] + 3[Lu,Rv].

By using Proposition 3.3, we get

Q = −Lvu + Luv − Lvu − 3Luv = 0.

Now, according to Proposition 3.2 we get that (A, .) is Poisson admissible. On the other hand, by using 
Proposition 3.3, we get that, for any u, v ∈ A,

ad[u,v] = 2L[u,v] = 4Luv and K(u, v) = Lvu

and hence ad[A,A] = L[A,A]. So the holonomy Lie algebra of “.” is ad[A,A] which prove that the multiplication 
“.” is strongly quasi-canonical. Finally,

∇K(u, v, w) = [Lu,Lwv] − L(uw)v − Lw(uv)

= Lu(wv) − L(uw)v − Lw(uv) = 0,

which completes the proof. �
By using the geometric interpretation of Poisson structures introduced in Section 2, we get the following 

interesting corollary.

Corollary 3.2. Let (A, .) be a real symmetric Leibniz algebra which is not a Lie algebra and G any connected 
Lie group associated to (A, [ , ]). Then the left invariant connection on G given by

∇u+v+ = (u.v)+

is different from ∇0, strongly special and its curvature is parallel.

Example 1. We give here an example of a 4-dimensional real symmetric Leibniz algebra for which we give the 
connected and simply connected Lie group associated to the underlying Lie algebra and we give explicitly 
the two connections ∇0 and ∇ appearing in the corollary above.

We consider the symmetric Leibniz algebra product on R4 given in the canonical basis (e1, e2, e3, e4) by

e1.e1 = e4, e2.e1 = e3, e3.e1 = e4, e1.e2 = −e3, e1.e3 = −e4.



S. Benayadi, M. Boucetta / Differential Geometry and its Applications 36 (2014) 66–89 77
All the others products vanish. One can check easily by using Proposition 3.3 that this product defines 
actually a symmetric Leibniz algebra. The underlying Lie algebra say g = R

4 has its non-vanishing Lie 
brackets given by

[e1, e2] = −2e3 and [e1, e3] = −2e4.

It is a 3-nilpotent Lie algebra. The associated connected and simply connected Lie group is G = R
4 with 

the multiplication given by Campbell–Baker–Hausdorff formula

xy = x + y + 1
2[x, y] + 1

12
[
x, [x, y]

]
+ 1

12
[
y, [y, x]

]
.

This formula can be written

xy =
(
x1 + y1, x2 + y2, x3 + y3 − (x1y2 − x2y1),

x4 + y4 − (x1y3 − x3y1) + 1
3x1(x1y2 − x2y1) + 1

3y1(y1x2 − y2x1)
)
. (17)

Recall that for any vector u ∈ g, u+ denotes the left invariant vector on G associated to u. A straightforward 
computation using (17) gives

e+
1 = ∂

∂x1
+ x2

∂

∂x3
+

(
x3 −

1
3x1x2

)
∂

∂x4
,

e+
2 = ∂

∂x2
− x1

∂

∂x3
+ 1

3x
2
1

∂

∂x4
,

e+
3 = ∂

∂x3
− x1

∂

∂x4
, e+

4 = ∂

∂x4
,

where (x1, x2, x3, x4) are the canonical coordinates of R4. We consider the two torsion free linear connections 
on G defined by the formulas

∇0
x+y+ = 1

2
[
x+, y+] and ∇x+y+ = (x.y)+. (18)

The dot here is the symmetric Leibniz product. According to what above these two connections are bi-
invariant, have the same curvature and the same holonomy Lie algebra. Moreover, they both have parallel 
curvature. Let us compute the Christoffel symbols of ∇0 and ∇ in the canonical coordinates (x1, x2, x3, x4). 
The computation is straightforward consisting of replacing x and y in (18) by ei, ej , i, j = 4, . . . , 1. We get 
that the only non-vanishing Christoffel symbols are given by

∇0
∂

∂x1

∂

∂x1
= −2

3x2
∂

∂x4
and ∇0

∂
∂x1

∂

∂x2
= 1

3x1
∂

∂x4
,

and

∇ ∂
∂x1

∂

∂x1
=

(
1 − 2

3x2

)
∂

∂x4
and ∇ ∂

∂x1

∂

∂x2
= 1

3x1
∂

∂x4
.

We can also compute the exponential maps associated to ∇0 and ∇ and we get that exp0 : g −→ G is the 
identity, however exp : g −→ G is given by
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exp(a, b, c, d) =
(
a, b, c, d− 1

2a
2
)
.

