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1. Introduction

A contravariant pseudo-Hessian manifold is an affine manifold (M, V) endowed with a symmetric bivector
field h such that, for any «, 8,7 € Q}(M),

(Varh)(B,7) = (Vazh)(a,7), (1.1)

where o = hy(a), B# = hy(B) and hy : T*M — TM is the contraction. We will refer to (1.1) as
contravariant Codazzi equation. These manifolds were introduced in [2] as a generalization of pseudo-Hessian
manifolds. Recall that a pseudo-Hessian manifold is an affine manifold (M, V) with a pseudo-Riemannian
metric g satisfying the Codazzi equation
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for any X,Y,Z € I'(T'M). The book [13] is devoted to the study of Hessian manifolds which are pseudo-
Hessian manifolds with a Riemannian metric.

In this paper, we study contravariant pseudo-Hessian manifolds. The passage from pseudo-Hessian man-
ifolds to contravariant pseudo-Hessian manifolds is similar to the passage from symplectic manifolds to
Poisson manifolds and this similarity will guide our study. Let (M, V, h) be a contravariant pseudo-Hessian
manifold. We will show that 7% M has a Lie algebroid structure, M has a singular foliation whose leaves are
pseudo-Hessian manifolds and 7'M has a Poisson tensor whose symplectic leaves are pseudo-Kéhlerian man-
ifolds. We investigate an analog of Darboux-Weinstein’s theorem and we show that it is not true in general
but holds in some cases. We will study in details the correspondence which maps a contravariant pseudo-
Hessian bivector field on (M, V) to a Poisson bivector field on 7M. We study affine, linear and quadratic
contravariant pseudo-Hessian structures on vector spaces and we show that an affine contravariant pseudo-
Hessian structure on a vector space V is equivalent to an associative commutative algebra product and a
2-cocycle on V*. We study right invariant contravariant pseudo-Hessian structures on a Lie group G and
we show that T'G has a structure of Lie group (different from the one associated to the adjoint action) for
which the associated Poisson tensor is right invariant. We show that a right invariant contravariant pseudo-
Hessian structure on a Lie group is equivalent to a S-matrix on the associated left symmetric algebra (see
[1,3]) and we associate to any S-matrix on a left symmetric algebra g a solution of the classical Yang-Baxter
equation on g x g. Finally, we show that an action of a left symmetric algebra g on an affine manifold (M, V)
transforms a S-matrix on g to a contravariant pseudo-Hessian bivector field on (M, V). Since the Lie algebra
of affine vector fields of (M, V) has a natural structure of finite dimensional associative algebra, we have a
mean to define contravariant pseudo-Hessian structures on any affine manifold. The paper contains many
examples of contravariant pseudo-Hessian structures.

The paper is organized as follows. In Section 2, we give the definition of a contravariant pseudo-Hessian
manifold and we investigate its properties. In Section 3, we study in details the Poisson structure of the
tangent bundle of a contravariant pseudo-Hessian manifold. Section 4 is devoted to the study of linear and
affine contravariant pseudo-Hessian structures. Quadratic contravariant pseudo-Hessian structures will be
studied in Section 5. In Section 6, we study right invariant pseudo-Hessian structures on Lie groups.

2. Contravariant pseudo-Hessian manifolds: definition and principal properties
2.1. Definition of a contravariant pseudo-Hessian manifold
Recall that an affine manifold is a n-manifold M endowed with a maximal atlas such that all transition

functions are restrictions of elements of the affine group Aff(R™). This is equivalent to the existence on M
of a flat connection V, i.e., torsionless and with vanishing curvature (see [13] for more details). An affine

coordinates system on an affine manifold (M, V) is a coordinates system (z1,...,z,) satisfying V9., = 0
foranyi=1,...,n.
Let g be a pseudo-Riemannian metric on an affine manifold (M,V). The triple (M,V,g) is called a
pseudo-Hessian manifold if g can be locally expressed in any affine coordinates system (z1,...,z,) as
_ 9%
9ij = o0z

That is equivalent to g satisfying the Codazzi equation (1.2). When g is Riemannian, we call (M,V,g) a
Hessian manifold. The geometry of Hessian manifolds was studied intensively in [13].
We consider now a more general situation.
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Definition 2.1 (/2/). Let h be a symmetric bivector field on an affine manifold (M, V) and hy : T*M — TM
the associated contraction given by B(a#) = h(a, ) where a# := hy(a). The triple (M, V,h) is called a
contravariant pseudo-Hessian manifold if h satisfies the contravariant Codazzi equation

(Vazh)(B,7) = (Vgzh)(a,7), (2.1)

for any a, 3,7 € Q(M). We call such h a pseudo-Hessian bivector field.

One can see easily that if (M,V,g) is a pseudo-Hessian manifold then (M,V,g~!) is a contravariant
pseudo-Hessian manifold.
The following proposition is obvious and gives the local expression of the equation (2.1) in affine charts.

Proposition 2.2. Let (M, V, h) be an affine manifold endowed with a symmetric bivector field. Then h satisfies
(2.1) if and only if, for any m € M, there exists an affine coordinates system (z1,...,%,) around m such
that forany 1 <i<j<nandanyk=1,...,n

> [hads, (hjk) — hjds, (hir)] =0, (2.2)
1=1

where h;; = h(dz;,dz;).
Example 2.3.

1. Take M = R"™ endowed with its canonical affine structure and consider

n

h = Z fl(xz)azl &® 8:@»3

=1

where f; : R — R for 2 = 1,...,n. Then one can see easily that h satisfies (2.2) and hence defines a
contravariant pseudo-Hessian structure on R™.
2. Take M = R™ endowed with its canonical affine structure and consider

h = zn: xlxjc‘?ml ® 81-]..

1,J=1

Then one can see easily that h satisfies (2.2) and hence defines a contravariant pseudo-Hessian structure
on R™.

3. Let (M, V) be an affine manifold, (X1,...,X,) a family of parallel vector fields and (a; ;)i<ij<n @
symmetric n-matrix. Then

h= Zai,in ® Xj

(2]
defines a contravariant pseudo-Hessian structure on M.
2.2. The Lie algebroid of a contravariant pseudo-Hessian manifold
We show that associated to any contravariant pseudo-Hessian manifold there is a Lie algebroid structure

on its cotangent bundle and a Lie algebroid flat connection. The reader can consult [9,12] for more details
on Lie algebroids and their connections.
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Let (M, V,h) be an affine manifold endowed with a symmetric bivector field. We associate to this triple
a bracket on Q'(M) by putting

[, B]n 1= V2B — Vsa, (2.3)
and a map D : Q}(M) x QY(M) — Q(M) given by
< DB, X == (Vxh)(a,B)+ < Vor8,X >, (2.4)
for any o, 8 € Q}(M) and X € I'(TM). This bracket is skew-symmetric and satisfies obviously
@, Bln = Do —Dpa and  [a, fB]n = fla, Bln + o (f)B,
where f € C®°(M),a, B € Q1 (M).
Theorem 2.4. With the hypothesis and notations above, the following assertions are equivalent:

(i) h is a pseudo-Hessian bivector field.
(#3) (T*M,hy,[, |n) is a Lie algebroid.

In this case, D is a connection for the Lie algebroid structure (T*M, hy, |, |n) satisfying
(DaB)* =V ouB# and Rp(a,B) = Diag), — DaDs + DsDa =0,
for any a, 8 € QY (M).

