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1. Introduction

A pseudo-Riemannian manifold (M, g) is said to be semi-symmetric if its curvature tensor K satisfies 
K.K = 0. This is equivalent to

[K(X,Y ),K(Z, T )] = K(K(X,Y )Z, T ) + K(Z,K(X,Y )T ), (1)

for any vector fields X, Y, Z, T . Semi-symmetric pseudo-Riemannian manifolds generalize obviously locally 
symmetric manifolds (∇K = 0). They also generalize second-order locally symmetric manifolds (∇2K = 0
and ∇K �= 0). Semi-symmetric Riemannian manifolds have been first investigated by E. Cartan [7] and the 
first example of a semi-symmetric not locally symmetric Riemannian manifold was given by Takagi [13]. 
More recently, Szabo [11,12] gave a complete description of these manifolds. In this study, Szabo used strong 
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results proper to the Riemannian sitting which suggests that a similar study of semi-symmetric Lorentzian 
manifolds is far more difficult. To our knowledge, there are only few results on three dimensional locally 
homogeneous semi-symmetric Lorentzian manifolds [3,4] and second-order locally symmetric Lorentzian 
manifolds have been classified by D. Alekseevsky and A. Galaev in [1]. While in the Riemannian case 
every homogeneous semi-symmetric manifold is actually locally symmetric, in the Lorentzian case they are 
homogeneous semi-symmetric Lorentzian manifolds which are not locally symmetric.

This paper is devoted to the study of semi-symmetric curvature algebraic tensors on a Lorentzian vector 
space and to the classification of 4-dimensional simply-connected semi-symmetric homogeneous Lorentzian 
manifolds. There are our main results:

1. Let (V, 〈 , 〉) be a Lorentzian vector space and K : V ∧ V −→ V ∧ V a semi-symmetric algebraic 
curvature tensor, i.e., K satisfies the algebraic Bianchi identity and (1). Let RicK : V −→ V be its Ricci 
operator. The main result here (see Propositions 2.1 and 2.2 ) is that RicK has only real eigenvalues 
and, if λ1, . . . , λr are the non null ones then V splits orthogonally

V = V0 ⊕ Vλ1 ⊕ . . .⊕ Vλr
, (2)

where Vλi
= ker(RicK − λiIdV ) and V0 = ker(RicK)2. Moreover, dimVλi

≥ 2, K(Vλi
, Vλj

) =
K(V0, Vλi

) = 0 for i �= j, K(u, v)(Vλi
) ⊂ Vλi

and K(u, v)(V0) ⊂ V0. This reduces the study of semi-
symmetric algebraic curvature tensors to the ones who are Einstein (RicK = λIdV ) or the ones who are 
Ricci isotropic (RicK �= 0 and (RicK)2 = 0).

2. In [8], Derdzinsky gave a classification of four dimensional Lorentzian Einstein manifolds whose curvature 
treated as a complex linear operator is diagonalizable and has constant eigenvalues. In [5], Calvaruso 
and Zaeim described locally homogeneous Lorentzian four-manifolds with diagonalizable Ricci operator. 
In [2], Astrakhantsev gave all semi-symmetric curvature tensors on a four dimensional Lorentzian vector 
space. Based on these three results, we prove the following two results.

Theorem 1.1. Let M be a four-dimensional Einstein Lorentzian manifold with non null scalar curvature. 
Then M is semi-symmetric if and only if it is locally symmetric.

Theorem 1.2. Let M be a simply connected homogeneous semi-symmetric 4-dimensional Lorentzian 
manifold. If the Ricci tensor of M has a non zero eigenvalue then M is symmetric and in this case it 
is a product of a space of constant curvature and a Cahen–Wallace space.

We start in Section 3 by proving Theorem 1.2 when M is Lie group endowed with a left invariant 
Lorentzian metric. In Section 4, we prove Theorems 1.1 and 1.2.

3. Having Theorem 1.2 in mind, to complete the classification of simply connected four-dimensional ho-
mogeneous semi-symmetric Lorentzian manifolds, we determine all simply connected four-dimensional 
semi-symmetric homogeneous Lorentzian manifolds with isotropic Ricci curvature. We will show that 
in this case (RicK)2 = 0 and K2 = 0. To determine these spaces we distinguish two cases:
(a) Simply connected four-dimensional homogeneous semi-symmetric Lorentzian manifolds with non 

trivial isotropy and satisfying (RicK)2 = 0. In Section 5, by using Komrakov’s classification of 
four-dimensional homogeneous pseudo-Riemannian manifolds [9], we give the list of such spaces. 
In Theorem 5.1, we give the list of four-dimensional homogeneous semi-symmetric non symmetric 
Lorentzian manifolds with non trivial isotropy and which are Ricci flat. In Theorem 5.2, we give 
the list of four-dimensional homogeneous semi-symmetric non symmetric Lorentzian manifolds 
with non trivial isotropy and which are not Ricci flat. We point out that there are four-dimensional 
homogeneous symmetric Lorentzian manifolds which are Ricci isotropic even Ricci flat non flat (see 
Remark 2).
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(b) Four dimensional semi-symmetric Lorentzian Lie groups with (RicK)2 = 0. We study these Lie 
groups in Section 6. We point out that the Ricci flatness of these Lie groups implies flatness and 
when RicK �= 0 they are of two types: indecomposable with 2-dimensional holonomy Lie algebra, 
and decomposable with one dimensional holonomy Lie algebra.

The computations in Sections 5 and 6 have been performed using a computation software.

2. Semi-symmetric curvature tensors on Lorentzian vector spaces

In this section, we prove the first result listed in the introduction, we recall Astrakhantsev’s list of 
semi-symmetric curvature tensors on a four dimensional Lorentzian vector space (see [2]) and we pull out 
from this list the results we will use later.

Let (V, 〈 , 〉) be a n-dimensional Lorentzian vector space. We identify V and its dual V ∗ by the means 
of 〈 , 〉. This implies that the Lie algebra V ⊗ V ∗ of endomorphisms of V is identified with V ⊗ V , the Lie 
algebra so(V, 〈 , 〉) of skew-symmetric endomorphisms is identified with V ∧ V and the space of symmetric 
endomorphisms is identified with V ∨V (the symbol ∧ is the outer product and ∨ is the symmetric product). 
For any u, v ∈ V ,

(u ∧ v)w = 〈v, w〉u− 〈u,w〉v and (u ∨ v)w = 1
2 (〈v, w〉u + 〈u,w〉v) .

Through this paper, we denote by Au,v the endomorphism u ∧ v. On the other hand, V ∧ V carries also a 
nondegenerate symmetric product also denoted by 〈 , 〉 and given by

〈u ∧ v, w ∧ t〉 := 〈u ∧ v(w), t〉 = 〈v, w〉〈u, t〉 − 〈u,w〉〈v, t〉.

We identify V ∧ V with its dual by means of this metric.
A curvature tensor on (V, 〈 , 〉) is a K ∈ (V ∧ V ) ∨ (V ∧ V ) satisfying the algebraic Bianchi’s identity:

K(u, v)w + K(v, w)u + K(w, u)v = 0, u, v, w ∈ V.

The Ricci curvature associated to K is the symmetric bilinear form on V given by ricK(u, v) = tr(τ(u, v)), 
where τ(u, v) : V −→ V is given by τ(u, v)(a) = K(u, a)v. The Ricci operator is the symmetric endomor-
phism RicK : V −→ V given by 〈RicK(u), v〉 = ricK(u, v). We call K Einstein (resp. Ricci isotropic) if 
RicK = λIdV (resp. RicK �= 0 and Ric2

K = 0). Note that if K = (u ∧ v) ∨ (w ∧ t) then

ricK = 〈u,w〉t ∨ v + 〈v, t〉u ∨ w − 〈v, w〉t ∨ u− 〈u, t〉v ∨ w.

We denote by h(K) the vector subspace of V ∧ V image of K, i.e., h(K) = span{K(u, v)/ u, v ∈ V }. 
A curvature tensor K is called semi-symmetric if it is invariant by h(K), i.e.,

[K(u, v),K(a, b)] = K(K(u, v)a, b) + K(a,K(u, v)b), u, v, a, b ∈ V. (3)

In this case, h(K) is a Lie subalgebra of so(V, 〈 , 〉) called primitive holonomy algebra of K. If K is semi-
symmetric then its Ricci operator is also invariant by h(K), i.e.,

K(u, v) ◦ RicK = RicK ◦ K(u, v), u, v ∈ V. (4)

We recall now the different types of symmetric endomorphisms in a Lorentzian vector space in order to 
determine the types of Ricci operator of a semi-symmetric curvature tensor.
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Theorem 2.1 (see [10]). Let (V, 〈 , 〉) be a Lorentzian vector space of dimension n ≥ 3 and f : V −→ V a 
symmetric endomorphism. Then there exists a basis B of V such that the matrices of f and 〈 , 〉 in B are 
given by one of the following types:

1. type {diag}: M(f, B) = diag(α1, ..., αn), M(〈 , 〉, B) = diag(+1, ..., +1, −1),

2. type {n − 2, zz̄}: M(f, B) = diag(α1, ..., αn−2) ⊕
(

a b

−b a

)
, b �= 0, M(〈 , 〉, B) = diag(+1, ..., +1, −1),

3. type {n, α2}: M(f, B) = diag(α1, ..., αn−2) ⊕
(
α 1
0 α

)
, M(〈 , 〉, B) = In−2 ⊕

(
0 1
1 0

)
,

4. type {n, α3}: M(f, B) = diag(α1, ..., αn−3) ⊕

⎛⎜⎝ α 1 0
0 α 1
0 0 α

⎞⎟⎠ , M(〈 , 〉, B) = In−3 ⊕

⎛⎜⎝ 0 0 1
0 1 0
1 0 0

⎞⎟⎠.

