

Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

Contravariant pseudo-Hessian manifolds and their associated Poisson structures

Abdelhak Abougateb*, Mohamed Boucetta, Charif Bourzik

Université Cadi-Ayyad, Faculté des sciences et techniques, BP 549 Marrakech, Morocco

ARTICLE INFO

Article history:
Received 27 January 2020
Received in revised form 28 March 2020

Accepted 28 March 2020 Available online xxxx Communicated by L. Schwachhöfer

MSC: 53A15 53D17 17D25

Keywords:
Affine manifolds
Poisson manifolds
Pseudo-Hessian manifolds
Associative commutative algebras

ABSTRACT

A contravariant pseudo-Hessian manifold is a manifold M endowed with a pair (∇, h) where ∇ is a flat connection and h is a symmetric bivector field satisfying a contravariant Codazzi equation. When h is invertible we recover the known notion of pseudo-Hessian manifold. Contravariant pseudo-Hessian manifolds have properties similar to Poisson manifolds and, in fact, to any contravariant pseudo-Hessian manifold (M, ∇, h) we associate naturally a Poisson tensor on TM. We investigate these properties and we study in details many classes of such structures in order to highlight the richness of the geometry of these manifolds.

© 2020 Published by Elsevier B.V.

1. Introduction

A contravariant pseudo-Hessian manifold is an affine manifold (M, ∇) endowed with a symmetric bivector field h such that, for any $\alpha, \beta, \gamma \in \Omega^1(M)$,

$$(\nabla_{\alpha^{\#}}h)(\beta,\gamma) = (\nabla_{\beta^{\#}}h)(\alpha,\gamma), \tag{1.1}$$

where $\alpha^{\#} = h_{\#}(\alpha)$, $\beta^{\#} = h_{\#}(\beta)$ and $h_{\#} : T^{*}M \longrightarrow TM$ is the contraction. We will refer to (1.1) as contravariant Codazzi equation. These manifolds were introduced in [2] as a generalization of pseudo-Hessian manifolds. Recall that a pseudo-Hessian manifold is an affine manifold (M, ∇) with a pseudo-Riemannian metric g satisfying the Codazzi equation

^{*} Corresponding author.

E-mail addresses: a.abouqateb@uca.ac.ma (A. Abouqateb), m.boucetta@uca.ac.ma (M. Boucetta), bourzikcharif@gmail.com (C. Bourzik).

$$\nabla_X g(Y, Z) = \nabla_Y g(X, Z),\tag{1.2}$$

for any $X, Y, Z \in \Gamma(TM)$. The book [13] is devoted to the study of Hessian manifolds which are pseudo-Hessian manifolds with a Riemannian metric.

In this paper, we study contravariant pseudo-Hessian manifolds. The passage from pseudo-Hessian manifolds to contravariant pseudo-Hessian manifolds is similar to the passage from symplectic manifolds to Poisson manifolds and this similarity will guide our study. Let (M, ∇, h) be a contravariant pseudo-Hessian manifold. We will show that T^*M has a Lie algebroid structure, M has a singular foliation whose leaves are pseudo-Hessian manifolds and TM has a Poisson tensor whose symplectic leaves are pseudo-Kählerian manifolds. We investigate an analog of Darboux-Weinstein's theorem and we show that it is not true in general but holds in some cases. We will study in details the correspondence which maps a contravariant pseudo-Hessian bivector field on (M, ∇) to a Poisson bivector field on TM. We study affine, linear and quadratic contravariant pseudo-Hessian structures on vector spaces and we show that an affine contravariant pseudo-Hessian structure on a vector space V is equivalent to an associative commutative algebra product and a 2-cocycle on V^* . We study right invariant contravariant pseudo-Hessian structures on a Lie group G and we show that TG has a structure of Lie group (different from the one associated to the adjoint action) for which the associated Poisson tensor is right invariant. We show that a right invariant contravariant pseudo-Hessian structure on a Lie group is equivalent to a S-matrix on the associated left symmetric algebra (see [1,3]) and we associate to any S-matrix on a left symmetric algebra g a solution of the classical Yang-Baxter equation on $\mathfrak{g} \times \mathfrak{g}$. Finally, we show that an action of a left symmetric algebra \mathfrak{g} on an affine manifold (M, ∇) transforms a S-matrix on \mathfrak{g} to a contravariant pseudo-Hessian bivector field on (M, ∇) . Since the Lie algebra of affine vector fields of (M, ∇) has a natural structure of finite dimensional associative algebra, we have a mean to define contravariant pseudo-Hessian structures on any affine manifold. The paper contains many examples of contravariant pseudo-Hessian structures.