Proposition 3.4. A left (right) Leibniz algebra is Poisson admissible if and only if it is a symmetric Leibniz 
algebra.

Proof. Suppose that (A, .) is a left Leibniz algebra. According to Proposition 3.2, (A, .) is Poisson admissible 
if and only if, for any u, v ∈ A,

[Lu,Lv] − R[u,v] + 3[Ru,Lv] = 0.

From this relation and (15), we get that Luv = 2Rvu+Ruv. On the other hand, (15) implies that Luv = −Lvu

so we deduce that Luv = −Ruv and we can achieve the proof by using Proposition 3.3 and Theorem 3.1. �
The following proposition gives a tool to build many symmetric Leibniz algebras from old ones.

Proposition 3.5. Let A be a symmetric Leibniz and U an associative LR-algebra then A ⊗ U endowed with 
the product

(u⊗ a)(v ⊗ b) = (uv) ⊗ (ab)

is a symmetric Leibniz algebra.

Proof. It is a straightforward computation. �
We can state now our second main result.

Theorem 3.2. Let (A, .) be a Poisson admissible algebra and U an associative LR-algebra. Then the product 
on A ⊗ U given by

(u⊗ a) � (v ⊗ b) = 1
2[u, v] ⊗ (ab + ba) + 1

2u.v ⊗ (3ab + ba)

induces on A ⊗ U a Poisson admissible algebra structure. Moreover, if “.” is strongly quasi-canonical on 
(A, [ , ]) then � is also strongly quasi-canonical on (A ⊗ U, [ , ]).

Proof. Note first that since U is an associative LR-algebra, for any a1, a2, a3 ∈ U and for any permutation 
σ of {1, 2, 3}, aσ(1)aσ(2)aσ(3) = a1a2a3.

We will use Proposition 3.2 and show that, for any u, v ∈ A and a, b ∈ U,

Q = [Lu⊗a,Lv⊗b] − R[u⊗a,v⊗b] + 3[Ru⊗a,Lv⊗b] = 0.

For any w ∈ A and c ∈ U, we have

[Lu⊗a,Lv⊗b](w ⊗ c) = (u⊗ a) �
(

1
2 [v, w] ⊗ (bc + cb) + 1

2v.w ⊗ (3bc + cb)
)

− (v ⊗ b) �
(

1
2 [u,w] ⊗ (ac + ca) + 1

2u.w ⊗ (3ac + ca)
)

=
([
u, [v, w]

]
+ 2u.[v, w] + 2[u, vw] + 4u(vw)

)
⊗ (abc)

−
([
v, [u,w]

]
+ 2v.[u,w] + 2[v, uw] + 4v(uw)

)
⊗ (abc)

=
([
u, [v, w]

]
+

[
v, [w, u]

]
+ 4[u, v].w + 4[Lu,Lv](w)

)
⊗ (abc).
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Thus

[Lu⊗a,Lv⊗b](w ⊗ c) =
([
u, [v, w]

]
+

[
v, [w, u]

]
+ 4[u, v].w + 4[Lu,Lv](w)

)
⊗ (abc).

A similar computation gives

R[u⊗a,v⊗b](w ⊗ c) =
(
4
[
w, [u, v]

]
+ 8w.[u, v]

)
⊗ (abc),

and

[Ru⊗a,Lv⊗b](w ⊗ c) =
([

[v, w], u
]
−

[
v, [w, u]

]
+ 2

[
[v, u], w

]
+ 4[Ru,Lv](w)

)
⊗ (abc).

By using Jacobi identity and the relation

[Lu,Lv] − R[u,v] + 3[Ru,Lv] = 0,

we get that Q = 0 and hence (A ⊗ U, .) is a Poisson admissible algebra.
On the other hand, a direct computation gives, for any u, v, w ∈ A and any a, b, c ∈ U,

[
[u⊗ a, v ⊗ b], w ⊗ c

]
= 16

[
[u, v], w

]
⊗ (abc).

This shows that
[
A ⊗ U, [A ⊗ U,A ⊗ U]

]
=

[
A, [A,A]

]
⊗ U3,

and

ad[u⊗a,v⊗b] = 16ad[u,v] ⊗ Lab.

Moreover, one can check easily that for u ∈ [A, [A, A]] and a ∈ U3,

Lu⊗a = (adu + 2Lu) ⊗ La.