The following proposition gives the type of the Ricci operator associated to a curvature tensor satisfy-
ing (4).

Proposition 2.1. Let K be a curvature tensor on a Lorentzian vector space (V, 〈 , 〉) satisfying (4). Then its 
Ricci operator is either of type {diag} or {n, 02}. In particular, all its eigenvalues are real.

Proof. Since RicK is a symmetric endomorphism of (V, 〈 , 〉) then there exists a basis B of V such that the 
matrices of RicK and 〈 , 〉 in B have one of the forms listed in the statement of Theorem 2.1.

1. Suppose that the matrices of RicK and 〈 , 〉 are of type {n − 2, zz̄}. Put B = (e1, . . . , en−1, e, e). Then, 
for i = 1, . . . , n − 2,

RicK(ei) = αiei, RicK(e) = ae− be and RicK(e) = be + ae, b �= 0.

This shows that the sum of the eigenspaces associated to the real eigenvalues of RicK is E =
span{e1, . . . , en−2}. From (4), we can deduce that h(K) leaves invariant E and hence its orthogonal 
E⊥ = span{e, e}. So

b = 〈RicK(e), e〉 = 〈K(e, e)e, e〉 − 〈K(e, e)e, e〉 +
n−2∑
i=1

〈K(e, ei)e, ei〉 = 0,

which contradicts the fact that b �= 0.
2. Suppose that the matrices of RicK and 〈 , 〉 are of type {n, α2}. Put B = (e1, . . . , en−2, e, e) and remark 

that, for i = 1, . . . , n − 2,

RicK(ei) = αiei, RicK(e) = αe, RicK(e) = e + αe and 〈e, e〉 = 〈e, e〉 = 0, 〈e, e〉 = 1.

This shows that RicK has only real eigenvalues and the sum of the associated eigenspaces is E =
span{e, e1, . . . , en−2}. From (4), we can deduce that h(K) leaves invariant E. We have then

α = 〈RicK(e), e〉 = 〈K(e, e)e, e〉 + 〈K(e, e)e, e〉 +
n−2∑
i=1

〈K(e, ei)e, ei〉 = 〈K(e, e)e, e〉.

On the other hand,



A. Benroummane et al. / Differential Geometry and its Applications 56 (2018) 211–233 215
〈K(e, e)e, e〉 = 〈K(e, e)(RicK(e) − αe), e〉 = 〈K(e, e) ◦ RicK(e), e〉
(4)= 〈RicK ◦ K(e, e)e, e〉 = 〈K(e, e)e,RicK(e)〉

= 〈K(e, e)e, e + αe〉 = 〈K(e, e)e, e〉 = −〈K(e, e)e, e〉.

So α = 0.
3. Suppose that the matrices of RicK and 〈 , 〉 are of type {n, α3}. Put B = (e1, . . . , en−3, e, f, e) and 

remark that, for i = 1, . . . , n − 3,

RicK(ei) = αiei, RicK(e) = αe, RicK(f) = e + αf and RicK(e) = f + αe.

This shows that RicK has only real eigenvalues and the sum of the associated eigenspaces is E =
span{e, e1, . . . , en−3}. From (4), we can deduce that h(K) leaves invariant E. We have then

α = 〈RicK(e), e〉 = 〈K(e, e)e, e〉 + 〈K(e, f)e, f〉 + 〈K(e, e)e, e〉 +
n−3∑
i=1

〈K(e, ei)e, ei〉 = 〈K(e, e)e, e〉.

Furthermore,

〈K(e, e)e, e〉 = 〈K(e, e)(RicK(f) − αf), e〉
= 〈K(e, e) ◦ RicK(f), e〉 − α〈K(e, e)f, e〉
(4)= 〈K(e, e)f,RicK(e)〉 − α〈K(e, e)f, e〉
= 〈K(e, e)f, f + αe〉 − α〈K(e, e)f, e〉
= 0.

So α = 0. Thus

1 = 〈RicK(e), f〉 = 〈K(e, e)f, e〉 + 〈K(e, f)f, f〉 + 〈K(e, e)f, e〉 +
n−3∑
i=1

〈K(e, ei)f, ei〉 = 〈K(e, e)f, e〉.

On the other hand,

〈K(e, e)f, e〉 = 〈K(e, e)RicK(e), e〉 (4)= 〈K(e, e)e,RicK(e)〉 = 〈K(e, e)e, f〉 = −〈K(e, e)f, e〉.

This shows that 〈K(e, e)f, e〉 = 0 which contradicts what above and completes the proof. �
We give now the main result of this section which gives a useful decomposition of semi-symmetric cur-

vature tensors in a Lorentzian spaces.

Proposition 2.2. Let K be a semi-symmetric curvature tensor on a Lorentzian vector space (V, 〈 , 〉). Then all 
eigenvalues of RicK are real. Denote by α1, . . . , αr the non null eigenvalues and V1, . . . , Vr the corresponding 
eigenspaces. Then:

1. V splits orthogonally as V = V0 ⊕ V1 ⊕ . . .⊕ Vr, where V0 = ker(Ric)2,
2. for any u, v ∈ V and i = 0, . . . , r, Vi is h(K)-invariant,
3. for any i, j = 0, . . . , r with i �= j, K|Vi∧Vj

= 0,
4. for any i = 1, . . . , r, dimVi ≥ 2.
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Proof.

1. This is a consequence of Proposition 2.1.
2. This statement follows from (4).
3. Let u ∈ Vi, v ∈ Vj and a, b ∈ V . Since K(a, b)(Vi) ⊂ Vi and 〈Vi, Vj〉 = 0, we get

0 = 〈K(a, b)u, v〉 = 〈K(u, v)a, b〉

and hence K(u, v) = 0.
4. Suppose that dimVi = 1 for i = 1, . . . , r and choose a generator e of Vi such that 〈e, e〉 = ε with ε2 = 1

and complete to get an orthonormal basis (e, e1, . . . , en−1) with 〈ei, ei〉 = εi, ε2i = 1. For any a, b ∈ V , 
K(a, b) is skew-symmetric and leaves Vi invariant so K(a, b)e = 0. Now

εαi = 〈RicK(e), e〉 = ε〈K(e, e)e, e〉 +
n−1∑
i=1

εi〈K(e, ei)e, ei〉 = 0,

which is a contradiction and achieves the proof. �
This proposition reduces the determination of semi-symmetric curvature tensors on Lorentzian vector 

spaces to the determination of three classes of semi-symmetric curvature tensors: Einstein semi-symmetric 
curvature tensors on an Euclidean vector space, Einstein semi-symmetric curvature tensors on a Lorentzian 
vector space and Ricci isotropic semi-symmetric curvature tensors on a Lorentzian vector space.

We end this section by recalling the classification of semi-symmetric curvature tensors on four dimensional 
vector spaces given by Astrakhantsev in [2] and pulling out from it some results we will use later.

The idea behind Astrakhantsev’s classification is the following. Let K be a semi-symmetric curvature 
tensor on a Lorentzian vector space (V, 〈 , 〉). The space h(K) is actually a subalgebra of so(V, 〈 , 〉) and 
the semi-symmetry is equivalent to h(K).K = 0. So, one way to determine all semi-symmetric curvature 
tensors is to classify, up to equivalence, all proper subalgebras of so(V, 〈 , 〉) and for each one of them, say 
g, determine all the curvature tensors K satisfying h(K) = g and g.K = 0. In dimension four, this was done 
successfully in [2] and led to the following result.