The paper is organized as follows. In Section 2, we give the definition of a contravariant pseudo-Hessian manifold and we investigate its properties. In Section 3, we study in details the Poisson structure of the tangent bundle of a contravariant pseudo-Hessian manifold. Section 4 is devoted to the study of linear and affine contravariant pseudo-Hessian structures. Quadratic contravariant pseudo-Hessian structures will be studied in Section 5. In Section 6, we study right invariant pseudo-Hessian structures on Lie groups.

2. Contravariant pseudo-Hessian manifolds: definition and principal properties

2.1. Definition of a contravariant pseudo-Hessian manifold

Recall that an affine manifold is a n-manifold M endowed with a maximal atlas such that all transition functions are restrictions of elements of the affine group $\mathrm{Aff}(\mathbb{R}^n)$. This is equivalent to the existence on M of a flat connection ∇ , i.e., torsionless and with vanishing curvature (see [13] for more details). An affine coordinates system on an affine manifold (M, ∇) is a coordinates system (x_1, \ldots, x_n) satisfying $\nabla \partial_{x_i} = 0$ for any $i = 1, \ldots, n$.

Let g be a pseudo-Riemannian metric on an affine manifold (M, ∇) . The triple (M, ∇, g) is called a pseudo-Hessian manifold if g can be locally expressed in any affine coordinates system (x_1, \ldots, x_n) as

$$g_{ij} = \frac{\partial^2 \phi}{\partial x_i \partial x_j}.$$

That is equivalent to g satisfying the *Codazzi equation* (1.2). When g is Riemannian, we call (M, ∇, g) a Hessian manifold. The geometry of Hessian manifolds was studied intensively in [13].

We consider now a more general situation.

Definition 2.1 ([2]). Let h be a symmetric bivector field on an affine manifold (M, ∇) and $h_{\#}: T^*M \to TM$ the associated contraction given by $\beta(\alpha^{\#}) = h(\alpha, \beta)$ where $\alpha^{\#} := h_{\#}(\alpha)$. The triple (M, ∇, h) is called a contravariant pseudo-Hessian manifold if h satisfies the contravariant Codazzi equation

$$(\nabla_{\alpha^{\#}}h)(\beta,\gamma) = (\nabla_{\beta^{\#}}h)(\alpha,\gamma), \tag{2.1}$$

for any $\alpha, \beta, \gamma \in \Omega^1(M)$. We call such h a pseudo-Hessian bivector field.

One can see easily that if (M, ∇, g) is a pseudo-Hessian manifold then (M, ∇, g^{-1}) is a contravariant pseudo-Hessian manifold.

The following proposition is obvious and gives the local expression of the equation (2.1) in affine charts.

Proposition 2.2. Let (M, ∇, h) be an affine manifold endowed with a symmetric bivector field. Then h satisfies (2.1) if and only if, for any $m \in M$, there exists an affine coordinates system (x_1, \ldots, x_n) around m such that for any $1 \le i < j \le n$ and any $k = 1, \ldots, n$

$$\sum_{l=1}^{n} \left[h_{il} \partial_{x_l}(h_{jk}) - h_{jl} \partial_{x_l}(h_{ik}) \right] = 0, \tag{2.2}$$

where $h_{ij} = h(dx_i, dx_j)$.

Example 2.3.

1. Take $M = \mathbb{R}^n$ endowed with its canonical affine structure and consider

$$h = \sum_{i=1}^{n} f_i(x_i) \partial_{x_i} \otimes \partial_{x_i},$$

where $f_i : \mathbb{R} \longrightarrow \mathbb{R}$ for i = 1, ..., n. Then one can see easily that h satisfies (2.2) and hence defines a contravariant pseudo-Hessian structure on \mathbb{R}^n .