With all these formulas, one can show easily that if the multiplication “.” is strongly quasi-canonical on 
(A, [ , ]) then � is also strongly quasi-canonical on (A ⊗ U, [ , ]). �
Proposition 3.6. Let (g, [ , ]) be a Lie algebra and “.” is a strongly quasi-canonical product on g. Then 
g3 = [g, [g, g]] is two sided ideal of (g, .), (g3, .) is a symmetric Leibniz algebra and the sequence

0 −→
(
g3, .

)
−→ (g, .) −→

(
g/g3, .

)
−→ 0

is an exact sequence of Poisson admissible algebras, (g/g3, .) is associative and (g/g3, [ , ]) is 2-nilpotent.

Proof. Since “.” is strongly quasi-canonical then its holonomy Lie algebra is equal to ad[g,g] and hence 
Lg3 ⊂ ad[g,g] and Rg3 ⊂ ad[g,g]. Then for any u ∈ g and v ∈ g3 there exists w, t ∈ [g, g] such that Lu = adw

and Ru = adt. So u.v ∈ g3, v.u ∈ g3 and Lu, Ru are derivations of the restriction of “.” to g3. We get that 
g3 is a two side ideal and (g3, .) is a symmetric Leibniz algebra. On the other hand, (g/g3, .) is a Poisson 
algebra and (g/g3, [ , ]) is 2-nilpotent so (g/g3, .) is associative. �

In Proposition 23 of [13], it was proved that there is no non-trivial Poisson structure on a simple complex 
Lie algebra. We finish this section by generalizing this result to any semi-simple Lie algebra over any field. 
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We will show also that in a perfect Lie algebra the canonical product is the only strongly quasi-canonical 
product.

Theorem 3.3.

1. Let g be a perfect Lie algebra, i.e., g = [g, g]. Then the product α0(u, v) = 1
2 [u, v] is the only strongly 

quasi-canonical product on g.
2. Let g be a semi-simple Lie algebra. Then the product α0(u, v) = 1

2 [u, v] is the only quasi-canonical 
product on g. In particular, there is no non-trivial Poisson structure on g.

Proof.

1. Suppose that “.” is a strongly quasi-canonical product on g and [g, g] = g. We have shown in Propo-
sition 3.6 that in this case the restriction of “.” to [g, [g, g]] is a Leibniz product. Or g = [g, [g, g]] and 
hence (g, .) is a Leibniz algebra. Now from the relation Lu.v = −Ru.v and the fact that g.g = g we 
deduce that u.v = 1

2 [u, v] for any u, v ∈ g and hence “.” is the canonical product on g.
2. Suppose that “.” is a quasi-canonical product on a semi-simple Lie algebra g, denote by Lu and Ru, 

respectively, the left and the right multiplication by u associated to “.” and put Su := Lu − 1
2adu. Note 

first that since g is semi-simple, g = [g, g] and hence, by using (12), we get that for any u ∈ g,

tr(Su) = 0.

Consider

I = {u ∈ g, Su = 0}.

For any u ∈ g and any v ∈ I, we have from (12) that

L[u,v] = [adu,Lv] = 1
2 [adu, adv] = 1

2ad[u,v],

and hence I is an ideal of (g, [ , ]). Let us show that I = g.
Since g is semi-simple we have

g =
p⊕

i=1
gi,

where (gi)pi=1 is a family of simple ideals of g,

[gi, gi] = gi, [gi, gj ] = {0} if i �= j.

We have for any i, j = 1, . . . , p,

gi.gi ⊂ gi and gi.gj = {0} if i �= j.

Indeed, for any u, v ∈ gi and for j �= i and w ∈ gj , we have

[w, u.v] = [w, u].v + u.[w, v] = 0.

By using a similar argument, we get that if i �= j, u ∈ gi and v ∈ gj , u.v ∈ gi ⊕ gj . If u = [a, b] with 
a, b ∈ gi, we get
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u.v = [a, b].v = [a, b.v] ∈ gi.

Since [gi, gi] = gi we get that u.v ∈ gi and in a similar way u.v ∈ gj and hence u.v = 0.
Suppose by contradiction that I �= g. Since I is an ideal, eventually by changing the indexation of the 
family (gi)pi=1, we can suppose that there exists 1 ≤ r ≤ p such that

g = I ⊕ J and J =
p⊕

i=r

gi.