Proof. According to [2, Proposition 2.1], (T*M, hy,[ , |x) is a Lie algebroid if and only if, for any affine
coordinates system (z1,...,Zn),

([dzi, dzj]n)* = [(dz;)*, (dz;)#] and f. [dz;, [dzj, dxg]p]n = 0,
4,5,k
for 1 <i < j < k <n. Since [dz;,dz;], = 0 this is equivalent to [(dz;)#, (dz;)#] =0forany 1 <i<j<n

which is equivalent to (2.2).
Suppose now that (i) or (ii) holds. For any, a, 3, € Q' (M),

< DafB,7* = = V.sh(e, B) + h(VisB,7)
= va#h(’)/a ﬂ) + h(VZ#ﬂ,’Y)
= a®.h(B,7) — M(Vis7, B)
==, Va#ﬂ# =
This shows that (Do8)# = V 4 6%.

Let us show now that the curvature of D vanishes. Since [dz;, dz;|, = 0, it suffices to show that, for any
i,5,k € {1,...,n} with i < j, Daz,Dye,dTr = Dz, Dye,dx). We have

0 Oh;k
Dy, dzg, — ==
= Dz, 0Tk ox; ~ ox;

and hence
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h
Diz,dzy = Z o kd:z:l

Ox;
and then
Dy ; Dz, dxy, = ;Dd% (%}Zf dzl)
5 (i (2 2 5 )
B lz,r:hjr (36 89:1) o Z %}Zlk ég;il
-3 (o () + o)
g (S G o
So

Oh; Oh; .
D, Dio, dtk — Daa; Daw,dzk = d (Z (hjrg’“ - hﬁ)) Do =0 o

The following result is an important consequence of Theorem 2.4.

Proposition 2.5 (/3, Theorem 6.7]). Let (M,V,h) be a contravariant pseudo-Hessian manifold. Then:

1. The distribution Imhy is integrable and defines a singular foliation L on M.
2. For any leaf L of L, (L,V1,g1) is a pseudo-Hessian manifold where g, is given by gr(a®,5#) =

h(a, B).
We will call the foliation defined by Imhy the affine foliation associated to (M,V,h).

Remark 2.6. This proposition shows that pseudo-Hessian bivector fields can be used either to build examples
of affine foliations on affine manifolds or to build examples of pseudo-Hessian manifolds.

For the reader familiar with Poisson manifolds what we have established so far shows the similarities
between Poisson manifolds and contravariant pseudo-Hessian manifolds. One can consult [7] for more details
on Poisson geometry. Poisson manifolds have many relations with Lie algebras and we will see now and in
Section 4 that contravariant pseudo-Hessian manifolds are related to commutative associative algebras.

Let (M, V, h) be a contravariant pseudo-Hessian manifold and D the connection given in (2.4). Let z € M
and g, = ker hy(z). For any a, 8 € QY (M), (DoB)# = V44 % . This shows that if o = 0 then (D,8)# =
Moreover, Do 8 — Dga = V%8 — Vgsa. This implies that if o = 87 = 0 then DoS(z) = Dpa(z). For
any a,b € g, put

aeb=(Daf)(x),
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where a, 3 are two differential 1-forms satisfying a(z) = a and B(z) = b. This defines a commutative product
on g, and moreover, by using the vanishing of the curvature of D, we get:

Proposition 2.7. (g;,®) is a commutative associative algebra.
Near a point where h vanishes, the algebra structure of g, can be made explicit.
Proposition 2.8. We consider R™ endowed with its canonical affine connection, h a symmetric bivector field

on R™ such that h(0) =0 and (R™,V,h) is a contravariant pseudo-Hessian manifold. Then the product on
(R™)* given by

e N=Ohij
=3 S0

s associative and commutative.
Proof. It is a consequence of the relation Dys,dz; = dhs; true by virtue of (2.4). O

2.8. The product of contravariant pseudo-Hessian manifolds and the splitting theorem

As the product of two Poisson manifolds is a Poisson manifold [15], the product of two contravariant
pseudo-Hessian manifolds is a contravariant pseudo-Hessian manifold.

Let (M1,V?!, k') and (M>, V2, h?) be two contravariant pseudo-Hessian manifolds. We denote by p; :
M = M; x My — M;,i = 1,2 the canonical projections. For any X € I'(T'M;) and Y € T'(TM,), we
denote by X + Y the vector field on M given by (X + Y')(mq,mg) = (X (m1),Y (m2)). The product of the
affine atlases on M; and M, is an affine atlas on M and the corresponding affine connection is the unique
flat connection V on M satisfying Vx, 1y, (X2 + Y2) = V}{lYl + V§(2Y2, for any X;,X2 € T'(TM;) and
Y1,Ys € T'(TMs). Moreover, the product of h; and hs is the unique symmetric bivector field h satisfying

h(pio,pias) = h' (a1, a2) o p1, h(p5P1,p5B2) = h*(B1,B2) op2 and  h(pias,p3B1) =0,
for any 1,81 € QY(M1), az, B2 € Q' (My),
Proposition 2.9. (M, V,h) is a contravariant pseudo-Hessian manifold.

Proof. Let (my,my) € M. Choose an affine coordinates system (z1,...,Z,,) near m; and an affine coordi-
nates system (yi,...,Yn,) Dear mg. Then

h=> hijopi0s, ®0z, + Y hiy 0 p20y, ® 0,
i, L,k

and one can check easily that h satisfies (2.2). O

If we pursue the exploration of the analogies between Poisson manifolds and contravariant pseudo-Hessian
manifolds we can ask naturally if there is an analog of the Darboux-Weinstein’s theorem (see [15]) in the
context of contravariant pseudo-Hessian manifolds. More precisely, let (M, V, h) be a contravariant pseudo-
Hessian manifold and m € M where rankhx(m) = r. One can ask if there exists an affine coordinates
system (Z1,...,Zr,Y1,---,Yn—r) such that
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T n—r
h=>" hij(@1,...,2:)0, ®0u; + Y fijW1,--- Yn—r)By ® Dy,
i,j=1 t,j=1

2
where (h;;)1<ij<r is invertible and its the inverse of ( 33 (,;bz_ and f;;(m) = 0 for any 4, j. Moreover,
= - T J

) 1<i,j<r

if the rank of hy is constant near m then the functions f;; vanish.
The answer is no in general for a geometric reason. Suppose that m is regular, i.e., the rank of A is

constant near m and suppose that there exists an affine coordinates system (z1,...,Zr,Y1,.-.,Yn_r) Such

that

h = Z hij(z1,. .., Tr)0z, ® Oa,.

i,j=1

This will have a strong geometric consequence, namely that Imhy = span(9,,,...,0;,) and the associated
affine foliation is parallel, i.e., if X is a local vector field and Y is tangent to the foliation then VY is
tangent to the foliation. We give now an example of a regular contravariant pseudo-Hessian manifold whose
associated affine foliation is not parallel which shows that the analog of Darboux-Weinstein is not true in
general.

Example 2.10. We consider M = R* endowed with its canonical affine connection V, denote by (z,v, 2, t)
its canonical coordinates and consider

X = cos(t)0y +sin(t)0y + 0,, Y = —sin(t)0, + cos(t)dy, and h=XQY +Y ® X.

We have VxX = VyX = VxY = VyY = 0 and hence h is a pseudo-Hessian bivector field, Imhy =
span{X,Y} and the rank of h is constant equal to 2. However, the foliation associated to Imh is not
parallel since Vg,Y = —X + 0, ¢ Imhy.

However, when h has constant rank equal to dim M — 1, we have the following result and its important
corollary.