2. Take $M = \mathbb{R}^n$ endowed with its canonical affine structure and consider

$$h = \sum_{i,j=1}^{n} x_i x_j \partial_{x_i} \otimes \partial_{x_j}.$$

Then one can see easily that h satisfies (2.2) and hence defines a contravariant pseudo-Hessian structure on \mathbb{R}^n .

3. Let (M, ∇) be an affine manifold, (X_1, \ldots, X_r) a family of parallel vector fields and $(a_{i,j})_{1 \leq i,j \leq n}$ a symmetric n-matrix. Then

$$h = \sum_{i,j} a_{i,j} X_i \otimes X_j$$

defines a contravariant pseudo-Hessian structure on M.

2.2. The Lie algebroid of a contravariant pseudo-Hessian manifold

We show that associated to any contravariant pseudo-Hessian manifold there is a Lie algebroid structure on its cotangent bundle and a Lie algebroid flat connection. The reader can consult [9,12] for more details on Lie algebroids and their connections.

Let (M, ∇, h) be an affine manifold endowed with a symmetric bivector field. We associate to this triple a bracket on $\Omega^1(M)$ by putting

$$[\alpha, \beta]_h := \nabla_{\alpha^{\#}} \beta - \nabla_{\beta^{\#}} \alpha, \tag{2.3}$$

and a map $\mathcal{D}: \Omega^1(M) \times \Omega^1(M) \longrightarrow \Omega^1(M)$ given by

for any $\alpha, \beta \in \Omega^1(M)$ and $X \in \Gamma(TM)$. This bracket is skew-symmetric and satisfies obviously

$$[\alpha, \beta]_h = \mathcal{D}_{\alpha}\beta - \mathcal{D}_{\beta}\alpha$$
 and $[\alpha, f\beta]_h = f[\alpha, \beta]_h + \alpha^{\#}(f)\beta$,

where $f \in C^{\infty}(M), \alpha, \beta \in \Omega^1(M)$.

Theorem 2.4. With the hypothesis and notations above, the following assertions are equivalent:

- (i) h is a pseudo-Hessian bivector field.
- (ii) $(T^*M, h_\#, [,]_h)$ is a Lie algebroid.

In this case, \mathcal{D} is a connection for the Lie algebroid structure $(T^*M, h_\#, [\ ,\]_h)$ satisfying

$$(\mathcal{D}_{\alpha}\beta)^{\#} = \nabla_{\alpha}^{\#}\beta^{\#}$$
 and $R_{\mathcal{D}}(\alpha,\beta) := \mathcal{D}_{[\alpha,\beta]_{h}} - \mathcal{D}_{\alpha}\mathcal{D}_{\beta} + \mathcal{D}_{\beta}\mathcal{D}_{\alpha} = 0$,

for any $\alpha, \beta \in \Omega^1(M)$.

Proof. According to [2, Proposition 2.1], $(T^*M, h_\#, [,]_h)$ is a Lie algebroid if and only if, for any affine coordinates system (x_1, \ldots, x_n) ,

$$([dx_i, dx_j]_h)^\# = [(dx_i)^\#, (dx_j)^\#] \quad ext{and} \quad \oint\limits_{i,j,k} [dx_i, [dx_j, dx_k]_h]_h = 0,$$

for $1 \le i < j < k \le n$. Since $[dx_i, dx_j]_h = 0$ this is equivalent to $[(dx_i)^\#, (dx_j)^\#] = 0$ for any $1 \le i < j \le n$ which is equivalent to (2.2).

Suppose now that (i) or (ii) holds. For any, $\alpha, \beta, \gamma \in \Omega^1(M)$,

This shows that $(\mathcal{D}_{\alpha}\beta)^{\#} = \nabla_{\alpha^{\#}}\beta^{\#}$.