For any u ∈ J , we denote by Su the restriction of Su to J . The product on J given by u ◦ v = Suv is 
a Poisson product and hence it is commutative and associative. So, for any u ∈ J , and any n ∈ N

∗,

tr
(
(Su)n

)
= tr(Sun) = tr(Sun) = 0,

and hence Su is nilpotent. Since for any u, v ∈ J , [Su, Sv] = 0, we deduce by using Engel’s Theorem 
that there exists u0 ∈ J \ {0} such that Su(u0) = Su0u = 0, and hence Su0 = 0. Since the restriction 
of Su0 to I vanishes, we deduce that Su0 = 0 and hence u0 ∈ I which constitutes a contradiction and 
achieves the proof. �

4. Associative Poisson admissible algebras

We have shown in Corollary 3.1 that an associative algebra (A, .) is Poisson admissible if and only if 
(A, [ , ]) is 2-nilpotent, i.e., for any u, v ∈ A,

L[u,v] = R[u,v]. (19)

An associative algebra satisfying this condition will be called associative Poisson admissible algebra. This 
section is devoted to a description of such algebras.

Let (A, .) be an associative Poisson admissible algebra. We consider

Z(A) = {u ∈ A,Lu = Ru}.

Since A is associative, Z(A) is a commutative associative subalgebra of A. Put

A = V ⊕ Z(A),

where V is a vectorial subspace of A. According to this splitting, we get that, for any z ∈ Z(A) and u, v ∈ V ,

z.u = u.z = Pz(u) + Qu(z) and u.v = a(u, v) + b(u, v). (20)

These relations define two bilinear maps a : V ×V −→ V , b : V ×V −→ Z(A), and two linear maps Q : V −→
End(Z(A)), P : Z(A) −→ End(V ). Condition (19) is equivalent to a symmetric and b(u, v) −b(v, u) = [u, v]. 
The associativity is equivalent to the following relations:

1. Pzz′ = Pz ◦ Pz′ , [Qu, Lz](z′) = QPz′ (u)(z),
2. b(Pz(u), v) + Qv ◦ Qu(z) = b(u, Pz(v)) + Qu ◦ Qv(z) = Qa(u,v)(z) + zb(u, v),
3. Pz(a(u, v)) = a(u, Pz(v)) + PQv(z)(u),
4. b(a(u, v), w) − b(u, a(v, w)) = Qu(b(v, w)) − Qw(b(u, v)),
5. a(a(u, v), w) − a(u, a(v, w)) = Pb(v,w)(u) − Pb(u,v)(w).
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So, we have shown that the associative and commutative algebra Z(A), the vector space V , and P, Q, a, 
b as above satisfying the conditions 1–5 describe entirely associative Poisson algebras.

Proposition 4.1. Let (g, [ , ]) be a 2-nilpotent Lie algebra. Then there is on g a quasi-canonical product 
different from the canonical one.

Proof. Put g = Z(g) ⊕ V and consider the product on g given, for any z, z′ ∈ Z(g), u, v ∈ V , by

z.z′ = u.z = z.u = 0 and u.v = s(u, v) + 1
2[u, v],

where s is any non-trivial symmetric bilinear map from V ×V to Z(g). It is easy to check that this product 
is quasi-canonical and different from the canonical one. �
5. Symplectic Poisson algebras

In this section, we study an important class of Poisson algebras. To introduce theses algebras we recall 
some classical results on symplectic Lie groups and introduce a new symplectic linear connection.

Let (G, Ω) be a symplectic Lie group, i.e., a Lie group G endowed with a left invariant symplectic form Ω. 
It is well-known that the linear connection given by the formula

Ω
(
∇a

u+v+, w+) = −Ω
(
v+,

[
u+, w+]), (21)

where u, v, w ∈ g, defines a left invariant flat and torsion free connection ∇a. Moreover, ∇aΩ never vanishes 
unless G is abelian. So we can define a tensor field N by the relation

∇a
u+Ω

(
v+, w+) = Ω

(
N
(
u+, v+), w+).

The linear connection given by

∇s
u+v+ = ∇a

u+v+ + 1
3N

(
u+, v+) + 1

3N
(
v+, u+)

is left invariant torsion free and symplectic, i.e., ∇sΩ = 0. This construction follows a general scheme which 
permit to build symplectic connection from any connection (see [4]). A straightforward computation gives 
that ∇s can be defined by the following formula

Ω
(
∇s

u+v+, w+) = 1
3Ω

([
u+, v+], w+) + 1

3Ω
([
u+, w+], v+). (22)

This formula shows that on any symplectic Lie group there exists a canonical torsion free symplectic con-
nection.