Theorem 2.2 ([2]). Let (V, 〈 , 〉) be a four dimensional Lorentzian vector space and K a semi-symmetric 
curvature tensor on V . Then there exists an orthonormal basis (x, y, z, t) of V with 〈t, t〉 = −1 such that 
one of the following situations occurs:

1. dim h(K) = 1:

(a) K = aAp,x ∨Ap,x, 2[RicK ] =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 a − a

0 0 a − a

⎞⎟⎟⎟⎠, Ric2
K = 0,

(b) K = aAt,z ∨At,z, [RicK ] =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 −a 0
0 0 0 −a

⎞⎟⎟⎟⎠,

(c) K = aAy,x ∨Ay,x, [RicK ] =

⎛⎜⎜⎜⎝
a 0 0 0
0 a 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠,
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2. dim h(K) = 2:

(a) K = aAp,x ∨Ap,x + bAp,y ∨Ap,y + cAp,x ∨Ap,y, 2[RicK ] =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 a + b − a− b

0 0 a + b − a− b

⎞⎟⎟⎟⎠, Ric2
K = 0,

(b) K = aAt,z ∨At,z + bAy,x ∨Ay,x, [RicK ] =

⎛⎜⎜⎜⎝
a 0 0 0
0 a 0 0
0 0 −b 0
0 0 0 −b

⎞⎟⎟⎟⎠,

3. dim h(K) = 3:

(a) K = a(At,z ∨At,z + 2Ap,y ∨Ay,q), [RicK ] =

⎛⎜⎜⎜⎝
0 0 0 0
0 −2 a 0 0
0 0 −2 a 0
0 0 0 −2 a

⎞⎟⎟⎟⎠,

(b) K = a(Ax,y ∨Ax,y + Ax,z ∨Ax,z + Ay,z ∨Ay,z), [RicK ] =

⎛⎜⎜⎜⎝
2 a 0 0 0

0 2 a 0 0
0 0 2 a 0
0 0 0 0

⎞⎟⎟⎟⎠,

4. dim h(K) = 6, K = aIdV ∧V and RicK = −3aIdV .

On what above p = 1√
2(z + t), q = 1√

2(z− t), a, b, c are real parameters and [RicK ] is the matrix of RicK in 
the basis (x, y, z, t).

As a consequence of this theorem we get the following result.

Corollary 2.1. Let (V, 〈 , 〉) be a four dimensional Lorentzian vector space and K a semi-symmetric curvature 
tensor on V . Then:

1. If K is Einstein with dim h(K) �= 6 and RicK �= 0 then there exists an orthonormal basis (x, y, z, t) of 
V with 〈t, t〉 = −1 such that

K = a(At,z ∨At,z −Ay,x ∨Ay,x), a ∈ R
∗.

In particular, K is diagonalizable with a as an eigenvalue of multiplicity 2 and 0 as an eigenvalue of 
multiplicity 4.

2. If K is Ricci flat then there exists an orthonormal basis (x, y, z, t) of V with 〈t, t〉 = −1 such that

K = aAp,x ∨Ap,y, a ∈ R, p = 1√
2
(z + t).

In particular, K2 = 0.
3. If K is Ricci isotropic then there exists an orthonormal basis (x, y, z, t) of V with 〈t, t〉 = −1 such that

K = aAp,x ∨Ap,x + bAp,y ∨Ap,y + cAp,x ∨Ap,y, a, b, c ∈ R, a + b �= 0, p = 1√
2
(z + t).

In particular, K2 = 0.

Actually, in Section 6 we need a more simple form of Ricci isotropic semi-symmetric curvature tensors.
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Proposition 2.3. Let (V, 〈 , 〉) be a four dimensional Lorentzian vector space and K a semi-symmetric Ricci 
isotropic curvature tensor on V . Then there exists a basis (e, f, g, h) such that the non vanishing products 
are 〈e, e〉 = 〈f, f〉 = 〈g, h〉 = 1 and

K = ω1Ae,g ∨Ae,g + ω2Af,g ∨Af,g, ω1 + ω2 = ±1.

Proof. As in Corollary 2.1, put K = aAp,x ∨ Ap,x + bAp,y ∨ Ap,y + cAp,x ∨ Ap,y with a + b �= 0. If c = 0
we take e = x, f = y, g =

√
|a + b|p and h = q√

|a+b| , ω1 = a
|a+b| and ω2 = b

|a+b| . If c �= 0, we look for 
e = cos(α)x +sin(α)y, f = − sin(α)x +cos(α)y and ω′

1 and ω′
2 such that K = ω′

1Ae,p∨Ae,p +ω′
2Af,p∨Af,p. 

This is equivalent to

ω′
1 cos2(α) + ω′

2 sin2(α) = a, ω′
1 cos2(α) + ω′

2 sin2(α) = b and (ω′
1 − ω′

2) sin(2α) = c.

This equivalent to

ω′
1 + ω′

2 = a + b, ω′
1 − ω′

2 = c

sin(2α) and ω′
1 cos2(α) + ω′

2 sin2(α) = a.

Which is also equivalent to

ω′
1 = 1

2

(
a + b + c

sin(2α)

)
, ω′

2 = 1
2

(
a + b− c

sin(2α)

)
and tan2(α) + 2(a− b)

c
tan(α) − 1 = 0.

The last equation has a solution which completes the proof. �
We end this section by the following interesting remark.

Remark 1. By using Theorem 2.2, one can see easily that if RicK has a non zero eigenvalue then it is 
diagonalizable. Otherwise, Ric2

K = 0.

3. Four dimensional semi-symmetric Lorentzian Lie groups with Ricci curvature having a non zero 
eigenvalue are locally symmetric

In this section, we give some general properties of semi-symmetric Lorentzian Lie groups and we prove 
Theorem 1.2 when M is a Lorentzian Lie group.

A Lie group G together with a left-invariant pseudo-Riemannian metric g is called a pseudo-Riemannian 
Lie group. The metric g defines a pseudo-Euclidean product 〈 , 〉 on the Lie algebra g = TeG of G, and 
conversely, any pseudo-Euclidean product on g gives rise to an unique left-invariant pseudo-Riemannian 
metric on G.

We will refer to a Lie algebra endowed with a pseudo-Euclidean product as a pseudo-Euclidean Lie algebra. 
The Levi-Civita connection of (G, g) defines a product L : g × g −→ g called the Levi-Civita product and 
given by Koszul’s formula

2〈Luv, w〉 = 〈[u, v], w〉 + 〈[w, u], v〉 + 〈[w, v], u〉. (5)

For any u, v ∈ g, Lu : g −→ g is skew-symmetric and [u, v] = Luv − Lvu. We will also write u.v = Lvu. 
The curvature on g is given by K(u, v) = L[u,v] − [Lu, Lv]. It is well-known that K is a curvature tensor on 
(g, 〈 , 〉) and, moreover, it satisfies the differential Bianchi identity

Lu(K)(v, w) + Lv(K)(w, u) + Lw(K)(u, v) = 0, u, v, w ∈ g (6)
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where Lu(K)(v, w) = [Lu, K(v, w)] − K(Luv, w) − K(v, Luw). Denote by h(g) the holonomy Lie algebra of 
(G, g). It is the smallest Lie algebra containing h(K) = span{K(u, v) : u, v ∈ g} and satisfying [Lu, h(g)] ⊂
h(g), for any u ∈ g.

If we denote by Ru : g −→ g the right multiplication given by Ruv = Lvu, it is easy to check the following 
useful relation

K(u, .)v = −Rv ◦ Ru + Ru.v + [Rv,Lu]. (7)

We can also see easily that

[g, g]⊥ = {u ∈ g,Ru = R∗
u} and (g.g)⊥ = {u ∈ g,Ru = 0}. (8)

(G, g) is semi-symmetric iff K is a semi-symmetric curvature tensor of (g, 〈 , 〉). Without reference to any Lie 
group, we call a pseudo-Euclidean Lie algebra (g, 〈 , 〉) semi-symmetric if its curvature is semi-symmetric.

We introduce, for any nonunimodular pseudo-Euclidean Lie algebras g, the vector h defined by 〈u, h〉 =
tr(adu). We have obviously, h.h = 0 and since h ∈ [g, g]⊥, Rh is a symmetric endomorphism.

Let (g, 〈 , 〉) be a semi-symmetric Lorentzian Lie algebra. According to Proposition 2.2, g splits orthog-
onally as

g = g0 ⊕ g1 ⊕ . . .⊕ gr, (9)

where g0 = ker(Ric2) and g1, . . . , gr are the eigenspaces associated to the non zero eigenvalues of Ric. 
Moreover, K(gi, gj) = 0 for any i �= j and dim gi ≥ 2 if i �= 0. The following proposition gives more 
properties of the gi’s involving the Levi-Civita product.

Proposition 3.1. Let (g, 〈 , 〉) be a semi-symmetric Lorentzian Lie algebra. Then, for any i, j ∈ {1, . . . , r}
and i �= j,

gj .gi ⊂ gi, gi.gi ⊂ g0 + gi, g0.gi ⊂ gi, g0.g0 ⊂ g0, gi.g0 ⊂ g0 + gi.

Moreover, if dim g0 = 1 then for any u ∈ g0, u.u = 0 and, for any k ∈ N
∗, [Rk

u, Lu] = kRk+1
u . In particular, 

Ru is a nilpotent endomorphism.