Let us show now that the curvature of \mathcal{D} vanishes. Since $[dx_i, dx_j]_h = 0$, it suffices to show that, for any $i, j, k \in \{1, ..., n\}$ with i < j, $\mathcal{D}_{dx_i} \mathcal{D}_{dx_j} dx_k = \mathcal{D}_{dx_j} \mathcal{D}_{dx_i} dx_k$. We have

$$\prec \mathcal{D}_{dx_i} dx_k, \frac{\partial}{\partial x_l} \succ = \frac{\partial h_{ik}}{\partial x_l}$$

and hence

$$\mathcal{D}_{dx_i}dx_k = \sum_{l=1}^n rac{\partial h_{ik}}{\partial x_l} dx_l$$

and then

$$\begin{split} \mathcal{D}_{dx_{j}}\mathcal{D}_{dx_{i}}dx_{k} &= \sum_{l=1}^{n} \mathcal{D}_{dx_{j}} \left(\frac{\partial h_{ik}}{\partial x_{l}} dx_{l} \right) \\ &= \sum_{l=1}^{n} \left((dx_{j})^{\#} \left(\frac{\partial h_{ik}}{\partial x_{l}} \right) dx_{l} + \frac{\partial h_{ik}}{\partial x_{l}} \left(\sum_{s=1}^{n} \frac{\partial h_{jl}}{\partial x_{s}} dx_{s} \right) \right) \\ &= \sum_{l,r} h_{jr} \left(\frac{\partial^{2} h_{ik}}{\partial x_{r} \partial x_{l}} \right) dx_{l} + \sum_{s,l} \frac{\partial h_{ik}}{\partial x_{l}} \frac{\partial h_{jl}}{\partial x_{s}} dx_{s} \\ &= \sum_{l,r} h_{jr} \left(\frac{\partial^{2} h_{ik}}{\partial x_{r} \partial x_{l}} \right) dx_{l} + \sum_{l,r} \frac{\partial h_{ik}}{\partial x_{r}} \frac{\partial h_{jr}}{\partial x_{l}} dx_{l} \\ &= \sum_{l,r} \left(h_{jr} \left(\frac{\partial^{2} h_{ik}}{\partial x_{r} \partial x_{l}} \right) + \frac{\partial h_{ik}}{\partial x_{r}} \frac{\partial h_{jr}}{\partial x_{l}} \right) dx_{l} \\ &= \sum_{l} \frac{\partial}{\partial x_{l}} \left(\sum_{r} h_{jr} \frac{\partial h_{ik}}{\partial x_{r}} \right) dx_{l}. \end{split}$$

So

$$\mathcal{D}_{dx_i}\mathcal{D}_{dx_j}dx_k - \mathcal{D}_{dx_j}\mathcal{D}_{dx_i}dx_k = d\left(\sum_r \left(h_{jr}\frac{\partial h_{ik}}{\partial x_r} - h_{ir}\frac{\partial h_{jk}}{\partial x_r}\right)\right) \stackrel{(2.2)}{=} d(0) = 0. \quad \Box$$

The following result is an important consequence of Theorem 2.4.

Proposition 2.5 ([3, Theorem 6.7]). Let (M, ∇, h) be a contravariant pseudo-Hessian manifold. Then:

- 1. The distribution $Imh_{\#}$ is integrable and defines a singular foliation \mathcal{L} on M.
- 2. For any leaf L of \mathcal{L} , $(L, \nabla_{|L}, g_L)$ is a pseudo-Hessian manifold where g_L is given by $g_L(\alpha^\#, \beta^\#) = h(\alpha, \beta)$.

We will call the foliation defined by $Imh_{\#}$ the affine foliation associated to (M, ∇, h) .

Remark 2.6. This proposition shows that pseudo-Hessian bivector fields can be used either to build examples of affine foliations on affine manifolds or to build examples of pseudo-Hessian manifolds.

For the reader familiar with Poisson manifolds what we have established so far shows the similarities between Poisson manifolds and contravariant pseudo-Hessian manifolds. One can consult [7] for more details on Poisson geometry. Poisson manifolds have many relations with Lie algebras and we will see now and in Section 4 that contravariant pseudo-Hessian manifolds are related to commutative associative algebras.