Let (g, ω) be the Lie algebra of G endowed with the value of Ω at e. We denote by αa and αs the product 
on g induced, respectively, by ∇a and ∇s. We have, for any u, v ∈ g,

αa(u, v) = −ad∗
uv and αs(u, v) = 1

3
(
aduv − ad∗

uv
)
, (23)

where ad∗
u is the adjoint of adu with respect to ω.

Conversely, given a symplectic Lie algebra, formulas (23) define on g two Lie-admissible products whose 
one is left symmetric and the other one is symplectic, i.e., for any u, v, w ∈ g,
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assa(u, v, w) = assa(v, u, w) and ω
(
αs(u, v), w

)
+ ω

(
v, αs(u,w)

)
= 0,

where

assa(v, u, w) = αa(αa(u, v), w
)
− αa(u, αa(v, w)

)
is the associator of αa. Let us see under which conditions these products are quasi-canonical.

Proposition 5.1. Let (g, ω) be a symplectic Lie algebra and αa, αs the product given by (23). Then the 
following assertions are equivalent:

1. αa is quasi-canonical.
2. αs is quasi-canonical.
3. g is 2-nilpotent and, for any u, v ∈ g, [adu, ad∗

v] = 0.

Moreover, if one of the conditions above holds then (g, αa) and (g, αs) are both associative LR-algebras.

Proof. Note first that Kαa = 0 and the left and right multiplications associated to αa are given by

La
u = −ad∗

u and Ra
u = −ad∗

u − adu.

The product αa is quasi-canonical if and only if, for any u, v ∈ g,

Kαa
(u, v) =

[
Ra

u,La
v

]
and

[
La
u + Ra

u,La
v + Ra

v

]
= 0

which is obviously equivalent to

ad[u,v] =
[
adu, ad∗

v

]
= 0.

On the other hand, we have

Ls
u = 1

3
(
adu − ad∗

u

)
and Rs

u = −1
3
(
2adu + ad∗

u

)
,

and hence

Kαs
(u, v) =

[
Ls
u,Ls

v

]
− Ls

[u,v]

= 1
9
(
[adu, adv] −

[
adu, ad∗

v

]
−

[
ad∗

u, adv

]
+

[
ad∗

u, ad∗
v

])
− 1

3ad[u,v] + 1
3ad∗

[u,v],

[
Rs

u,Ls
v

]
= −1

9
(
2[adu, adv] − 2

[
adu, ad∗

v

]
+
[
ad∗

u, adv

]
−
[
ad∗

u, ad∗
v

])
.

Thus Kαs(u, v) = [Rs
u, Ls

v] if and only if

[
adu, ad∗

v

]
= ad∗

[u,v]. (24)

Let us compute

Q =
[
Ls
u + Rs

u,Ls
v + Rs

v

]
.
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We have

Q = 1
9
(
[adu, adv] + 2

[
adu, ad∗

v

]
+ 2

[
ad∗

u, adv

]
+ 4

[
ad∗

u, ad∗
v

])
.

So we get that Kαs(u, v) = [Rs
u, Ls

v] and Q = 0 if and only if

[
adu, ad∗

v

]
= ad[u,v] = 0. �

A symplectic Poisson algebra is a 2-nilpotent symplectic Lie algebra (g, ω) satisfying, for any u, v ∈ g,

[
adu, ad∗

v

]
= 0. (25)

Proposition 5.2. Let (g, ω) be 2-nilpotent symplectic Lie algebra which carries a bi-invariant pseudo-Euclidean 
product B. Then (g, ω) is a symplectic Poisson algebra.

Proof. We consider the isomorphism of g given by

ω(u, v) = B(Du, v).

It is easy to check by using the fact that B is bi-invariant and ω is symplectic that D is derivation of g and 
that, for any u ∈ g, ad∗

u = −D−1 ◦ adu ◦D. Now, for any u, v ∈ g,

[
ad∗

u, adv

]
= adv ◦D−1 ◦ adu ◦D −D−1 ◦ adu ◦D ◦ adv.