Theorem 2.11. Let (M, V, h) be a contravariant pseudo-Hessian manifold and meM such that m is a reqular

point and the rank of hy(m) is equal to n — 1. Then there exists an affine coordinates system (x1,...,Tn)
around m and a function f(zy,...,2,) such that
n—1
h="Y" hijOs, ® 0y,
4,j=1

2
and the matriz (hi;j)i<ij<n—1 18 invertible and its inverse is the matric (%)Ki%n 1
<iyj< 9z; )1<i j<n—

Corollary 2.12. Let (M,V,h) be a contravariant pseudo-Hessian manifold with h of constant rank equal to
dim M — 1. Then the affine foliation associated to Imhy is V-parallel.

In order to prove this theorem, we need the following lemma.

Lemma 2.13. Let f : R2 — R be a differentiable function such that 8,(f) + f0,(f) = 0. Then f is a
constant.

Proof. Let f be a solution of the equation above. We consider the vector field X = 0, + f0y. The integral
curve (z(t),y(t)) of Xy passing through (a,b) € R? satisfies
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'(t)=1, y'(t)=f(z(t),y(t) and (z(0),y(0)) = (a,b).
Now
y" () = 0:(f) (1), y (1)) + ' (1) 0y (f)(2(t), y(t)) = 0

and hence, the flow of X is given by ¢(¢, (z,y)) = (t + z, f(z,y)t + y). The relation ¢(t + s, (z,y)) =
o(t, d(s, (z,y))) implies that the map F(z,y) = (1, f(z,y)) satisfies

F(u+tF(u)) = F(u), u € R%,t € R.
Let u,v € R? such that F(u) and F(v) are linearly independent. Then there exists s,¢ € R such that

u—v = tF(u) + sF(v) and hence F(u) = F(v) which is a contradiction. So F(z,y) = a(z,y)(a,b), ie.,
1, f(z,y)) = (a(z,y)a, a(z,y)b) and o must be constant and hence f is constant. 0O

Proof of Theorem 2.11. Let (xy,...,x,) be an affine coordinates system near m such that (Xi,...,X,_1)
n—1

are linearly independent in a neighborhood of m, where X; = (dz;)#, X,, = Z f;X; and, by virtue of the
j=1

proof of Theorem 2.4, for any 1 <14 < j <n, [X;,X,;| =0.Forany i =1,...,n—1, the relation [X;, X,,] =0
is equivalent to

n—1
Xi(f;) = hin0s, (£;) + > hadz (f;) =0, j=1,...,n—1.
1=1
n—1
But hip = Xn(z;) = Z fihiy and hence, for any 4,7 =1,...n —1,
=1

n—1

3" ha(fiBe, (i) + 0a(f3)) = 0.

=1

Or the matrix (hj)1<s,j<n—1 is invertible so we get

fi0s,(f§) + 02,(f) =0, Lj=1,...,n—1 (2.5)

For [ = j we get that f; satisfies f;0z, (f;j)+0z,;(f;) = 0 so, according to Lemma 2.13, 0, (f;) = 0z, (f;) =0
and, from (2.5), f; = constant. We consider y = fi1 + ... + fn—1ZTn—1 — Tn, we have (dy)¥ = 0 and
(z1,...,%Zn—1,y) is an affine coordinates system around m.

On the other hand, there exists a coordinates system (z1,...,2,) such that

(dfl"z‘)#=8zi, i=1,...,n—1.

We deduce that

n—1
0z, =Y hY0,,i=1,...,n—1,
j=1

with A = Z—;i. We consider o = En_l zjdz;. We have do = 0 so according to the foliated Poincaré Lemma

j=1
(see [5, p. 56]) there exists a function f such that " = %@ch{ i
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2.4. The divergence and the modular class of a contravariant pseudo-Hessian manifold

We define now the divergence of a contravariant pseudo-Hessian structure. We recall first the definition
of the divergence of multivector fields associated to a connection on a manifold.
Let (M, V) be a manifold endowed with a connection. We define divy : I'(®PTM) — I'(®P~1TM) by

dive(T)(oa, ..., 0p-1) = ¥ _ Ve, (T)(€],01,...,0p 1),

where a1,...,0p_1 € Ty M, (e1,...,e,) abasis of T, M and (e3, ..., e}) its dual basis. This operator respects
the symmetries of tensor fields.

Suppose now that (M, V,h) is a contravariant pseudo-Hessian manifold. The divergence of this structure
is the vector field divy(h). This vector field is an invariant of the pseudo-Hessian structure and has an
important property. Indeed, let dj : ['(A*TM) — T'(A**1TM) be the differential associated to the Lie
algebroid structure (T*M, hy,[, |5) and given by

p
dpQ(ai,...,ap) = Z(—l)jﬂaf.Q(al, cey @y Op)

=1

+ Z (—1)i+jQ([ai, aj]h, A1y ,di, e ,ij, . ,ap).

1<i<j<p
Proposition 2.14. dj,(divy(h)) = 0.

Proof. Let (z1,...,zy) be an affine coordinates system. We have

dpdivy (h)(a, B)

[

(¥ Vo, (R)(dzs, B) — B Va,, (R)(dzs, @) — Vo, (h)(dzi, Var B) + Va,, (h)(dzi, Vg#a))

=1

Il

(Vo#Va,, (h)(dzi, B) — V4 Va,, (h)(dz:i, )
1

Z (V[a#a 1(h)(dzi, B) — V[ﬂ#,azi](h)(dmi,a)>-

2

If we take a = dx; and 8 = dzg, we have

n

[0z, (dml)#] = Z 0z, (hmi)0s,,

m=1
and hence

n

dhdivv(h)(a, ,3) = Z (6:(:4_ (hml)accm(h'ik) - amz (hmk)amm (h'tl)) =0. O

i,m=1

Let (M, V,h) be an orientable contravariant pseudo-Hessian manifold and 2 a volume form on M. For
any f we denote by X = hx(df) and we define Mq : C*(M,R) — C*(M,R) by putting for any
f e C®(M,R),
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Vx, 92 = Mq(f)Q.

It is obvious that Mg is a derivation and hence a vector field and M,sq = X¢+Mgq. Moreover, if (z1,...,2Zn)
is an affine coordinates system and p = Q(9,,...,0;,) then

VXfQ(aﬂfu s vawn) = Xf(/J') = X |u|(f):u‘

So in the coordinates system (z1,...,Zn), we have Mg = Xj,|,|. This implies d,Mgq = 0. The cohomology
class of M doesn’t depend on 2 and we call it the modular class of (M, V,h).

Proposition 2.15. The modular class of (M, V,h) vanishes if and only if there exists a volume form Q such
that Vx,Q =0 for any f € C*°(M,R).

By analogy with the case of Poisson manifolds, one can ask if it is possible to find a volume form 2 such
that Lx,Q = 0 for any f € C*°(M,R). The following proposition gives a negative answer to this question

unless h = 0.

Proposition 2.16. Let (M, V,h) be an orientable contravariant pseudo-Hessian manifold. Then:

1. For any volume form Q and any f € C*°(M,R),

Lx,Q = [Mq(f)+divy(h)(f)+ < h,Hess(f) >] Q
where Hess(f)(X,Y) = Vx(df)(Y) and < h,Hess(f) > is the pairing between the bivector field h and
the 2-form Hess(f).
2. There exists a volume form Q such that Lx,Q =0 for any f € C*°(M,R) if and only if h = 0.