Let (M, ∇, h) be a contravariant pseudo-Hessian manifold and \mathcal{D} the connection given in (2.4). Let $x \in M$ and $\mathfrak{g}_x = \ker h_\#(x)$. For any $\alpha, \beta \in \Omega^1(M)$, $(\mathcal{D}_\alpha\beta)^\# = \nabla_{\alpha^\#}\beta^\#$. This shows that if $\alpha_x^\# = 0$ then $(\mathcal{D}_\alpha\beta)_x^\# = 0$. Moreover, $\mathcal{D}_\alpha\beta - \mathcal{D}_\beta\alpha = \nabla_{\alpha^\#}\beta - \nabla_{\beta^\#}\alpha$. This implies that if $\alpha_x^\# = \beta_x^\# = 0$ then $\mathcal{D}_\alpha\beta(x) = \mathcal{D}_\beta\alpha(x)$. For any $a, b \in \mathfrak{g}_x$ put

$$a \bullet b = (\mathcal{D}_{\alpha}\beta)(x),$$

where α, β are two differential 1-forms satisfying $\alpha(x) = a$ and $\beta(x) = b$. This defines a commutative product on \mathfrak{g}_x and moreover, by using the vanishing of the curvature of \mathcal{D} , we get:

Proposition 2.7. $(\mathfrak{g}_x, \bullet)$ is a commutative associative algebra.

Near a point where h vanishes, the algebra structure of \mathfrak{g}_x can be made explicit.

Proposition 2.8. We consider \mathbb{R}^n endowed with its canonical affine connection, h a symmetric bivector field on \mathbb{R}^n such that h(0) = 0 and $(\mathbb{R}^n, \nabla, h)$ is a contravariant pseudo-Hessian manifold. Then the product on $(\mathbb{R}^n)^*$ given by

$$e_i^* \bullet e_j^* = \sum_{k=1}^n \frac{\partial h_{ij}}{\partial x_k}(0)e_k^*$$

is associative and commutative.

Proof. It is a consequence of the relation $\mathcal{D}_{dx_i}dx_j = dh_{ij}$ true by virtue of (2.4). \square

2.3. The product of contravariant pseudo-Hessian manifolds and the splitting theorem

As the product of two Poisson manifolds is a Poisson manifold [15], the product of two contravariant pseudo-Hessian manifolds is a contravariant pseudo-Hessian manifold.

Let (M_1, ∇^1, h^1) and (M_2, ∇^2, h^2) be two contravariant pseudo-Hessian manifolds. We denote by p_i : $M = M_1 \times M_2 \to M_i, i = 1, 2$ the canonical projections. For any $X \in \Gamma(TM_1)$ and $Y \in \Gamma(TM_2)$, we denote by X + Y the vector field on M given by $(X + Y)(m_1, m_2) = (X(m_1), Y(m_2))$. The product of the affine atlases on M_1 and M_2 is an affine atlas on M and the corresponding affine connection is the unique flat connection ∇ on M satisfying $\nabla_{X_1+Y_1}(X_2+Y_2) = \nabla^1_{X_1}Y_1 + \nabla^2_{X_2}Y_2$, for any $X_1, X_2 \in \Gamma(TM_1)$ and $Y_1, Y_2 \in \Gamma(TM_2)$. Moreover, the product of h_1 and h_2 is the unique symmetric bivector field h satisfying

$$h(p_1^*\alpha_1, p_1^*\alpha_2) = h^1(\alpha_1, \alpha_2) \circ p_1, \ h(p_2^*\beta_1, p_2^*\beta_2) = h^2(\beta_1, \beta_2) \circ p_2$$
 and $h(p_1^*\alpha_1, p_2^*\beta_1) = 0$,

for any $\alpha_1, \beta_1 \in \Omega^1(M_1)$, $\alpha_2, \beta_2 \in \Omega^1(M_2)$,

Proposition 2.9. (M, ∇, h) is a contravariant pseudo-Hessian manifold.

Proof. Let $(m_1, m_2) \in M$. Choose an affine coordinates system (x_1, \ldots, x_{n_1}) near m_1 and an affine coordinates system (y_1, \ldots, y_{n_2}) near m_2 . Then

$$h = \sum_{i,j} h_{ij}^1 \circ p_1 \partial_{x_i} \otimes \partial_{x_j} + \sum_{l,k} h_{lk}^2 \circ p_2 \partial_{y_l} \otimes \partial_{y_k}$$