Since D ◦ adv = adv ◦D + adDv and g is 2-nilpotent we get that

D−1 ◦ adu ◦D ◦ adv = 0.

On the other hand, D−1[g, g] = [g, g] so we get since g is 2-nilpotent that adv ◦ D−1 ◦ adu ◦ D = 0 and 
finally, [ad∗

u, adv] = 0 which show that (g, ω) is a symplectic Poisson algebra. �
Example 2. Let (g, [ , ]) be a 2-nilpotent Lie algebra. Then g = V ⊕ Z(g), where V is a vector subspace of 
g such that [V, V] ⊆ Z(g). The endomorphism D of g defined by:

D(v) = v and D(z) = 2z, for all v ∈ V, z ∈ Z(g),

is an invertible derivation of g.
Now, the vector space G = g ⊕ g∗ endowed with the following product:

[u + α, v + β] = [u, v] + α ◦ adv − β ◦ adu, for all u, v ∈ g, α, β ∈ g∗,

is a 2-nilpotent Lie algebra. Moreover, the bilinear form B : G × G → K defined by:

B(u + α, v + β) = α(v) + β(u), for all u, v ∈ g, α, β ∈ g∗,

is non-degenerate, bi-invariant and symmetric. Then (G, B) is a 2-nilpotent quadratic Lie algebra. An easy 
computation shows that the endomorphism δ of G defined by:

δ(u) = D(u) and δ(α) = −α ◦D, for all u ∈ g, α ∈ g∗,
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is an invertible derivation of G which is skew-symmetric with respect to B. Consequently, the bilinear form 
defined by:

ω(X,Y ) = B
(
δ(X), Y

)
, for all X,Y ∈ G,

is a symplectic structure on G. Finally, (G, ω) is symplectic Poisson algebra.

Let us give now the inductive description of symplectic Poisson algebras. Let (g, [ , ]g, ω) be a symplectic 
Poisson algebra. Since g is nilpotent Lie algebra, according to [10], (g, [ , ]g, ω) is the symplectic double 
extension of a symplectic Lie algebra (h, [ , ]h, ω) of dimension dim g −2 by the one-dimensional Lie algebra 
by means of an element (D, z) of Der(h) × h. This means that g = Ke ⊕ h ⊕Kd and

1. for any a, b ∈ h,

[a, b]g = [a, b]h + ω
((
D + D∗)(a), b)e, [d, d]g = 0,

[a, d]g = D(a) + ω(z, a)e, [e, g]g = {0},

where D∗ the adjoint of D with respect to ω,
2. ω|h×h

= ω, ω(e, d) = 1, ω(e, h) = ω(d, h) = {0}.

The fact that (g, ω) is a symplectic Poisson algebra is equivalent to

ad[u,v] =
[
adu, ad∗

v

]
= 0,

for any u, v ∈ g.
The first condition which means that g is 2-nilpotent Lie algebra is equivalent to:

• h is a 2-nilpotent Lie algebra,
• D(h) ⊂ Z(h),
• D|[h,h]h = D∗

|[h,h]h = 0, ω([h, h]h, z) = 0,
• D2 = D∗ ◦D = 0 and D∗(z) = 0.

Let us compute ad∗
u for any u ∈ g. A straightforward computation gives, for any a, b ∈ h,

ad∗
ab = adh∗

a b + ω
(
b,D(a)

)
e, ad∗

ad = −
(
D + D∗)(a) + ω(a, z)e,

ad∗
ae = ad∗

de = 0, ad∗
dd = −z, ad∗

da = −D∗(a).

So

[
ada, ad∗

b

]
(c) =

[
a, adh∗

b c
]
− ad∗

b [a, c] =
[
a, adh∗

b c
]
− adh∗

b [a, c]h + ω
(
[a, c]h, D(b)

)
e

=
[
adh

a, adh∗
b

]
(c) + ω

((
D + D∗)(a), adh∗

b c
)
e + ω

(
[a, c]h, D(b)

)
e,[

ada, ad∗
b

]
(d) = −

[
a,
(
D + D∗)(b)]− ad∗

bD(a)

= −
[
a,
(
D + D∗)(b)]

h
− adh∗

b D(a)

− ω
((
D + D∗)(a), (D + D∗)(b))e− ω

(
D(a), D(b)

)
e,[

ada, ad∗
d

]
(b) = −

[
a,D∗(b)

]
+ D∗([a, b]h)

= −
[
a,D∗(b)

]
− ω

((
D + D∗)(a), D∗(b)

)
e + D∗([a, b]h),
h
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[
ada, ad∗

d

]
(d) = −[a, z] + D∗ ◦D(a)

= −[a, z]h − ω
((
D + D∗)(a), z)e + D∗ ◦D(a),[

add, ad∗
d

]
(a) = −

[
d,D∗(a)

]
− ad∗

d[a, d] = D ◦D∗(a) − ω
(
z,D∗(a)

)
e + D∗ ◦D(a),[

add, ad∗
d

]
(d) = −D(z).