Proof. 1. Let (z1,...,2n) be an affine coordinates system. Then:

[Xf>ami] = Z [890] (f)h’jla-'tz?ami]
l

n

== > (~102.0;(f) + B, (£)a. (hj1)) Oa,

l,j=1
Lx; U0y, 100,) = (Vx, Q) (Byr--,05,) = > U (Oays -, [X,02,],-.,05,))
=1
= (Vx,)(0s,,...,0 Z (hji02,00,(f) + Oz, (£)0z, (hj:)) 0z, - .-, 0s,)

and the formula follows since divy (h) = Z O, (hji)0z, .
i,j=1
2. This is a consequence of the fact that Mg and divy (h) are derivation and

=< h,Hess(fg) == f < h,Hess(g) > +9 < h,Hess(f) > + < h,df ©dg > . O
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3. The tangent bundle of a contravariant pseudo-Hessian manifold

In this section, we define and study the associated Poisson tensor on the tangent bundle of a contravariant
pseudo-Hessian manifold. We will start this paragraph by recalling some useful results concerning the
geometry of the tangent bundle.

Let (M, V) be an n-dimensional smooth manifold with a connection and denote by p : TM — M the
canonical projection of the tangent bundle. It is a well known fact that one can define on T'M the so called
Sasaki connection V associated to V, and also the Sasaki almost complez structure J : T(TM) — T(TM).
For more details one can see [6,16,11]. Indeed, associated to V there exists a splitting

TTM = V(M) ® H(M)

such that for any u € TM, Typ : Hy(M) — Tp()M is an isomorphism. For any X € I'(T'M) we denote by
X? € T(V(M)) its vertical lift and by X" € T'(H(M)) its horizontal lift. There are given, for any u € TM,
by

d
XU = E| (u+ tXp(u)), and TP(XLL) = Xp(u)-
t=0

The Sasaki almost complex structure J : TTM — TT M determined by V is defined by
J(X") =X" and J(X?)=-X"

It is integrable to a complex structure on T'M if and only if V is flat.
Suppose now that (M, V) is an affine manifold. Since the curvature of V vanishes, for any X,Y € TI'(T M),

(X" Y" =[X,Y]", X", Y] = (VxY)’" and [X",Y"]=0. (3.1)

As for the vector fields, for any o € Q'(M), we define o, o € Q1 (T M) by

(X =alX)op, e (XM) =alX)op,
an
a¥(Xh) =0, a(X?) =0.
The Sasaki connection V on TM is defined by
Vxr Y = (VxY)' VxnY? = (VxY)’ and Vx.Y"=Vx.Y? =0, (3.2)

where X,Y € I'(T'M). This connection is torsionless and flat and hence defines an affine structure on T'M.
Moreover, the endomorphism vector field J : TTM — TTM is parallel with respect to V.

Remark 3.1. All the above geometrical structures on T M could be described locally in an easy way. In fact,
let (z1,- -+ ,x,) be an affine coordinates system on an open set U C M. Then we can easily see that the con-
nection V is the canonical one for which the associated canonical coordinate system (1, , Zn, Y1, * Yn)
on TU is affine (where z;(u) := z;(p(u)) and y;(u) := dz;(u) for any u € TU). The complex structure is
given by J(aml) = 8yi7 J(ayl) = _a:rz

Now, let h be a symmetric bivector field on M. We associate to h a skew-symmetric bivector field II on
TM by putting

I(a”,p*) =1(a", ") =0 and II(a",°) = ~I(8",a") = h(a, B) o p,
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for any a, 8 € Q(M). For any o € Q}(M),
My(e®) = —(a™)* and TMx(a) = (a¥)". (3.3)

To prove one of our main result in this section, we need the following proposition which is a part of the
folklore.

Proposition 3.2. Let (P, V) be a manifold endowed with a torsionless connection and 7 is a bivector field on
P. Then the Nijenhuis-Schouten bracket [w, 7] is given by

[71', 71'] (Q‘MB, '7) =2 (Vﬂ'#(a)ﬂ'(ﬂa 7) + vw#(ﬂ)ﬂ-(')’a a) + vﬂ#(w)ﬂ-(a,ﬂ)) .

Theorem 3.3. The following assertions are equivalent:

(7) (M,V,h) is a contravariant pseudo-Hessian manifold.
(i) (T'M,II) is a Poisson manifold.

In this case, if L is a leaf of Imhy then TL C TM is a symplectic leaf of II which is also a complex
submanifold of TM. Moreover, if wy, is the symplectic form of TL induced by II and gy, is the pseudo-
Riemannian metric given by gr,(U,V) = w(JU,V) then (TL,gr,wr,J) is a pseudo-Kihler manifold.

Proof. We will use Proposition 3.2 to prove the equivalence. Indeed, by a direct computation one can
establish easily, for any «, 8,7 € Q' (M), the following relations

vl'I#(oz")l_I(Bva "/1)) = VH#(a”)H(ﬂh:'yh) = vI'I#(azh)l_[(/gv;'}/’U) = vI'I#(ozh)l_l(ﬁha')'h) = vI'I#(cy")l_l(ﬂha')/v) =0,
VH#(av)H(ﬂh,fyv) = Va# (h)(IB77) °p,

and the equivalence follows. The second part of the theorem is obvious and the only point which need to
be checked is that gz, is nondegenerate. O

Remark 3.4.

1. The total space of the dual of a Lie algebroid carries a Poisson tensor (see [12]). If (M,V,h) is a
contravariant pseudo-Hessian manifold then, according to Theorem 2.4, T*M carries a Lie algebroid
structure and one can see easily that II is the corresponding Poisson tensor on 7M.

2. The equivalence of (i) and (i¢) in Theorem 3.3 deserves to be stated explicitly in the case of R™
endowed with its canonical affine structure V. Indeed, let (hi;)i1<ij<n be a symmetric matrix where
hi; € C*(R™,R) and h the associated symmetric bivector field on R™. The associated bivector field I,
on TR™ = C™ is

Hh = Z hij (LL‘)BE1 A 8y].,

i,5=1

where (z1 + iy1,...,Z, + 1y,) are the canonical coordinates of C™. Then, according to Theorem 2.4,
(R™,V,h) is a contravariant pseudo-Hessian manifold if and only if (C™,II;) is a Poisson manifold.

We explore now some relations between some invariants of (M, V, h) and some invariants of (7'M, II).

Proposition 3.5. Let (M, V,h) be a contravariant pseudo-Hessian manifold. Then (divyh)? = divegll.
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Proof. Fix (z,u) € TM and choose a basis (e1,...,e,) of T,M. Then (e¥,...,e%, e, ... ,el) is a basis of

s Cns 56

T(z,)TM with ((e1)",...,(e})", (e})™, ..., (es)") as a dual basis. For any a € T M, we have

<% divgll = = > (Ver(m)((e})7,0) + Vep (I((€)",a) )

i=1

@2 a,divy (h) = op =< a”, (divy (h))” > .

In the same way we get that < a”, divgIl = 0 and the result follows. O

Let (M, V,h) be a contravariant pseudo-Hessian manifold. For any multivector field @ on M we define
its vertical lift Q¥ on T'M by

i,»Q" =0 and Q“(a],...,ay) =Q(au,...,a4) 0p.
Recall that h defines a Lie algebroid structure on T*M whose anchor is hx and the Lie bracket is given by

(2.3). The Poisson tensor II defines a Lie algebroid structure on T*T'M whose anchor is II4 and the Lie
bracket is the Koszul bracket

(61, B2l = Li1, (6,)02 — L1y (60)01 — d1L(01,¢2), @1, 02 € QO (TM).

We denote by dj, (resp. drr) the differential associated to the Lie algebroid structure on 7*M (resp. T*T M)
defined by A (resp. II).