Proof. We start by proving that, for any i ∈ {1, . . . , r} and any x ∈ g⊥i , Lxgi ⊂ gi. Fix i ∈ {1, . . . , r} and 
x ∈ g⊥i . For any u, v, w ∈ gi, by using the differential Bianchi identity, we get

Lx(K)(u, v, w) = −Lu(K)(v, x, w) − Lv(K)(x, u, w)

= −Lu(K(v, x)w) + K(Luv, x)w + K(v,Lux)w + K(v, x)Luw

− Lv(K(u, x)w) + K(Lvu, x)w + K(u,Lvx)w + K(u, x)Lvw

= K(Luv, x)w + K(v,Lux)w + K(Lvu, x)w + K(u,Lvx)w,

since, by virtue of Proposition 2.1, K(u, x) = K(v, x) = 0. This shows, also according to Proposition 2.1, 
that Lx(K)(u, v, w) ∈ gi. Now

Lx(K)(u, v, w) = Lx(K(u, v)w) − K(Lxu, v)w − K(u,Lxv)w − K(u, v)Lxw

= Lx(K(u, v)w) − K(Lxu, v)w − K(u,Lxv)w + K(v,Lxw)u + K(Lxw, u)v.
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Since Lx(K)(u, v, w) ∈ gi and K(g, g)gi ⊂ gi, we get Lx(K(u, v)w) ∈ gi. Having this property in mind, 
we will prove now that LxRic(u) ∈ gi. Choose an orthonormal basis (e1, . . . , en) which is adapted to the 
splitting (9) and put εi = 〈ei, ei〉. For any z ∈ g⊥i , we have

〈LxRic(u), z〉 = −〈Ric(u),Lxz〉 =
n∑

k=1

εi〈K(u, ek)ek,Lxz〉 = −
n∑

k=1

εi〈Lx(〈K(u, ek)ek), z〉 = 0.

We have used the fact that if ek ∈ gi then Lx(〈K(u, ek)ek) ∈ gi and if ek ∈ g⊥i then K(u, ek) = 0. Thus 
LxRic(u) = λiLxu ∈ gi where λi is the eigenvalues of Ric associated to the eigenspace gi. We conclude that 
Lxgi ⊂ gi which shows that, for any i, j ∈ {1, . . . , r} with i �= j, Lgj

gi ⊂ gi and Lg0gi ⊂ gi. Since L takes 
its values in so(g), the other inclusions follow immediately.

Suppose that dim g0 = 1 an choose a non null vector u ∈ g0. Since dim g0 = 1, g0 is nondegenerate and 
g0.g0 ⊂ g0 we get u.u = 0. Moreover, K(u, .) = 0 and hence from (7) [Ru, Lu] = R2

u. By induction, we 
deduce that, for any k ∈ N

∗, [Rk
u, Lu] = kRk+1

u . This implies that tr(Rk
u) = 0 for any k ≥ 2 and hence Ru is 

a nilpotent endomorphism. �
We will use the following lemma later.

Lemma 3.1. Let V be a pseudo-Euclidean vector space of dimension ≤ 3 and A, B are, respectively, an 
endomorphism and a skew-symmetric endomorphism such that [A, B] = A2. Then A = 0 or B = 0.

Proof. The relation [A, B] = A2 implies that, for any k ∈ N
∗, [Ak, B] = kAk+1 and tr(Ak) = 0 for k ≥ 2

which implies that A is nilpotent. If dimV = 2 we have [A, B] = 0 and if dimV = 3 we have [A2, B] = 0. 
To conclude it suffices to show that in a pseudo-Euclidean vector space of dimension ≤ 3 if N and B are, 
respectively, nilpotent and skew-symmetric satisfying [N, B] = 0 then B = 0 or N = 0. Suppose N �= 0 and 
denote by N c and Bc the associated complex endomorphisms of V ⊗ C.

If dimV = 2 and since [N, B] = 0 then there exists a basis of V ⊗ C such that

[N c] =
(

0 1
0 0

)
, [Bc] =

(
α 0
0 β

)
, {α, β} = {ıa,−ıa} or {α, β} = {a,−a}.

The condition [N, B] = 0 implies a = 0 and hence B = 0.
If dimV = 3 and since [N, B] = 0 then there exists a basis of V ⊗ C such that

[N c] =

⎛⎜⎝ 0 1 0
0 0 1
0 0 0

⎞⎟⎠ or

⎛⎜⎝ 0 0 0
0 0 1
0 0 0

⎞⎟⎠ , [Bc] =

⎛⎜⎝ α 0 0
0 β 0
0 0 0

⎞⎟⎠ , {α, β} = {ıa,−ıa} or {α, β} = {a,−a}.

The condition [N, B] = 0 implies a = 0 and hence B = 0. �
Let (G, h) be a four dimensional semi-symmetric Lorentzian Lie group with Ricci curvature having a 

non zero eigenvalue. By virtue of Remark 1, the Ricci tensor is diagonalizable and, according to (9) and 
Proposition 3.1, the Lie algebra g of G has one of the following types:

(S4λ) dim g = 4 and g = gλ with λ �= 0.
(S4μλ) g = gμ ⊕ gλ with dim gμ = dim gλ = 2, λ �= μ, λ �= 0, μ �= 0, gμ.gλ ⊂ gλ, gλ.gμ ⊂ gμ, gλ.gλ ⊂ gλ

and gμ.gμ ⊂ gμ.
(S401λ) g = g0 ⊕ gλ with dim g0 = 1, g0.gλ ⊂ gλ, g0.g0 ⊂ g0 and λ �= 0.
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(S402λ) g = g0 ⊕ gλ with dim gλ = 2, g0.gλ ⊂ gλ, g0.g0 ⊂ g0 and λ �= 0.

Here gλ = ker(Ric − λIdg) and g0 = ker(Ric2).
In [6], there is a classification of four-dimensional Lorentzian Einstein Lie algebras which are all locally 

symmetric. To complete showing that G is locally symmetric we need the following three propositions.

Proposition 3.2. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Lorentzian Lie algebra of type (S4μλ). 
Then gλ.gμ = gμ.gλ = 0 and hence g is the product of a two dimensional Euclidean Lie algebra with a two 
dimensional Lorentzian Lie algebra.

Proof. We have g = gμ ⊕ gλ with μ �= 0, λ �= 0, μ �= λ gμ.gμ ⊂ gμ, gλ.gλ ⊂ gλ, gλ.gμ ⊂ gμ and gμ.gλ ⊂ gλ. 
We can suppose that gμ is Euclidean and gλ is Lorentzian. According to Proposition 3.1, there exists an 
orthonormal basis (e, f) of gμ and an orthonormal basis (g, h) of gλ such that, in restriction to gμ, Lf

vanishes and, in restriction to gλ, Lh vanishes. So

Le = ae∧f+bg∧h, Lf = dg∧h, Lg = ue∧f+vg∧h, Lh = pe∧f, K(e, f) = −λe∧f and K(g, h) = −μg∧h.

We have

[e, f ] = ae, [e, g] = bh + uf, [e, h] = bg + pf, [f, g] = dh− ue, [f, h] = dg − pe, [g, h] = vg.

The relations

−μe ∧ f = L[e,f ] − [Le,Lf ] and − λg ∧ h = L[g,h] − [Lg,Lh]

are equivalent to a2 = −λ, v2 = μ, ab = vu = 0 and hence u = b = 0. Now the relation 0 = L[f,h] − [Lf , Lh]
is equivalent to ap = dv − bp = 0 and hence p = d = 0 and we get the result. �
Proposition 3.3. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Lorentzian Lie algebra of type (S401λ). 
Then g.g0 = 0, gλ.gλ ⊂ gλ and hence g the semi-direct product of g0 with the three dimensional pseudo-
Euclidean Lie algebra gλ of constant curvature and the action of g0 on gλ is by a skew-symmetric derivation.

Proof. We have g = g0 ⊕ gλ with dim g0 = 1, λ �= 0 and g0.gλ ⊂ gλ and g0.g0 = {0}. This implies that 
gλ.g0 ⊂ gλ. Choose a generator u of g0. According to Proposition 3.1, Ru is nilpotent and [Ru, Lu] = R2

u. 
But Ru(u) = 0 and Ru(gλ) ⊂ gλ and hence, according to Lemma 3.1, Ru = 0 or Lu = 0. Moreover, by 
virtue of Propositions 2.2 and 3.1, for any v, w ∈ gλ, K(v, w) = −λ

2 v ∧ w and K(u, .). = K(., .)u = 0. Let 
show that Ru = 0.

Suppose that Ru �= 0, hence Lu = 0 and R2
u = 0. Then ImRu is a one dimensional subspace of gλ. Choose 

a generator v = x.u ∈ ImRu. We have,

0 = L[u,x] − [Lu,Lx] = Lx.u.

So Lv = 0. Then, for any w ∈ gλ,

−λ

2 v ∧ w = L[v,w] − [Lv,Lw] = Lw.v.

Consider Rv : gλ −→ g. From the relation above, we have ker Rv = Rv. So there exists two linearly 
independent vectors v1, v2 ∈ gλ such that {v, v1, v2} is a basis of gλ, {v1.v, v2.v} are linearly independent 
with
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Lv1.v = −λv ∧ v1 and Lv2.v = −λv ∧ v2.

This implies that gλ.gλ ⊂ gλ and hence Ru = 0. Finally, Ru = 0.
Now D = Lu = adu is a skew-symmetric derivation of gλ. If gλ is unimodular then D = adv with v ∈ gλ

and since the metric on gλ is bi-invariant, for any w ∈ gλ, Lw = 1
2adw. So

K(u,w) = L[u,w] − [Lu,Lw] = 1
2ad[v,w] −

1
2 [adv, adw] = 0.