From these relations, we get that (g, ω) is a symplectic Poisson algebra if and only if

• (h, ω) is a symplectic Poisson algebra,
• D(h) ⊂ Z(h), D∗(h) ⊂ Z(h),
• D2 = D∗ ◦D = D ◦D∗ = 0, D∗(z) = D(z) = 0 and z ∈ Z(h).

An element (D, z) of Der(h) × h which verifies the conditions above will be called admissible.
To summarize, we have proved the following theorem.

Theorem 5.1. Let (g, ω) be a symplectic Lie algebra. Then (g, ω) is a symplectic Poisson algebra if and only 
if it is a symplectic double extension of a symplectic Poisson algebra (h, ω) of dimension dim g − 2 by the 
one dimensional Lie algebra by means of an admissible element (D, z) ∈ Der(h) × h.

There is only one 2-dimensional symplectic Poisson algebra, namely the two 2-dimensional abelian Lie al-
gebra h0 endowed with a symplectic form ω0. There exists a basis B = {e1, e2} of h0 such that ω0(e1, e2) = 1. 
An element (D, z) ∈ Der(h0) × h0 is admissible if and only if z is any element of h0 and the matrix of D in 
the basis B has one of the following forms

(
0 a

0 0

)
,

(
0 0
a 0

)
,

(
a b

−a2

b −a

)
, b �= 0.

So we get all four-dimensional symplectic Poisson algebras.

Proposition 5.3. Let g be a 4-dimensional Lie algebra. Then g is a symplectic Poisson algebra iff it is 
isomorphic to one of the following symplectic Lie algebras:

1. span{e, e1, e2, d} with the non-vanishing brackets

[e1, d] = −z2e, [e2, d] = −ae1 + z1e,

and the symplectic form satisfying

ω(e, d) = ω(e1, e2) = 1, ω(e, e1) = ω(e, e2) = ω(d, e1) = ω(d, e2) = 0.

2. span{e, e1, e2, d} with the non-vanishing brackets

[e1, d] = ae1 −
a2

b
e2 − z2e, [e2, d] = be1 − ae2 + z1e,

and the symplectic form satisfying

ω(e, d) = ω(e1, e2) = 1, ω(e, e1) = ω(e, e2) = ω(d, e1) = ω(d, e2) = 0.
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We finish this section by giving an important geometric property of real symplectic Poisson algebras.
Let (g, ω) be a non-abelian real symplectic Poisson algebra and G a connected Lie group having g as its 

Lie algebra. The symplectic form ω defines on G a symplectic left invariant form Ω. Consider the two linear 
connections ∇a and ∇s defined on G by (21)–(22). These two connections are bi-invariant, flat, complete 
and ∇sΩ = 0. It was shown in [3] that Ω is polynomial of degree at most dimG −1 in any affine coordinates 
chart associated to ∇a. The following result gives a more accurate statement on the polynomial nature of Ω.

Theorem 5.2. With the hypothesis and the notations above we have

(
∇a)3Ω = 0.

In particular, Ω is polynomial of degree at least one and at most 2 in any affine coordinates chart associated 
to ∇a. Moreover, if the restriction of ω to [g, g] does not vanish then the degree is 2.

Proof. For any u, v, x, y ∈ g, an easy computation gives

∇a
u+Ω

(
x+, y+) = Ω

(
u+,

[
x+, y+]),

and hence

∇a
u+∇a

v+Ω
(
x+, y+) = Ω

([
∇a

u+x+, y+] +
[
x+,∇a

u+y+], v+).
Now since ∇a is bi-invariant then

[
∇a

u+x+, y+] +
[
x+,∇a

u+y+] = ∇a
[u+,y+]x

+ + ∇a
[x+,u+]y

+ + 2∇a
u+

[
x+, y+].