Proposition 3.6.
(i) For any o, B € QY (M) and X € T(TM),

{ﬁxhah = (Lxa)?, Lxra® = (Vxa)!, Lx.a® =0 and Lx.a’= (Lxa)® - (Vxa)t,
[ah’ﬂh]n = Oa [av,ﬂv]n = _[aug]z and [ah,lgv]n = (Dﬁa)ha

where D is the connection given by (2.4).
() (drQ)” = —dn(Q").
Proof. The relations in () can be established by a straightforward computation. From these relations and
the fact that IIx(a") = (a#)” one can deduce easily that i,»dm(Q”) = 0. On the other hand, since

My (a®) = —(a#)" and [a?, B¥|n = —[a, B]” we can conclude. O

Remark 3.7. From Propositions 2.14 and Proposition 3.6, we can deduce that dp(diveII) = 0. This is not
a surprising result because V is flat and divgIl is a representative of the modular class of II.

As a consequence of Proposition 3.6 we can define a linear map from the cohomology of (T*M, h, [, |x)
to the cohomology of (T*TM,Il4, [, |o) by

V: H (M, h) — B*(TM,1D), [Q] = [Q"]

Proposition 3.8. V is injective.
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Proof. An element P € I'(AYTTM) is of type (r,d — r) if for any q # r

P(ai)v"'aa;)7:3{la---;ﬂg—q) :O’

for any a1,...,aq,B1,. .-, Bi—q € Q(M). We have

{P<AdTTM) = @7 L(ra-n(NTTM),
di1(C(r,g—r) (ATTM)) C T (p11,4-r) (ATTTM) © T g 11—y (AT TTM).

Let Q € T(AYTM) such that d,@ = 0 and there exists P € I'(A~!TTM) such that dpP = Q. Since

Q" € T',0)(AN*TTM) then P € I'(q_1,0) (A" *TTM). Let us show that P = T%. For as,...,a4-1,8 €
QY(M), we have

0= dHP(ﬂhaallja se ’ag—l) = (ﬁ#)vP(alllﬁ ey 03_1)-

So the function P(ad,...,aY_;) is constant on the fibers of TM and hence there exists T € I'(A4~1T M)
such that P(ay,...,a4_ 1) =T(o1,...,aq—1) o p. So [Q] = 0 which completes the proof. O

4. Linear, affine and multiplicative contravariant pseudo-Hessian structures
4.1. Linear and affine contravariant pseudo-Hessian structures

As in the Poisson geometry context, we have the notions of linear and affine contravariant pseudo-Hessian
structures. One can see [10] for the notion of cocycle in associative algebras.

Let (V, V) be a finite dimensional real vector space endowed with its canonical affine structure. A sym-
metric bivector field A on V is called affine if there exists a commutative product e on V* and a symmetric
bilinear form B on V* such that, for any a,3 € V* C Q}(V) and u € V,

h(a, B)(u) =< a8 B,u = +B(a, B).
One can see easily that if a, 3 € Q}(V) = C*(V,V*) then
h(a, B)(u) ==< a(u) ® B(u),u = +B(a(u), B(u)).

If B=0, h is called linear.
If (21,...,2,) is a linear coordinates system on V* associated to a basis (ey,...,e,) then
n
h(dx;, d$j) = by + Z Cikj.’lik,
k=1

where e; e ¢; = Y, CKer and by; = Ble;, e5).

Proposition 4.1. (V,V,h) is a contravariant pseudo-Hessian manifold if and only if e is associative and B
is a scalar 2-cocycle of (V*,e), i.e.,

B(aep,7) = B(a,Be")

for any a, B,y € V*.
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Proof. For any a € V* and u € V, o (u) = Liu + i, B where L,(8) = e and i,B € V** = V. We
denote by ¢"# the flow of the vector field o. Then, for any o, 8,7 € V*,

Var 0B = 5 (<807.6°7 (0 = +B(5,)

=<pevy,Liu+i,B >
==<ae(fev),u>+B(a,fe7)

and the result follows. O
Conversely, we have the following result.

Proposition 4.2. Let (A, e, B) be a commutative and associative algebra endowed with a symmetric scalar
2-cocycle. Then:

1. A* carries a structure of a contravariant pseudo-Hessian structure (V,h) where V is the canonical affine
structure of A* and h is given by

h(u,v)(a) =< a,u(a) ev(a) = +B(u(a),v(a)), o€ A% u,ve Q(A*).

2. When B = 0, the leaves of the affine foliation associated to Imhy are the orbits of the action ® of
(A,+) on A* given by ®(u, o) = exp(L})(c).

3. The associated Poisson tensor I1 on TA* = A* x A* is the affine Poisson tensor dual associated to the
Lie algebra (A x A,[, ]) endowed with the 2-cocycle By where

[(aa b)> (C, d)] = (a'. d—be ) 0) and BO((a’b)’ (C’ d)) = B(a’ d) - B(C, b)

Proof. It is only the third point which need to be checked. One can see easily that [, ] is a Lie bracket on
A x A and By is a scalar 2-cocycle for this Lie bracket. For any a € A C Q'(A*), a* = (0,a) € Ax A C
QH(A* x A*) and a" = (a,0). So

(a",b") (e, B) = h(a,b)(a) =< a,a e b = +B(a,b).
On the other hand, if IT* is the Poisson tensor dual, then

II*(a", ") (e, B) = I1*((a, 0), (0, b)) (cx, B)
== (a»ﬂ)’ [(a7 0)’ (0’ b)] - +BO((av 0)’ (Oa b))
=< a,aeb> +B(a,b)
= II(a",5")(a, ).

In the same way one can check the other equalities. O

This proposition can be used as a machinery to build examples of pseudo-Hessian manifolds. Indeed, by
virtue of Proposition 2.5, any orbit L of the action ® has an affine structure V1 and a pseudo-Riemannian
metric gy, such that (L,Vy,gr) is a pseudo-Hessian manifold.

Example 4.3. Let A be the algebra generated by one element z satisfying the relation z° = 0, and setting
er := z¥. It is clear that A is a commutative associative algebra. We endow A* with the linear contravariant
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pseudo-Hessian structure associated to product of A. We denote by (a, b, c,d) the linear coordinates on .4
and (z,y, z,t) the dual coordinates on A*. We have

1 1 1
D(aey+bes+ces+dey, zel +yes+zes+tey) = (z+ay+(§a2+b)z+(6a3+ab+c)t, y+az+(§a2+b)t, z+at, t)

and
Xe, = Y0z + 20y +10,, X, = 20, + 10y, X, =t0; and X, =0.

Let us describe the pseudo-Hessian structure of the hyperplane M, = {t = ¢,c # 0} endowed with the
coordinates (z,y, z). We denote by g, the pseudo-Riemannian of M,. We have, for instance,

gc(Xel’Xe1)(m7ya Z, C) = h(ela 61)(.’17,y, Z, C) =<e o €1, (Is Y,z C) = Y.
So, one can see that the matrix of g, in (X,, Xe,, Xe,) is the passage matrix P from (X, Xe,, Xe,) to
(0z, 0y, 0,) and hence

2 2 _
ge = 1 <2d93dz +dy? — —zdydz + Mdf) .
c c c

The signature of this metric is (+,4,—) if ¢ > 0 and (4, —, —) if ¢ < 0. One can check easily that g, is the
restriction of Vd¢ to M., where

24 2 22y zz
= 2 LY 2y, rz
d@vzt)=Et o~ o T

4.2. Multiplicative contravariant pseudo-Hessian structures

A contravariant pseudo-Hessian structure (V, k) on a Lie group G is called multiplicative if the multipli-
cation m : (G x G,V@®V,h® h) — (G, V, h) is affine and sends h @ h to h.