If gλ is nonunimodular then, for any v ∈ gλ adDv = [D, adv] and hence 0 = tr(adDv) = 〈Dv, h〉 which 
implies that Dh = 0. One can check easily that this condition suffices to insure that K(u, v) = 0 for any 
v ∈ gλ. �
Proposition 3.4. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Lorentzian Lie algebra of type (S402λ). 
Then g0.g = 0, gλ.gλ ⊂ gλ, gλ.g0 ⊂ g0 and hence g is the semi-direct product of the pseudo-Euclidean 
Lie algebra gλ with the abelian Lie algebra g0 and the action of gλ on g0 is given by skew-symmetric 
endomorphisms.

Proof. We have g = g0 ⊕ gλ with dim g0 = 2, g0.g0 ⊂ g0 and g0.gλ ⊂ gλ. Moreover, for any u ∈ g0 and 
v, w ∈ gλ, K(u, .). = K(., .)u = 0 and K(v, w) = −λ

2u ∧ v. Let first show that g0.g0 = {0}. Since g0 is 
a pseudo-Euclidean Lie algebra with vanishing curvature then g0.g0 = {0} when g0 is Euclidean. If g0 is 
Lorentzian then there exists a basis (e, f) of g0 with 〈e, f〉 = 1 such that

Le = ag ∧ h, Lf = ce ∧ f + bg ∧ h and [e, f ] = cf.

But the Lie algebra of skew-symmetric endomorphisms of a 2-dimensional pseudo-Euclidean vector space 
is abelian then, for any u, v ∈ g0, we have [Lu, Lv] = 0 and hence L[u,v] = 0. Thus cLf = 0 which implies 
g0.g0 = {0}.

Consider N = {u ∈ g0, Lu = 0}. Since g0.g0 = {0} and dim L(g0) ≤ 1 we have dimN ≥ 1. Suppose that 
dimN = 1. Therefore, we can choose an orthonormal basis (e, f) of g0 such that Le �= 0 and Lf �= 0. Since 
e.e = 0, Le left invariant e⊥. We have also 〈Rev, e〉 = 0 and hence Re leaves invariant e⊥. Since e.e = 0, we 
get from (7) that [Re, Le] = R2

e . According to Lemma 3.1, the restriction of Re to e⊥ vanishes and hence 
its vanishes. A same argument shows that Rf = 0 and hence for any u ∈ g0, Ru = 0. This implies that 
gλ.gλ ⊂ gλ. Now, for any u ∈ g0, Lu is a skew-symmetric derivation of gλ and hence Lu = 0. So we have 
shown that, for any u ∈ g0, Lu = 0. Let show now that gλ.gλ ⊂ gλ. Remark first that is equivalent to 
ImRu ⊂ g0 for any u ∈ g0.

Suppose that there exists u ∈ g0 such that ImRu �⊂ g0. This means that there exists v ∈ gλ such that 
v.u = v0 + v1 where v0 ∈ g0 and v1 ∈ gλ with v1 �= 0. Then Lv.u = L[v,u] = Lv1 = 0. Therefore, for any 
w ∈ gλ, Lw.v = −λ

2w ∧ v. This implies that gλ.gλ ⊂ gλ which is a contradiction. So we have proved so far 
that, for any u ∈ g0, Lu = 0, gλ.gλ ⊂ gλ and gλ.g0 ⊂ g0. So g is the semi-direct product of gλ with g0 and 
the action of gλ on g0 is given by skew-symmetric endomorphisms. �
4. Proof of Theorems 1.1 and 1.2

The proof is based on Corollary 2.1 and the following two theorems proved, respectively, in [8] and [5].

Theorem 4.1 ([8]). Let (M, g) be an oriented four-dimensional Lorentzian Einstein manifold whose curvature 
operator, treated as a complex-linear vector bundle morphism K̃ : ∧2TM −→ ∧2TM , is diagonalizable at 
every point and has complex eigenvalues that form constant functions M −→ C. Then (M, g) is locally 
homogeneous, and one of the following three cases occurs:
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(a) (M, g) is a space of constant curvature.
(b) (M, g) is locally isometric to the Riemannian product of two pseudo-Riemannian surfaces having the 

same constant Gaussian curvature.
(c) (M, g) is locally isometric to a Petrov’s Ricci-flat manifold.

Furthermore, (M, g) is locally symmetric in cases (a) − (b), but not in (c), and in case (c) it is locally 
isometric to a Lie group with a left-invariant metric.

Theorem 4.2 ([5]). Let (M, g) be a locally homogeneous Lorentzian four-manifold. If its Ricci operator is 
diagonalizable then (M, g) is either Ricci-parallel or locally isometric to a Lie group equipped with a left 
invariant Lorentzian metric.

Proof of Theorem 1.1. Suppose that M is semi-symmetric. For any p ∈ M , Kp is a semi-symmetric curva-
ture tensor on TpM . According to Corollary 2.1, its total curvature operator is diagonalizable as C-linear 
endomorphism of ∧2TpM with eigenvalues 0 and −λ

4 where λ is the scalar curvature. So the eigenvalues are 
constant and, according to Theorem 4.1, M is locally symmetric. �
Proof of Theorem 1.2. Let (M, g) be a simply connected homogeneous semi-symmetric Lorentzian four-
manifold with Ricci curvature having a non zero eigenvalue. According to Remark 1, Ric must be diago-
nalizable. So, according to Theorem 4.2, (M, g) is either Ricci-parallel or locally isometric to a Lie group 
equipped with a left invariant Lorentzian metric. If (M, g) is Ricci-parallel and has two distinct eigenvalues 
then, according to Theorem 7.3 in [5], M is locally symmetric. Suppose now that (M, g) is Einstein with 
non null scalar curvature. According to Corollary 2.1, the total curvature is diagonalizable and we can apply 
Theorem 4.1 to get that M is locally symmetric. If M is a Lorentzian Lie group, we have shown in section 3
that M is locally symmetric. This completes the proof. �
5. Four-dimensional Ricci flat and Ricci isotropic homogeneous semi-symmetric Lorentzian manifolds

In this section, we deal with non flat semi-symmetric four-dimensional Lorentzian manifolds with isotropic 
Ricci curvature. According to Remark 1, these manifolds satisfy Ric2 = 0.

We use Komrakov’s classification [9] of four-dimensional homogeneous pseudo-Riemannian manifolds 
and we apply the following algorithm to find among Komrakov’s list the pairs (g, g) corresponding to 
four-dimensional Ricci flat or Ricci isotropic homogeneous semi-symmetric Lorentzian manifolds.

Let M = G/G be an homogeneous manifold with G connected and g = g ⊕m, where g is the Lie algebra 
of G, g the Lie algebra of G and m an arbitrary complementary of g (not necessary g-invariant). The pair 
(g, g) uniquely defines the isotropy representation ρ : g −→ gl(m) by ρ(x)(y) = [x, y]m, for all x ∈ g, y ∈ m. 
Let {e1, . . . , er, u1, . . . , un} be a basis of g where {ei} and {uj} are bases of g and m, respectively. The 
algorithm goes as follows.

1. Determination of invariant pseudo-Riemannian metrics on M . It is well-known that invariant pseudo-
Riemannian metrics on M are in a one-to-one correspondence with nondegenerate invariant symmetric 
bilinear forms on m. A symmetric bilinear form on m is determined by its matrix B in {ui} and its 
invariant if ρ(ei)t ◦B + B ◦ ρ(ei) = 0 for i = 1, . . . , r.

2. Determination of the Levi-Civita connection. Let B be a nondegenerate invariant symmetric bilinear 
form on m. It defines uniquely an invariant linear Levi-Civita connection ∇ : ḡ −→ gl(m) given by

∇(x) = ρ(x), ∇(y)(z) = 1[y, z]m + ν(y, z), x ∈ g, y, z ∈ m,
2
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where ν : m ×m −→ m is given by the formula

2B(ν(a, b), c) = B([c, a]m, b) + B([c, b]m, a), a, b, c ∈ m.

3. Determination of the curvature. The curvature of B is the bilinear map K : m ×m −→ gl(m) given by

K(a, b) = [∇(a),∇(b)] −∇([a, b]m) − ρ([a, b]g), a, b ∈ m.

4. Determination of the Ricci curvature. It is given by its matrix in {ui}, i.e., ric = (ricij)1≤i,j≤n where

ricij =
n∑

r=1
Kri(ur, uj).

5. Determination of the Ricci operator. We have Ric = B−1ric.
6. Checking the semi-symmetry condition.

The following theorem gives the list of homogeneous with non trivial isotropy four dimensional semi-
symmetric non symmetric Lorentzian manifolds which are Ricci flat non flat.