and one can check easily that h satisfies (2.2). \square

If we pursue the exploration of the analogies between Poisson manifolds and contravariant pseudo-Hessian manifolds we can ask naturally if there is an analog of the Darboux-Weinstein's theorem (see [15]) in the context of contravariant pseudo-Hessian manifolds. More precisely, let (M, ∇, h) be a contravariant pseudo-Hessian manifold and $m \in M$ where rank $h_{\#}(m) = r$. One can ask if there exists an affine coordinates system $(x_1, \ldots, x_r, y_1, \ldots, y_{n-r})$ such that

$$h = \sum_{i,j=1}^r h_{ij}(x_1,\ldots,x_r) \partial_{x_i} \otimes \partial_{x_j} + \sum_{i,j=1}^{n-r} f_{ij}(y_1,\ldots,y_{n-r}) \partial_{y_i} \otimes \partial_{y_j},$$

where $(h_{ij})_{1 \le i,j \le r}$ is invertible and its the inverse of $\left(\frac{\partial^2 \phi}{\partial x_i \partial x_j}\right)_{1 \le i,j \le r}$ and $f_{ij}(m) = 0$ for any i,j. Moreover, if the rank of $h_\#$ is constant near m then the functions f_{ij} vanish.

The answer is no in general for a geometric reason. Suppose that m is regular, i.e., the rank of h is constant near m and suppose that there exists an affine coordinates system $(x_1, \ldots, x_r, y_1, \ldots, y_{n-r})$ such that

$$h = \sum_{i,j=1}^r h_{ij}(x_1,\ldots,x_r) \partial_{x_i} \otimes \partial_{x_j}.$$

This will have a strong geometric consequence, namely that $\mathrm{Im}h_\#=\mathrm{span}(\partial_{x_1},\ldots,\partial_{x_r})$ and the associated affine foliation is parallel, i.e., if X is a local vector field and Y is tangent to the foliation then $\nabla_X Y$ is tangent to the foliation. We give now an example of a regular contravariant pseudo-Hessian manifold whose associated affine foliation is not parallel which shows that the analog of Darboux-Weinstein is not true in general.

Example 2.10. We consider $M = \mathbb{R}^4$ endowed with its canonical affine connection ∇ , denote by (x, y, z, t) its canonical coordinates and consider

$$X = \cos(t)\partial_x + \sin(t)\partial_y + \partial_z, \ Y = -\sin(t)\partial_x + \cos(t)\partial_y \quad \text{and} \quad h = X \otimes Y + Y \otimes X.$$

We have $\nabla_X X = \nabla_Y X = \nabla_X Y = \nabla_Y Y = 0$ and hence h is a pseudo-Hessian bivector field, $\mathrm{Im} h_\# = \mathrm{span}\{X,Y\}$ and the rank of h is constant equal to 2. However, the foliation associated to $\mathrm{Im} h_\#$ is not parallel since $\nabla_{\partial_t} Y = -X + \partial_z \notin \mathrm{Im} h_\#$.

However, when h has constant rank equal to $\dim M - 1$, we have the following result and its important corollary.

Theorem 2.11. Let (M, ∇, h) be a contravariant pseudo-Hessian manifold and $m \in M$ such that m is a regular point and the rank of $h_{\#}(m)$ is equal to n-1. Then there exists an affine coordinates system (x_1, \ldots, x_n) around m and a function $f(x_1, \ldots, x_n)$ such that

$$h = \sum_{i,j=1}^{n-1} h_{ij} \partial_{x_i} \otimes \partial_{x_j},$$

and the matrix $(h_{ij})_{1 \leq i,j \leq n-1}$ is invertible and its inverse is the matrix $(\frac{\partial^2 f}{\partial x_i \partial x_j})_{1 \leq i,j \leq n-1}$.

Corollary 2.12. Let (M, ∇, h) be a contravariant pseudo-Hessian manifold with h of constant rank equal to $\dim M - 1$. Then the affine foliation associated to $\mathrm{Im}h_{\#}$ is ∇ -parallel.

In order to prove this theorem, we need the following lemma.

Lemma 2.13. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a differentiable function such that $\partial_x(f) + f\partial_y(f) = 0$. Then f is a constant.

Proof. Let f be a solution of the equation above. We consider the vector field $X_f = \partial_x + f \partial_y$. The integral curve (x(t), y(t)) of X_f passing through $(a, b) \in \mathbb{R}^2$ satisfies

$$x'(t) = 1$$
, $y'(t) = f(x(t), y(t))$ and $(x(0), y(0)) = (a, b)$.