Lemma 4.4. Let G be a connected Lie group and V a connection on G such that the multiplication m :
(GxG,VaeV)— (G,V) preserves the connections. Then G is abelian and V is bi-invariant.

Proof. We will denote by x"(G) (resp. x'(G)) the space of right invariant vector fields (resp. the left invariant
vector fields) on G. It is clear that for any X € x"(G) and Y € x!(G), the vector field (X,Y) on G x G is
m-related to the vector field X +Y on G:

Tm(Xa,Yi)) =Xob+aY, =X+ Yo = (X + Y)ab

It follows that for any X1,X2 € x"(G) and Y1,Y2 € x!(G), the vector field (V @ V)(x,,v;)(X2,Y2) is
m-related to Vx, 1y, (X2 + Y2), hence:

Tm((Vx,X2)a; (Vv Y2)s) = (V(x,4v1) (X2 + Y2))ab
So we get
(Vx,X2)ab+a.(Vy,Y2)p = (Vx, X2+ Vx, Yo+ Vy, Xo + Vy, Y2)up (4.1)

If we take Y1 = 0 = Y, we obtain that V is right invariant. In the same way we get that V is left
invariant. Now, if we return back to the equation (4.1) we obtain that for any X € x"(G) and Y € x!(G)
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we have VX = 0 = VY. This implies that any left invariant vector field is also right invariant; indeed, if
Y =30, fiX; with Y € x/(G) and X; € x"(G) then X;f; = 0 for all 4,5 = 1,-,n. Hence the adjoint
representation is trivial and hence G must be abelian. O

At the end of the paper, we give another proof of this Lemma based on parallel transport.

Corollary 4.5. Let (V, h) be multiplicative contravariant pseudo-Hessian structure on a simply connected Lie
group G. Then G is a vector space, V its canonical affine connection and h is linear.

Example 4.6. Based on the classification of complex associative commutative algebras given in [14], we can
give a list of examples of affine contravariant pseudo-Hessian structures up to dimension 4.

1. On R2:
_ I9 0 _ I ) _ T2 1
hl—(o 0)’h2_(.’)32 0> and h3—<1 0)
2. On R3:
a 0 =z To T3 a a 0 =z
hi=(0 0 0], ho=|2z3 a 0], h3={ 0 0 =zo],
zo 0 b a 0 O Ty T2 I3
T2 0 To zo 0 1z
hs=10 0 T2+ a and hs={ 0 0 2.
To To+a x3 1 T2 I3
3. On R%:
T3 z4+b 0 Ty I3 T4 a T1 Ty T3 T4
B — a —x4+c 0 0 he— |73 T4 @ 0 A zo 0 0 O
L=l za+b 0 0]’ ™~ |lzs a 0 O 3= 1lz3 0 0 0]
0 0 0 a 0 0 O zgy, 0 O O
X1 T2 T3 T4 r1 T2 XT3 T4
_ | T2 4 0 0 | 2 T3 T4 0
ha=1%, 0 o of 2d m=|4 2, 0 o0
zg 0 0 O zg4 0 O O

5. Quadratic contravariant pseudo-Hessian structures

Let V be a vector space of dimension n. Denote by V its canonical affine connection. A symmetric
bivector field h on V is quadratic if there exists a basis B of V such that, for any i, =1,...,n,

n
) ) — 2]
h(dz;, dz;) = E a % TiTk,
1,k=1

where the az’i are real constants and (z1,...,x,) are the linear coordinates associated to B.

For any linear endomorphism A on V' we denote by A the associated linear vector field on V.

The key point is that if h is a quadratic contravariant pseudo-Hessian bivector field on V' then its
divergence is a linear vector field, i.e., divy (k) = L" where L" is a/_@ar endomorphism of V. Moreover,
if F = (A,u) is an affine transformation of V then divy(Fxh) = A~1L"A. So the Jordan form of Lj is an
invariant of the quadratic contravariant pseudo-Hessian structure. By using Maple we can classify quadratic
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contravariant pseudo-Hessian structures on R2. The same approach has been used by [8] to classify quadratic
Poisson structures on R%. Note that if 4 is a quadratic contravariant pseudo-Hessian tensor on R™ then its
associated Poisson tensor on C” is also quadratic.

Theorem 5.1.

1. Up to an affine isomorphism, there is two quadratic contravariant pseudo-Hessian structures on R?
which are divergence free

2 2 3_2 2
0 0 2% _ 9pn +C2 r:c_2’r:z:y+,r2
hIZ( 2) and h2:< 382 2y 4 73? G 2 yzz .

0 R R

C

2. Up to an affine isomorphism, there is two quadratic contravariant pseudo-Hessian structures on R? with

1
the divergence equivalent to the Jordan form (8 a)’

2 1 2
cy*+zy O sy +cy* L
hy = d ho=| 2 4,
1 ( 0 0) B ( v 0)

3. Up to an affine isomorphism, there is five quadratic contravariant pseudo-Hessian structures on R? with

diagonalizable divergence

by — ax? 0 by — az? +by? 0 B — ar? axy
7l o w2 ) 0 0) % \azy ay? )’

27‘1: 2
-2
hy = ( m:y+cy TZ2/2> and

ry2 2rcy
hs = (£+3)2+mt# pa® + qry — P
pr? + qzy — pqy (2p + 2 )y + uzx? — 2pxy

4. Up to an affine isomorphism, there is a unique quadratic pseudo-Hessian structure on R? with the
divergence having non real eigenvalues

h— —2pzy — ux? +uy? px? —py? — 2umy
S\ pr?—py? —2uxy  2pzy + ux? — uy?

Example 5.2. The study of quadratic contravariant pseudo-Hessian structures on R? is more complicated
and we give here a class of quadratic pseudo-Hessian structures on R3 of the form A ® I3 where A is linear.

1. A is diagonal:

2 zy z2 T
hi=|zy 3 yz and hy= |2y > O
Tz yz 22 0 0 —22
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2. A=

o O 8
O Q =
o>t OO

2z(y — px) (y —px)y +pyz prz+ (y —px)z

hs = | (y — pz)y + pyz 2py? 2pyz ,
pzz + (y — px)z 2pyz 2p2?
2z(y + px) (y+pz)y —pyr prz+ (y+px)z
hy = | (y+pz)y+ pyz —2py? 0
prz + (y + px)2z 0 2pz?

6. Right-invariant contravariant pseudo-Hessian structures on Lie groups
Let (g, ) be a left symmetric algebra, i.e., for any u,v,w € g,
ass(u, v, w) = ass(v,u,w) and ass(u,v,w) = (uev)ew—ue(vew).

This implies that [u,v] = uev — v ew is a Lie bracket on g and L : g — End(g), u + L, is a representation
of the Lie algebra (g,[, ]). We denote by L, the left multiplication by wu.

We consider a connected Lie group G whose Lie algebra is (g, [, |) and we define on G a right invariant
connection by

Vyu-v" =—(uev)™, (6.1)

where u~ is the right vector field associated to w € g. This connection is torsionless and without curvature
and hence (G, V) is an affine manifold. Let 7 € g ® g which is symmetric and let 7~ be the associated right
invariant symmetric bivector field.

Proposition 6.1. (G, V,r7) is a contravariant pseudo-Hessian manifold if and only if, for any «, 8,7 € g*,

([, 71)(ev, B, ) == v, [ BIF — [o¥, B#] == 0, (62)
where
[a,8l, =Li4uB —Ljpa and <Lia,v>=—<o,uev>.
In this case, the product on g* given by o.f = L, B is left symmetric, [, |, is a Lie bracket and ry is a

morphism of Lie algebras.