Theorem 5.1. Let M = Ḡ/G be four-dimensional semi-symmetric non symmetric Ricci flat homogeneous 
Lorentzian manifold. Then M is isometric to one of the following models, where g = Re1 and that the only 
non trivial brackets [e1, ui] are indicated:

I) 1.41, ḡ = span{e1, u1, u2, u3, u4} with [e1, u2] = u1, [e1, u3] = u2 and B0 =

⎛⎜⎜⎜⎝
0 0 a 0
0 −a 0 0
a 0 b d

0 0 d c

⎞⎟⎟⎟⎠ (ac < 0);

(a) 1.41 : 9;

[u1, u3] = u1, [u2, u3] = re1 + u2 + u4, [u3, u4] = pu4 with c = 2ap2 + 2ap + 2ar,

(b) 1.41 : 10;

[u1, u3] = u1, [u2, u3] = re1 + u2, [u3, u4] = pu4 with p2 + p + r = 0,

(c) 1.41 : 11;

[u1, u3] = u1, [u2, u3] = re1 + u2 + u4, [u3, u4] = u1 − u4 with c = 2ar,

(d) 1.41 : 13;

[u2, u3] = re1 + u4, [u3, u4] = u4 with c = 2a(1 + r),

(e) 1.41 : 14;

[u2, u3] = re1, [u3, u4] = u4 with r = −1,

(f) 1.41 : 16;

[u2, u3] = −e1 + u4, [u3, u4] = u1 with c = −2a,
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(g) 1.41 : 19;

[u2, u3] = −e1 + u4, with c = −2a,

II) 2.52, ḡ = span{e1, e2, u1, u2, u3, u4} with [e1, u2] = −[e2, u4] = u1, [e1, u3] = −u2, [e2, u3] = u4 and 

B0 =

⎛⎜⎜⎜⎝
0 0 a 0
0 a 0 0
a 0 b 0
0 0 0 a

⎞⎟⎟⎟⎠;

(a) 2.52 : 2;

[u2, u3] = (1 + s)e1, [u3, u4] = (1 − s)e2 with p = −r2, s > 0,

(b) 2.52 : 3;

[u2, u3] = (r + s)e1 − u4, [u2, u4] = u1, [u3, u4] = (s− r)e2 − u2 with 4r = 1, s > 0.

The following theorem gives the list of homogeneous with non trivial isotropy four dimensional semi-
symmetric non symmetric Lorentzian manifolds which are not Ricci flat.

Theorem 5.2. Let M = Ḡ/G be four-dimensional semi-symmetric non symmetric homogeneous Lorentzian 
manifold satisfying Ric2 = 0 and Ric �= 0. Then M is isometric to one of the following models, where 
g = Re1 and that the only non trivial brackets [e1, ui] are indicated:

I) 1.12, ḡ = span{e1, u1, u2, u3, u4} with [e1, u2] = u3, [e1, u3] = −u1, B0 =

⎛⎜⎜⎜⎝
a 0 0 0
0 0 0 c

0 0 a 0
0 c 0 d

⎞⎟⎟⎟⎠ (ac < 0);

(a) 1.12 : 1;

[u1, u3] = −u2, [u1, u4] = u1, [u2, u4] = 2u2, [u3, u4] = u3 with 2ap2 + 2ap + 2ar − c �= 0,

(b) 1.12 : 2;

[u1, u4] = u1, [u2, u4] = pu2, [u3, u4] = u3 with p �= 0, 1,

II) 1.41, ḡ = span{e1, u1, u2, u3, u4} with [e1, u2] = u1, [e1, u3] = u2 and B0 =

⎛⎜⎜⎜⎝
0 0 a 0
0 −a 0 0
a 0 b d

0 0 d c

⎞⎟⎟⎟⎠ (ac < 0);

(a) 1.41 : 2;

[e1, u4] = e1, [u1, u4] = u1, [u3, u4] = −u3 with b �= 0

(b) 1.41 : 9;

[u1, u3] = u1, [u2, u3] = re1 + u2 + u4, [u3, u4] = pu4 with 2ap2 + 2ap + 2ar − c �= 0,
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(c) 1.41 : 10;

[u1, u3] = u1, [u2, u3] = re1 + u2, [u3, u4] = pu4 with p2 + p + r �= 0,

(d) 1.41 : 11;

[u1, u3] = u1, [u2, u3] = re1 + u2 + u4, [u3, u4] = u1 − u4 with c �= 2ar,

(e) 1.41 : 12;

[u1, u3] = u1, [u2, u3] = re1 + u2, [u3, u4] = u1 − u4 with r �= 0,

(f) 1.41 : 13;

[u2, u3] = re1 + u4, [u3, u4] = u4 with c �= 2a(1 + r),

(g) 1.41 : 15 and 17;

[u2, u3] = εe1 + u4, [u3, u4] = u1 with c + 2εa �= 0, ε = 0, 1,

(h) 1.41 : 16;

[u2, u3] = −e1 + u4, [u3, u4] = u1 with c �= −2a, a �= −c,

(i) 1.41 : 18 and 20;

[u2, u3] = εe1 + u4, ε = 0, 1,

(j) 1.41 : 19;

[u2, u3] = −e1 + u4, with c �= −2a,

III) 2.52, ḡ = span{e1, e2, u1, u2, u3, u4} with [e1, u2] = −[e2, u4] = u1, [e1, u3] = −u2, [e2, u3] = u4 and 

B0 =

⎛⎜⎜⎜⎝
0 0 a 0
0 a 0 0
a 0 b 0
0 0 0 a

⎞⎟⎟⎟⎠;

(a) 2.52 : 2;

[u1, u3] = u1, [u2, u3] = A, [u2, u4] = 2ru1, [u2, u3] = B,

with A = (p+s)e1+re2+u2−2ru4, B = −re1+(p−s)e2−2ru2−u4, r ≥ 0, s ≥ and p+r2 �= 0,

(b) 2.52 : 3;

[u2, u3] = −(r + s)e1 − u4, [u2, u4] = u1 , [u3, u4] = (s− r)e2 − u2 with 4r �= 1, s > 0.

Remark 2. They are four dimensional homogeneous Lorentzian manifolds which are symmetric and Ricci 
isotropic. For instance, 1.41 : 14 − 21 − 22 − 24 − 25 and 2.52 : 4 − 5 − 6 symmetric and satisfy Ric2 = 0. 
Moreover, 2.52 : 6 is symmetric, Ricci flat non flat with K2 = 0.
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6. Semi-symmetric Ricci isotropic four dimensional Lorentzian Lie algebras

Note first that if G is a Lie group with a semi-symmetric Ricci flat Lorentzian metric then, according 
to Corollary 2.1, K2 = 0. In the list obtained by Calvaruso–Zaeim [6], the condition K2 = 0 is equivalent 
to K = 0. To ’complete our study, we devote the reminder of this section to the determination of the list 
of the Lie algebras with their Lorentzian metrics associated to Lie groups with a left invariant Lorentzian 
metric which is semi-symmetric and Ricci isotropic.

Let (g, 〈 , 〉) be a Lorentzian Lie algebra with semi-symmetric Ricci isotropic curvature. According 
to Proposition 2.3, there exists a basis (e, f, g, h) a basis of g such that the non vanishing products are 
〈e, e〉 = 〈f, f〉 = 〈g, h〉 = 1 and

K = ω1Ae,g ∨Ae,g + ω2Af,g ∨Af,g, |ω1 + ω2| = 1, and h(K) = span{ω1Ae,g, ω2Af,g}. (10)

Let h(g) be the holonomy Lie algebra of g. It is the smallest Lie algebra containing h(K) and satisfying 
[Lu, h(g)] ⊂ h(g), for any u ∈ g. Before starting the computation, remark that if dim h(K) = 2 then g
is indecomposable, i.e., h(g) doesn’t leave any proper nondegenerate vector subspace. Indeed, if E is a 
nondegenerate vector subspace invariant by h(g) then E is invariant by Ae,g and Af,g and we can suppose 
that dimE = 1 or 2. If dimE = 1 then Ae,g(E) = Af,g(E) = 0 and hence E ⊂ {e, g}⊥ ∩ {f, g}⊥ = Rg

which is impossible. A same argument leads to a contradiction when dimE = 2.
Let us compute now the Levi-Civita product from the curvature. We distinguish three cases:

1. g is indecomposable with dim h(K) = 2. In this case we will show that h(g) = h(K).
2. g is indecomposable with dim h(K) = 1. In this case we will show that h(g) = span{Ae,g, Af,g}.
3. g is decomposable. In this case we will show that dim h(g) = 1.

Theorem 6.1. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Ricci isotropic Lorentzian Lie algebra 
with dim h(K) = 2. Then, there exists a basis (e, f, g, h) with the non vanishing products 〈e, e〉 = 〈f, f〉 =
〈g, h〉 = 1 and the non vanishing brackets have one of the following forms:

1. [e, f ] = (a − b)g, [e, h] = ε
√
ab + 1

2e + (b + x)f + zg, [f, h] = (a − x)e + ε
√
ab + 1

2f + yg, [g, h] =

2ε
√
ab + 1

2g, a �= b.
2. [e, f ] = (a − 2bc−1

2a )g, [e, h] = ce + 2bc−1
2a f + zg, [f, h] = ae + bf + yg, [g, h] = (c + b)g, a − 2bc−1

2a �= 0.
3. [e, h] = ae + xf + ag, [f, h] = −xe + af + yg, [g, h] = 2a2+1

2a g.
4. [e, h] = ε

√
2a2+1

2 e + (a + x)f + zg, [f, h] = (a − x)e + ε
√

2a2+1
2 f + yg, [g, h] = 2ε

√
2a2+1

2 g.
5. [e, h] = ce + (a + 2a3+a−2abc

b2−c2 )f + zg, [f, h] = (a − 2a3+a−2abc
b2−c2 )e + bf + yg, [g, h] = 2a2+b2+c2+1

b+c g.