Now

$$y''(t) = \partial_x(f)(x(t), y(t)) + y'(t)\partial_y(f)(x(t), y(t)) = 0$$

and hence, the flow of X_f is given by $\phi(t,(x,y)) = (t+x,f(x,y)t+y)$. The relation $\phi(t+s,(x,y)) = \phi(t,\phi(s,(x,y)))$ implies that the map F(x,y) = (1,f(x,y)) satisfies

$$F(u+tF(u)) = F(u), u \in \mathbb{R}^2, t \in \mathbb{R}.$$

Let $u,v\in\mathbb{R}^2$ such that F(u) and F(v) are linearly independent. Then there exists $s,t\in\mathbb{R}$ such that u-v=tF(u)+sF(v) and hence F(u)=F(v) which is a contradiction. So $F(x,y)=\alpha(x,y)(a,b)$, i.e., $(1,f(x,y))=(\alpha(x,y)a,\alpha(x,y)b)$ and α must be constant and hence f is constant. \square

Proof of Theorem 2.11. Let (x_1, \ldots, x_n) be an affine coordinates system near m such that (X_1, \ldots, X_{n-1}) are linearly independent in a neighborhood of m, where $X_i = (dx_i)^\#$, $X_n = \sum_{j=1}^{n-1} f_j X_j$ and, by virtue of the proof of Theorem 2.4, for any $1 \le i < j \le n$, $[X_i, X_j] = 0$. For any $i = 1, \ldots, n-1$, the relation $[X_i, X_n] = 0$ is equivalent to

$$X_i(f_j) = h_{in}\partial_{x_n}(f_j) + \sum_{l=1}^{n-1} h_{il}\partial_{x_l}(f_j) = 0, \quad j = 1, \dots, n-1.$$

But $h_{in} = X_n(x_i) = \sum_{l=1}^{n-1} f_l h_{il}$ and hence, for any $i, j = 1, \dots n-1$,

$$\sum_{l=1}^{n-1} h_{il}(f_l \partial_{x_n}(f_j) + \partial_{x_l}(f_j)) = 0.$$

Or the matrix $(h_{ij})_{1 \leq i,j \leq n-1}$ is invertible so we get

$$f_l \partial_{x_n}(f_j) + \partial_{x_l}(f_j) = 0, \quad l, j = 1, \dots, n - 1.$$
 (2.5)

For l=j we get that f_j satisfies $f_j\partial_{x_n}(f_j)+\partial_{x_j}(f_j)=0$ so, according to Lemma 2.13, $\partial_{x_n}(f_j)=\partial_{x_j}(f_j)=0$ and, from (2.5), $f_j=$ constant. We consider $y=f_1x_1+\ldots+f_{n-1}x_{n-1}-x_n$, we have $(dy)^\#=0$ and (x_1,\ldots,x_{n-1},y) is an affine coordinates system around m.

On the other hand, there exists a coordinates system (z_1, \ldots, z_n) such that

$$(dx_i)^\# = \partial_{z_i}, \ i = 1, \dots, n-1.$$

We deduce that

$$\partial_{x_i} = \sum_{j=1}^{n-1} h^{ij} \partial_{z_j}, \ i = 1, \dots, n-1,$$

with $h^{ij} = \frac{\partial z_j}{\partial x_i}$. We consider $\sigma = \sum_{j=1}^{n-1} z_j dx_j$. We have $d\sigma = 0$ so according to the foliated Poincaré Lemma (see [5, p. 56]) there exists a function f such that $h^{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. \square

2.4. The divergence and the modular class of a contravariant pseudo-Hessian manifold

We define now the divergence of a contravariant pseudo-Hessian structure. We recall first the definition of the divergence of multivector fields associated to a connection on a manifold.