Proof. Note first that for any a € g*, (¢”)# = (o)™ and V,-a~ = —(L:a)” and hence, for any
o, B, € g%,

Via-y#(r7)(B7,77) = r(LgsB,7) + (B, Lax7).
So, (G,V,r7) is a contravariant pseudo-Hessian manifold if and only if, for any o, 8,7 € g%,

0=r(LsxB,7) +r(B,Lis7) — T(Lz#aﬁ) - T(Q,LE#’Y)
=<7, [0, Blf — o e g + p* e 0¥ >
=<7, [a’ﬂ]'r# - [a#?ﬁ#] -



20 A. Abougateb et al. / Differential Geometry and its Applications 70 (2020) 101630

and the first part of the proposition follows. Suppose now that [a, 8]# = [a#, 8#] for any o, 8 € g*. Then,
for any «, 8,7 € g,

ass(a, B,7) — ass(B,a,y) = L’[*aﬁ]#'y —Lo#Lgey + LgsLisy =0.
This completes the proof. O

Definition 6.2.

1. Let (g,e) be a left symmetric algebra. A symmetric bivector r € g ® g satisfying [[r,r]] = 0 is called a
S-matrix.

2. A left symmetric algebra (g,e,7) endowed with a S-matrix is called a contravariant pseudo-Hessian
algebra.

Let (g,e,7) be a contravariant pseudo-Hessian algebra, [u,v] = uev —vewu and G a connected Lie group
with (g, [, ]) as a Lie algebra. We have shown that G carries a right invariant contravariant pseudo-Hessian
structure (V,77). On the other hand, in Section 3, we have associated to (V,r~) a flat connection V, a
complex structure J and a Poisson tensor IT on T'G. Now we will show that T'G carries a structure of Lie
group and the triple (V,J,II) is right invariant. This structure of Lie group on TG is different from the
usual one defined by the adjoint action of G on g.

Let us start with a general algebraic construction which is interesting on its own. Let (g,e) be a left
symmetric algebra, put ®(g) = g X g and define a product x and a bracket on ®(g) by

(a,b) x (¢,d) = (ae®c,aed) and [(a,b),(c,d)] = ([a,c],aed—ceb),

for any (a,b),(c,d) € ®(g). It is easy to check that «x is left symmetric, [ , ] is the commutator of x and
hence is a Lie bracket. We define also Jy : ®(g) — ®(g) by Jo(a,b) = (b, —a). It is also a straightforward
computation to check that

NJo((av b)a (C, d)) = [JO(G" b)’ JO(Ca d)] - JO[(aa b)a JO(ca d)] - JO[JO(aa b)’ (c’ d)] - [(a‘v b)7 (C, d)] = 0.
For 7 € ®2g symmetric, we define R € ®2®(g) by

R((a1, 1), (a2, B2)) = r(au, B2) — r(az, B1), (6.3)

for any a1, ag, f1, B2 € g*. We have obviously that Ry(ai1,51) = (—ﬁf,a#)

Proposition 6.3. [[r,7]] = 0 if and only if [R, R] = 0, where [R, R] is the Schouten bracket associated to the
Lie algebra structure of ®(g) and given by

[R7 R](a:ﬂ77) = % =<, [R#(a)’R#(IB)] bl aaﬂ,’y € Q*(g)
a,Byy
Proof. For any a = (a1,02),8 = (61,82),7 = (71,72) € ®(g)*,
=<7 [R#(OA),R#(B)] == (71,’72), [(_afaaf:)a (_6#a 1#)] -

=<, 8] = — < yo,0f 0 B = + <y, BF 0¥ -
=<0, ) = + < Br, (L pm)® = = < o, (Lpem2)® >,
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=< B, [Ry (1), Byp(@)] = = < B1, 1] o | = + < o, (Lo B2)* = — <, (Lo B2) 7 -

< @, [Ry(8), Ry(M)] = = < o, [BF 3] = + <y, (L p0)® == — < Br, (L p0)® -
So
(R, Bl(@, 8,7) = ~[[r,7]}(B2, 72, ) = [[r )] (2 @2, B1) = [[r 7] @2, B2 )
and the result follows. O

Let G be a Lie group whose Lie algebra is (g,[, ]) and let p : G — GL(g) be the homomorphism of
groups such that dep = L where L : g — End(g) is the representation associated to e. Then the product

(g,w).(h,v) = (gh,u+p(g9)(v)), g,h€G,u,veg

induces a Lie group structure on G x g whose Lie algebra is (®(g), [, ]). The complex endomorphism Jy and
the left symmetric product * induce a right invariant complex tensor J; and a right invariant connection
v given by

J()_(aa b)” =(b,—a)” and 6(a,b)*(cv d)” =—((a,b) x(c,d))".

Let r € ®2g symmetric such that [[r,7]] = 0, 7~ the associated right invariant symmetric bivector field
and V the affine connection given by (6.1). Then (G, V,r ™) is a contravariant pseudo-Hessian manifold and
let V, J and II be the associated structure on T'G defined in Section 3.

Theorem 6.4. If we identify TG with G X g by ug — (9, TyRy-1ug) we denote also by II, V and J the
images of I, V and J under this identification then 1= R~, V=V and J = J; .

To prove this theorem, we need some preparation.

Proposition 6.5. Let (G, V) be a Lie group endowed with a right invariant connection and v : [0,1] — G a
curve. Let V : [0,1] — TG be a vector field along y. We define p: [0,1] — g and W : [0,1] — g by

u(t) = Tyy Ry (V' () and W (t) = Ty Ry)— (V(2))-

Then V is parallel along v with respect V if and only if

where ue v = —(V,-v7)(e).
Proof. We consider (u,...,un) a basis of g and (X1, ..., X,) the corresponding right invariant vector fields.
Then

u(t) =3 wiltyus, W(t) = Wilt)u,
i=1 i=1

7,(t) = Z/Li(t)Xi, V(t) = ZWZ(t)XQ
i=1 =1

Then
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n n
’
ViV(t) =) W(t)Xi+ Y Wit)VyuXi
i=1 =1

= > WX+ > Wit (H)Vx, X

1 ij=1

ii

Wi (6)Xi = Y Wit)us(t)(us @ us)”

1 i,j=1

= (W'(t) —p(t) s W(t)

I
M=

o
Il

and the result follows having in mind that ™ is the right invariant vector field associated tou € g. O

Let (G,V) be a Lie group endowed with a right invariant connection. Then V induces a splitting of
TTG = ker dp ® H. For any tangent vector X € T,G, we denote by XV, X" € T(4,.)TG the vertical and the
horizontal lift of X.

Proposition 6.6. If we identify TG to G x g by Xy — (g9, TgR,-1(Xy)) then for any X € T,G,
X"(g,u) = (0,TgRy-1(X)) and X"(g,u) = (X, TgRy-1(X) e u).
Proof. The first relation is obvious. Recall that the horizontal lift of X at ug € T'G is given by:

d

Xh(ug) = Eu:o

V(t)

where V' : [0,1] — T'G is the parallel vector field along « : [0,1] — G a curve such that v(0) = g and
7'(0) = X. If we denote by ©g : TG — G X g the identification ug — (g, Ty, R;-1(ug)) then, by virtue of
Proposition 6.5,

T.,00(X") = & O0.WE) = (TR, (X) sw). ©
We consider now a left symmetric algebra (g,e), G a connected Lie group associated to (g,[, ]), V the
right invariant affine connection associated to e. We have seen that G x g has a structure of Lie group. We
identify TG to G x g and, for any vector field X on G, we denote by X? and X" the vector fields on G x g
obtained by the identification from the horizontal and the vertical lift of X. For a,b € g, o, 8 € g*, a™ (resp.
o) is the right invariant vector field (resp. 1-form) on G associated to a (resp. &), (a,b)~ (resp. (o, 5)7)
the right invariant vector field (resp. 1-form) on G X g associated to (a,b) (resp. (o, 8)).