In all what above ε2 = 1. Moreover, all the models above are not second-order locally symmetric and satisfy 
h(K) = h(g).

Proof. In this case, the curvature is given by (10) with ω1 �= 0 and ω2 �= 0. Put

[Le] =

⎛⎜⎜⎜⎝
0 a u1 c

−a 0 u2 l

−c −l −k 0
−u −u 0 k

⎞⎟⎟⎟⎠ , [Lf ] =

⎛⎜⎜⎜⎝
0 m v1 d

−m 0 v2 q

−d −q −r 0
−v −v 0 r

⎞⎟⎟⎟⎠ ,
1 2 1 2
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[Lg] =

⎛⎜⎜⎜⎝
0 s w1 u

−s 0 w2 z

−u −z −w 0
−w1 −w2 0 w

⎞⎟⎟⎟⎠ , [Lh] =

⎛⎜⎜⎜⎝
0 x p1 n

−x 0 p2 y

−n −y −b 0
−p1 −p2 0 b

⎞⎟⎟⎟⎠ .

The notation [A] designs the matrix of A in the basis (e, f, g, h). The differential Bianchi identity gives

0 = Le(K)(f, g) + Lf (K)(g, e) + Lg(K)(e, f) = −w2ω1Ae,g + w1ω2Ae,f ,

0 = Le(K)(f, h) + Lf (K)(h, e) + Lh(K)(e, f)

= (a(ω1 − ω2) − (2r + p2)ω1)Ae,g − (m(ω1 − ω2) − 2ω2k − p1ω2)Af,g + (u1ω2 + v2ω1)Ae,f

− (u2ω2 − v1ω1)Ag,h,

0 = Le(K)(g, h) + Lg(K)(h, e) + Lh(K)(e, g)

= −(2w − u1)ω1Ae,g − (s(ω1 − ω2) − u2ω2)Af,g + w2ω1Ae,f − w1ω1Ag,h,

0 = Lf (K)(g, h) + Lg(K)(h, f) + Lh(K)(f, g)

= (s(ω2 − ω1) + v1ω1)Ae,g − (2w − v2)ω2Af,g + w1ω2Ae,f − w2ω2Ag,h.

So w1 = w2 = 0 and

0 = u2ω2 − v1ω1 = u1ω2 + v2ω1 = (2w − u1)ω1 = (2w − v2)ω2 (11)

0 = s(ω1 − ω2) − v1ω1 = s(ω1 − ω2) − u2ω2 = a(ω2 − ω1) + (2r + p2)ω1 = m(ω2 − ω1) + (2k + p1)ω2.

Since ω1 �= 0 and ω2 �= 0 from (11) we get u1 = v2 = w = 0. On the other hand, since g.g = 0, we get from 
(7) [Rg, Lg] = R2

g. This implies that [Rk
g , Lg] = kRk+1

g for any k ∈ N. Thus tr(Rk
g ) = 0, of any k ≥ 2 and 

hence Rg is nilpotent, i.e, R4
g = 0. Or,

[Rg] =

⎛⎜⎜⎜⎝
0 v1 0 p1
u2 0 0 p2
−k −r 0 −b

0 0 0 0

⎞⎟⎟⎟⎠
and a direct computation shows that R4

g = 0 implies v1u2 = 0 and from (11) we get v1 = u2 = 0. The 
relation [Rg, Lg] = R2

g is equivalent to

sp1 = sp2 = sr = sk = −uk − rz + kp1 + rp2 + up1 + zp2 = 0.

We have two cases.

1. s �= 0. Then ω1 = ω2, |ω1| = 1/2 and p1 = p2 = k = r = 0. We consider the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(e, f) = L[e,f ] − [Le,Lf ] = aLe + mLf + (d− l)Lg − [Le,Lf ] = 0,
K(e, g) = L[e,g] − [Le,Lg] = sLf + (u− k)Lg − [Le,Lg] = 0,
K(e, h) = L[e,h] − [Le,Lh] = cLe + (l + x)Lf + nLg + kLh − [Le,Lh] = −ω1Ae,g,

K(f, g) = L[f,g] − [Lf ,Lg] = −sLe + (z − r)Lg − [Lf ,Lg] = 0,
K(f, h) = L[f,h] − [Lf , Lh] = (d− x)Le + qLf + yLg + rLh − [Lf , Lh] = −ω2Af,g,

K(g, h) = L − [L ,L ] = uL + zL + bL − [L ,L ] = 0.

(12)
[g,h] g h e f g g h
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From the second equation m = −u. From the fourth equation we get z = a and from the sixth equation 
we get b = 0. The equations become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 + u2 + sd− sl = 0,
ac− 2ul − aq = 0,

−uq + 2ad + cu = 0,
sl − a2 + u2 + sd = 0,
−cs + 2au + sq = 0,

ac− ul − ux + ns = 0,
c2 + dl + dx + nu + lx− ay + ω1 = 0,

cl + lq + qx + 2an− cx = 0,
ad− ax− uq + ys = 0,

cd− cx + qd + 2yu + qx = 0,
dl − lx + q2 + ay − dx− nu + ω2 = 0,

cu + ad + ax− ys = 0,
ul + aq − ux + ns = 0.

Then u2 = −sd, a2 = sl and c − q = 2s−1au. So

c2 + q2 + 2dl + 1 = (c− q)2 + 2qc + 2dl + 1 = 4s−2a2u2 − 2s−2a2u2 + 2qc + 1 = 0.

Thus cq = −1
2 − s−2a2u2. Since c − q = 2s−1au we get that c and −q are solutions of the equation 

X2 − 2s−1auX + 1
2 + s−2a2u2 = 0 and this equation has no real solution. In conclusion the case s �= 0

is impossible.
2. s = 0. From the first equation in (12) we get a2 + m2 = 0 and hence a = m = 0. From the second 

equation, we get u = 0, from the third equation we get p1 = 0, from the fourth equation we get z = 0
and from the fifth equation we get p2 = 0. Then (12) is now equivalent to

ω2k = kx = ω1r = rx = 0,

−cr + kd = −lr + kq = 0,

r(c + b + q) = k(c + b + q) = 0,

d(c + q − b) + 2rn + (q − c)x = 0,

l(c + q − b) + 2ky + (q − c)x = 0,

dl − lx + q2 + 2ry − qb− dx + ω2 = 0,

c2 + dl + dx + 2kn− cb + lx + ω1 = 0.

Then k = r = 0 and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
d(c + q − b) + (q − c)x = 0,
l(c + q − b) + (q − c)x = 0,

dl − lx + q2 − qb− dx + ω2 = 0,
c2 + dl + dx− cb + lx + ω1 = 0.

This is equivalent to



230 A. Benroummane et al. / Differential Geometry and its Applications 56 (2018) 211–233
d(c+q−b)+(q−c)x = 0, (d−l)(c+q−b) = 0, c2+q2+2dl+1 = b(q+c) and B = dl−lx+q2−qb−dx.

If d �= l then b = c + q, 2(dl − qc) = −1 and (q − c)x = 0. Since d and l play symmetric roles we can 
suppose d �= 0. We get two types of Lie algebras

[e, f ] = (d− l)g, [e, h] = ε

√
dl + 1

2e + (l + x)f + ng,

[f, h] = (d− x)e + ε

√
dl + 1

2f + yg, [g, h] = 2ε
√
dl + 1

2g, d �= l

or

[e, f ] = (d− 2qc− 1
2d )g, [e, h] = ce+ 2qc− 1

2d f+ng, [f, h] = de+qf+yg, [g, h] = (c+q)g, d− 2qc− 1
2d �= 0.

If d = l then b(q + c) = c2 + q2 + 2l2 + 1 and hence b + c �= 0. If q = c then we have two types of Lie 
algebras

[e, h] = ce + xf + ng, [f, h] = −xe + cf + yg, [g, h] = 2c2 + 1
2c g,

[e, h] = ε

√
2l2 + 1

2 e + (l + x)f + ng, [f, h] = (l − x)e + ε

√
2l2 + 1

2 f + yg, [g, h] = 2ε
√

2l2 + 1
2 g.

If q �= c then b = 2l2+q2+c2+1
q+c and x = 2l3+l−2lqc

q2−c2 . So

[e, h] = ce+(l+ 2l3 + l − 2lqc
q2 − c2

)f+ng, [f, h] = (d− 2l3 + l − 2lqc
q2 − c2

)e+qf+yg, [g, h] = 2l2 + q2 + c2 + 1
q + c

g.

For all these models we have L2
h,hK(f, h) �= 0 which shows that there are not second-order locally 

symmetric. Moreover, h(K) is invariant by L which shows that h(K) = h(g). �
Theorem 6.2. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Ricci isotropic indecomposable Lorentzian 
Lie algebra with dim h(K) = 1. Then, there exists a basis (e, f, g, h) with the non vanishing products 〈e, e〉 =
〈f, f〉 = 〈g, h〉 = 1 and the non vanishing brackets

[e, f ] = 2a2 + 1
2a g, [e, h] = 1

2a(2a2 − 1)f + xg, [f, h] = 2a(a2 − 1)
2a2 − 1 e + yg.