By using (21) and the fact that g is 2-nilpotent, we get

∇a
u+∇a

v+Ω
(
x+, y+) = 2Ω

([
x+, y+], [u+, v+]).

By using the same arguments as above one can get easily that (∇a)3Ω = 0. The properties of the degree of 
Ω are an immediate consequence of formulas above. �

It was proved in [12] that a compact affine manifold M has a polynomial Riemannian metric iff M is 
finitely covered by a complete affine nilmanifold. An affine nilmanifold is of the form Γ/N where N is a 
simply-connected nilpotent Lie group with a left invariant affine structure and Γ is a discrete subgroup 
of N . According to the results of this section, if G is the simply-connected Lie group associated to a 
non-abelian symplectic Poisson Lie algebra and Γ is a co-compact discrete subgroup of G then Γ/G is a 
compact nilmanifold which carries two affine structures and a symplectic form which is parallel for one affine 
structure and polynomial of degree at least 1 and at most 2 for the other one. It is natural to ask if there 
is a symplectic analog of Goldman’s Theorem in [12].

6. Metrizability of special connections

In this section we study the problem of metrizability of special connections on Lie groups. Given a 
connected Lie group G with ∇ a special connection, does exist on G a left invariant pseudo-Riemannian 
metric whose associated Levi-Civita connection is ∇? Remark that if such a metric exists and it is bi-invariant 
then ∇ coincides with ∇0. The following proposition gives an answer to this question when the metric is 
Riemannian.
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Proposition 6.1. Let g be a real Lie algebra and 〈 , 〉 an Euclidean product on g such that the associated 
Levi-Civita product is quasi-canonical. Then 〈 , 〉 is bi-invariant and hence the Levi-Civita product coincides 
with the canonical product.

Proof. We have

g = [g, g] ⊕ [g, g]⊥.

Since for any u, v ∈ g, K(u, v) = −1
4ad[u,v] and K(u, v) is skew-symmetric, we deduce that, for any w ∈ [g, g], 

adw is skew-symmetric. From this remark and the relation

2〈u.v, w〉 =
〈
[u, v], w

〉
+
〈
[w, v], u

〉
+
〈
[w, u], v

〉
,

one can deduce easily that, for any u, v ∈ [g, g] and any x, y ∈ [g, g]⊥,

u.v = 1
2[u, v] and x.y = 1

2[x, y].

Let u ∈ [g, g] and v ∈ [g, g]⊥, since adu is skew-symmetric, we get for any w ∈ g,

〈
[u, v], w

〉
= −

〈
v, [u,w]

〉
= 0,

and hence u.v = v.u. Moreover, for any x ∈ [g, g],

〈u.v, x〉 = −〈v, u.x〉 = 1
2
〈
v, [x, u]

〉
= 0.

Thus u.v = v.u ∈ [g, g]⊥. Now

2〈u.v, u.v〉 =
〈
[u, v], u.v

〉
+

〈
[u.v, u], v

〉
+

〈
[u.v, v], u

〉
= 0,

since [u, v] = 0 and [v, u.v] = [v, u].v + u.[v, v] = 0. Thus u.v = 0 which completes the proof. �
The proposition above is not true in general when the 〈 , 〉 is not positive definite. We give now a 

description of all real Lie algebras endowed with a pseudo-Euclidean product such that the associated 
Levi-Civita product is quasi-canonical and the derived ideal is non-degenerate.

Consider (h, 〈 , 〉0) a Lie algebra endowed with a bi-invariant pseudo-Euclidean product. Let (V, B) be a 
vector space with a nondegenerate symmetric bilinear form. We can split V = V0 ⊕ U ⊕ V 0 such that the 
restriction of B to U is positive definite and the map V0 × V 0 −→ R, (u, v) −→ B(u, v) is non-degenerate. 
Finally, consider any bilinear skew-symmetric map γ : V 0×V 0 −→ Z(h). We consider now g = h ⊕V endowed 
with 〈 , 〉 = 〈 , 〉0+B and the bracket for which V0⊕U ⊂ Z(g), [h, V ] = 0, the restriction to h coincides with 
the initial bracket and for any u, v ∈ V 0, [u, v] = γ(u, v). Then one can check easily that the Levi-Civita 
product of 〈 , 〉 is quasi-canonical and 〈 , 〉 is not bi-invariant. By a direct computation we can see easily 
that the curvature tensor is parallel which gives examples of locally symmetric pseudo-Riemannian spaces.
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