Proposition 6.7. For any (a,b) € g X g and (, B) € g* X g%,
(@,0)” = @)+ ()" and (a,f)” =(a )"+ (87)"
Proof. We have
(a,0)™(g,u) = T(e,0)R(g,u)(a,b)

— %lt:o(exp(ta), tb)(g,u)

= |tzo(exp(ta)g, tb + p(exp(ta))(u))
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— (e (g)b+aeu)
= (a7 (9), TyRg-1(a"(9)) @ u) + (0, TgRy-1 (b7 (9))
= (a7)"(g,u) + (b7)"(g, ). (Proposition 6.5)

The second relation can be deduced easily from the first one. O

Proof of Theorem 6.4. Let IT be the Poisson tensor on G x g associated to r~. Then, by using the precedent
proposition,

I((a1,81)75 (@2, 82)7) = TW((e7 )" + (B7)" (a3)" + (87)°)
=1 (og,8;) =1 (0, 87)
= r(a1,B2) — (a2, B1)
=R ((a1,61)", (a2, B2)7).

In the same way,

Jy (a,0)” = (b,—a)" = (b7)" ~ (a7)",
J(a,b)™ = (b7)" ~ (a7)",
Viap-(6,d)” = (Vo-c7)" +(Vo-d7)* = —((a0c) )" = (a0 d)7)" = —((a,b).(c;d))"

= %,b)_ (c,d)”. O

Let (g,®) be a left symmetric algebra, (M, V) and affine manifold and p : g — I'(T'M) a linear map
such that p(u @ v) = V,,)p(v). Then p defines an action on M of the Lie algebra (g,[, ]). We consider
ol ®(g) — T(TTM), (u,v) — p(u)? + p¥(v). It is easy to check that

p'([a,0]) = ['(a), P (D).
Let r € ®%g satisfying [[r,r]] = 0 and R € ®2®(g) given by (6.3).

Theorem 6.8. The bivector field on TM associated to p(r) is p'(R) which is a Poisson tensor and (M, V, p(r))
is a contravariant pseudo-Hessian manifold.

Proof. Let (ey,...,e,) a basis of g and E; = (e;,0) and F; = (0,e;). Then (E1,...,E,, Fy,...,F,) is a
basis of ®(g). Then

r= Zn,jei@)ej and R = Zri’j (E1®E7' —F¢®Ej).

i,J i,J

So

r)= Z rijp(e;) ® ple;) and  p'( Z " @ ple;)” — ple:)’ ® ple;)") .

,j=1

Then for any «, 8 € Q}(M)

P (R)(a”,°) = p'(R)(a",8") =0 and p'(R)(a",B") = p(r)(e, f) 0
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According to Proposition (6.3), R is a solution of the classical Yang-Baxer equation and hence p'(R) is a

Poisson tensor. By using Theorem 3.3, we get that (M, V,p(r)) is a contravariant pseudo-Hessian mani-
fold. O

Example 6.9.

. Let g = gl(n,R) be the Lie algebra of n-square matrices. It has a structure of left symmetric algebra
given by Ae B = BA. Let p: g — I'(TR"™) given by p(A) = A. Then p(A e B) = V4B, where V is
the canonical connection of R™. According to Theorem 6.8, any S-matrix on g gives rise to a quadratic
contravariant pseudo-Hessian structure on R™.

. More generally, let (M, V) be an affine manifold and g the finite dimensional Lie algebra of affine vector
fields. Recall that X € g if for any Y, Z € T'(T M),

(X,VyZ] =V xyv)Z+ Vy[X, Z].
Since the curvature and the torsion of V vanish this is equivalent to
Vv, zX =VyVzX.
From this relation, one can see easily that, for any X,Y € g, X ¢ Y := VxY € g and (g,e) is an
associative finite dimensional Lie algebra which acts on M by p(X) = X. Moreover, p(X oY) = VxY.

According to Theorem 6.8, any S-matrix on g gives rise to a contravariant pseudo-Hessian structure on
M.

Classification of two-dimensional contravariant pseudo-Hessian algebras

Using the classification of two-dimensional non-abelian left symmetric algebras given in [4] and the

classification of abelian left symmetric algebras given in [14], we give a classification (over the field R) of

2-dimensional contravariant pseudo-Hessian algebras. We proceed as follows:

1. For any left symmetric 2-dimensional algebra g, we determine its automorphism group Aut(g) and the
space of S-matrices on g, we denote by .A(g).
2. We give the quotient A(g)/ ~ where ~ is the equivalence relation:

r ~r? <= 3 A€ Aut(g) or 3\ €R such that r?:Aori}oAt or r2 = \rl.

We end this paper by giving another proof to Lemma 4.4.

Proof. For any v:[0,1] — G x G, t = (y1(t),v2(t)) with v(0) = (a,b) and (1) = (¢, d),

Ton(y) (T(a )M (8, 0)) = T, qym(Ty (1, v)),

where 7, : T(4,5)(G X G) — T(¢,q)(G X G) and Ty : TG — T,4G are the parallel transports. But

Ta,pym(u,v) = ToRp(u) + TyLa(v) and 7y (u,v) = (7y, (1), Ty, (v)).

So we get

Ty (Ta By (1)) + Tyiy, (ToLa(v)) = TeRa(Ty, (v)) + TaLe(Ty, (v)).
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(g,-) Aut(g) A(g)/~
Z;’.Zf;lgl,eg.egzaeg (8 (1))’0‘7&0 ré: ((1J 8)’T§= (8 (1))""?:0
1_ b 1Y), 2 _ 1 0
e enom CHEVTIEN s
Z;:TI: e1,ez.3 = €3 (8 2),ab960 Té:(i ccz)’ri?:(g (1))’Tﬂ =0
Z?).ijoiygel,ﬁ.el=(ﬂ—1)e1,e2.22=ﬂe2 (8 ll))’a‘;éo r;:(é 8);T§= (8 (1));"'?=0
l"izl,’-i:1= €1,€ez.ex = €3 (8 11))’G'7é0 Té:(i c‘;),rgz(g ?);7\?:0
At (8 aro  ri=(b Vi=(3 Nirt=o
0.1 = €1, €0.65 = 2ey
zz.el=el,ez.ez=el+e2 ((1) ll)) Té=(1{2 %)’rl?:(fl) 8)’7'3:0
b.
21:2;23?,61.62:&2, ((1) _01),((1) (1) r,}=(é g),rfz(g) 8),7-?=0
%?.fz:el,eg.eg:el+e2 ((1) 11)2 Téz((ll 8);T§=0
32 G $oro -0 et i
e .e1 = ey b a # 1 0 3 0 1 3
As} 1_(0 1y, 2_(0 0y,
e somee = (6 a)aro :Qi §§ZZ§=§° )

If we take v =0 and ~y,(t) = b = d. We get

T’nb(TaRb (u) = TcRb('r'n (u))

and hence V is right invariant. In the same way we get that V is left invariant. And finally

Torme (TaBp(w)) = TeRa(Ty, (u))  and Ty 4, (T5La(v)) = TaLc(Ty, (v)).

If we take y2 =71 ! we get that

Tm (u) = TaRa—lc(u) =TaLcq— (u)

This implies that the adjoint representation is trivial and hence G must be abelian. O
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