Moreover, h(g) = span{Ae,g, Af,g} and g is not second-order locally symmetric.

Proof. We proceed as in the proof of Theorem 6.1 and we suppose that ω1 = 0. Then (11) is equivalent to 
u1 = u2 = s = a = 0, v2 = 2w and m = −2k − p1. We have

[Re] =

⎛⎜⎜⎜⎝
0 0 0 0
0 −m 0 −x

−c −d −u −n

0 −v1 0 −p1

⎞⎟⎟⎟⎠ and [Rg] =

⎛⎜⎜⎜⎝
0 v1 0 p1
0 2w 0 p2
−k −r −w −b

0 0 0 0

⎞⎟⎟⎟⎠ .

From (7), we get [Rg, Lg] − R2
g − wRg = 0 which is equivalent to

w = v1(z − p2) = v1(u + k) = −uk − rz + kp1 + rp2 + up1 + zp2 = 0. (13)
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We have also [Re, Le] − R2
e − wRe = 0 which is equivalent to

cv1 = cp1 = −lv1 −m2 + v1x + cm = −lm− kx + lp1 − xm− p1x + cx = 0,

−ck + c2 = lu− lm− kd−md− du + v1n + cd

= −u2 + uc = −c2 − ld− 2kn− lx− xd− nu− p1n + cn = 0,

(−k + m + p1 − c)v1 = lv1 + v1x− p2
1 + cp1 = 0. (14)

If v1 �= 0 we get from (13) and (14) c = u = k = z = p2 = 0 and m = −p1 and (14) becomes

−lv1 −m2 + v1x = −2lm = lu− lm−md + v1n = −ld− lx− xd− nu + mn = lv1 + v1x−m2 = 0.

This implies that l = 0. We return to (12) and we find that the first equation implies m = x = y = n = b = 0
and from the fifth equation we deduce that q = 0 and ω2 = 0 which is impossible.

Thus v1 = 0 and hence p1 = 0. From the first equation in (12) we get m = 0, from the second equation we 
get u = 0, from the fourth equation we get z = 0, from the fifth equation we get p2 = 0. From m = −2k−p1
we get k = 0 and since c2 = ck we deduce that c = 0. Thus

Le = lAf,g, Lf = dAe,g + qAf,g − rAg,h, Lg = 0 and Lh = xAe,f + nAe,g + yAf,g − bAg,h,

and (12) is now equivalent to

xr = lr = ld+xd+ lx = lq+xq− lb = qd+2rn+xq− db = ld+ q2 +2ry− lx−xd− qb−B = r(q+ b) = 0.

If x = 0 then one can check easily that h(K) = span{Af,g} is invariant by L and hence h(K) = h(g) which 
leaves invariant Re and hence it is decomposable. Thus x �= 0. Then

r = 0, ld + xd + lx = lq + xq − lb = qd + xq − db = ld + q2 − lx− xd− qb + 1 = 0.

Since xq = lb − lq = db − qd we get (l − d)(q − b) = 0. If q = b then q = b = 0 and hence

r = 0, ld + xd + lx = 2ld + 1 = 0.

So x = d
2d2−1 and l = − 1

2d . In this case the Lie brackets are

[e, f ] = 2d2 + 1
2d g, [e, h] = 1

2d(2d2 − 1)f + ng, [f, h] = 2d(d2 − 1)
2d2 − 1 e + yg.

If q �= b then l = d and

r = 0, d = l = xq

b− q
, l2 + 2lx = 2l2 + q2 − qb + 1 = 0.

So

r = 0, d = l = xq

b− q
, x = − l

2 , b = 2l2 + q2 + 1
q

.

This implies that l(1 + q2

2l2+1 ) = 0 and hence x = 0. The semi-symmetric Lie algebras obtained satisfy 
L2
h,hK(f, h) �= 0 and hence are not second-order locally symmetric. �
To determine four-dimensional semi-symmetric Ricci isotropic Lorentzian decomposable Lie algebras, we 

need the following proposition.



232 A. Benroummane et al. / Differential Geometry and its Applications 56 (2018) 211–233
Proposition 6.1. Let (g, 〈 , 〉) be a three dimensional semi-symmetric Ricci isotropic Lorentzian Lie algebra. 
Then there exists a basis (e, f, g) of g such that the non vanishing products are 〈e, e〉 = 〈f, g〉 = 1 and the 
non vanishing Lie brackets have one of the following types:

(i) [e, f ] = af, [e, g] = be − ag + 1+2b2
2a f, [f, g] = −bf, a, b ∈ R, a �= 0.

(ii) [e, g] = ae + bf, [f, g] = 1+a2

a f, a, b ∈ R, a �= 0.

In both cases, g is not second-order locally symmetric and h(g) = h(K) = span{Ae,f}.

Proof. It is easy to see that there exists a basis (e, f, g) of g such that the non vanishing products are 
〈e, e〉 = 〈g, f〉 = 1 and K = Ae,f ∨Ae,f . Put

Le = aAe,f + bAe,g + cAf,g, Lf = xAe,f + yAe,g + zAf,g and Lg = pAe,f + qAe,g + rAf,g.

We have

Le(K)(f, g) = −K(Lef, g) − K(f,Leg) = bAe,f ,

Lf (K)(g, e) = [Lf , e ∧ f ] − K(Lfg, e) − K(g,Lfe) = ALfe,f + Ae,Lff + zK(g, e) = −yAg,f + 2zAe,f ,

Lg(K)(e, f) = −K(Lge, f) − K(e,Lgf) = 0.

So the differential Bianchi identity gives y = 0 and b = −2z. On the other hand, the relation 0 = L[e,f ] −
[Le, Lf ] is equivalent to z2 = x2 − az = 3xz − cz = 0 and hence z = y = b = x = 0. Now the relations 
−Ae,f = L[e,g] − [Le, Lg] and L[e,g] − [Le, Lg] = 0 are equivalent to

q2 = a2 + 1 − 2pc + pq + ar = ac− rc + rq + aq = aq = qc = 0.

Thus q = 0 and c(a − r) = a2 − 2cp + 1 + ar = 0. Therefore, the solutions are

(x = y = z = b = c = q = 0 and a2 + ar + 1 = 0) or (x = y = z = b = q = 0, c �= 0, a = r and

p = 2r2 + 1
2c ).

Hence

Le = aAe,f + cAf,g, Lf = 0 and Lg = pAe,f + rAf,g,

where (c = 0, a2 +ar+1 = 0) or (c �= 0, p = 2r2+1
2c ). In both cases it is easy to check that h(K) = span{Ae,f}

is invariant by L which shows that it is the holonomy Lie algebra. Moreover, for the first case we have 
L2
g,g(K)(e, g) = −6(1+a2)2

a2 Ae,f and in the second case L2
e,g(K)(e, g) = −4rcAe,f and L2

g,g(K)(e, g) = (1 −
4r2)Ae,f . This shows that in both cases g is not second-order locally symmetric. �
Proposition 6.2. Let (g, 〈 , 〉) be a four-dimensional semi-symmetric Ricci isotropic Lorentzian decomposable 
Lie algebra. Then g is a product of R with a Lie algebra as in Proposition 6.1.

Proof. In this case ω1 = 0 or ω2 = 0. We suppose ω1 = 0 and we consider the basis (e, f, g, h) where 
K = εAf,g ∨ Af,g with ε = ±1. Let E be a nondegenerate vector subspace of g invariant by the holonomy 
Lie algebra. We can suppose that dimE = 1 or dimE = 2. If dimE = 2 and since E must be invariant 
by Af,g then E ⊂ span{f, g} or E ⊂ span{f, g}⊥ which is impossible so dimE = 1. Let u be a generator 
of E. Since Af,g(u) = 0 then u ∈ span{e, g}. So u = e + αg. By making the change of basis (e, f, g, h)
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into (e + αg, f, g, h − αe) we can suppose u = e. Then the left invariant vector field associated to e must 
be parallel and hence Re = 0. Hence span{f, g, h} is a semi-symmetric Lie algebra of dimension 3 with 
isotropic Ricci curvature. According to Proposition 6.1 and its proof, Lf = aAf,g + cAg,h, Lg = 0 and 
Lh = pAf,g + rAg,h with (c = 0, a2 + ar + 1 = 0) or (c �= 0, p = 2r2+1

2c ). Put Le = xAf,g + yAf,h + zAg,h. 
The relation K(e, f) = 0 is equivalent to

y(pAf,g + rAg,h) + xcAg,f + yaAg,h + ycAf,h + zaAf,g = 0.

If c = 0 then y(r + a) = yp + za = 0. Since a �= −r we get y = z = 0. On the other hand, the relation 
K(e, h) = 0 gives xaAf,g + xrAf,g = 0 and hence x = 0.

If c �= 0 then y = 0 and xc = za. The relation K(e, h) = 0 gives

x(aAf,g + cAg,h) − xrAg,f − zpAf,g = 0.

So x = 0 and z = 0. Thus Le = 0 which completes the proof. �
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