Let (M, ∇) be a manifold endowed with a connection. We define $\operatorname{div}_{\nabla} : \Gamma(\otimes^p TM) \to \Gamma(\otimes^{p-1} TM)$ by

$$\operatorname{div}_{\nabla}(T)(\alpha_1,\ldots,\alpha_{p-1}) = \sum_{i=1}^n \nabla_{e_i}(T)(e_i^*,\alpha_1,\ldots,\alpha_{p-1}),$$

where $\alpha_1, \ldots, \alpha_{p-1} \in T_x^*M$, (e_1, \ldots, e_n) a basis of T_xM and (e_1^*, \ldots, e_n^*) its dual basis. This operator respects the symmetries of tensor fields.

Suppose now that (M, ∇, h) is a contravariant pseudo-Hessian manifold. The divergence of this structure is the vector field $\operatorname{div}_{\nabla}(h)$. This vector field is an invariant of the pseudo-Hessian structure and has an important property. Indeed, let $\mathbf{d}_h : \Gamma(\wedge^{\bullet}TM) \longrightarrow \Gamma(\wedge^{\bullet+1}TM)$ be the differential associated to the Lie algebroid structure $(T^*M, h_{\#}, [\ ,\]_h)$ and given by

$$\mathbf{d}_{h}Q(\alpha_{1},\ldots,\alpha_{p}) = \sum_{j=1}^{p} (-1)^{j+1} \alpha_{j}^{\#}.Q(\alpha_{1},\ldots,\hat{\alpha_{j}},\ldots\alpha_{p})$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j} Q([\alpha_{i},\alpha_{j}]_{h},\alpha_{1},\ldots,\hat{\alpha_{i}},\ldots,\hat{\alpha_{j}},\ldots,\alpha_{p}).$$

Proposition 2.14. $\mathbf{d}_h(\operatorname{div}_{\nabla}(h)) = 0.$

Proof. Let (x_1, \ldots, x_n) be an affine coordinates system. We have

$$\begin{aligned} \mathbf{d}_{h} \mathrm{div}_{\nabla}(h)(\alpha,\beta) \\ &= \sum_{i=1}^{n} \left(\alpha^{\#} . \nabla_{\partial_{x_{i}}}(h)(dx_{i},\beta) - \beta^{\#} . \nabla_{\partial_{x_{i}}}(h)(dx_{i},\alpha) - \nabla_{\partial_{x_{i}}}(h)(dx_{i},\nabla_{\alpha^{\#}}\beta) + \nabla_{\partial_{x_{i}}}(h)(dx_{i},\nabla_{\beta^{\#}}\alpha) \right) \\ &= \sum_{i=1}^{n} \left(\nabla_{\alpha^{\#}} \nabla_{\partial_{x_{i}}}(h)(dx_{i},\beta) - \nabla_{\beta^{\#}} \nabla_{\partial_{x_{i}}}(h)(dx_{i},\alpha) \right) \\ &\stackrel{(2.1)}{=} \sum_{i=1}^{n} \left(\nabla_{[\alpha^{\#},\partial_{x_{i}}]}(h)(dx_{i},\beta) - \nabla_{[\beta^{\#},\partial_{x_{i}}]}(h)(dx_{i},\alpha) \right). \end{aligned}$$

If we take $\alpha = dx_l$ and $\beta = dx_k$, we have

$$[\partial_{x_i},(dx_l)^\#]=\sum_{m=1}^n\partial_{x_i}(h_{ml})\partial_{x_m}$$

and hence

$$\mathbf{d}_h \operatorname{div}_{\nabla}(h)(\alpha, \beta) = \sum_{i, m=1}^n \left(\partial_{x_i}(h_{ml}) \partial_{x_m}(h_{ik}) - \partial_{x_i}(h_{mk}) \partial_{x_m}(h_{il}) \right) = 0. \quad \Box$$

Let (M, ∇, h) be an orientable contravariant pseudo-Hessian manifold and Ω a volume form on M. For any f we denote by $X_f = h_\#(df)$ and we define $\mathbf{M}_\Omega : C^\infty(M, \mathbb{R}) \longrightarrow C^\infty(M, \mathbb{R})$ by putting for any $f \in C^\infty(M, \mathbb{R})$,

$$\nabla_{X_f}\Omega = \mathbf{M}_{\Omega}(f)\Omega.$$

It is obvious that \mathbf{M}_{Ω} is a derivation and hence a vector field and $\mathbf{M}_{e^f\Omega} = X_f + \mathbf{M}_{\Omega}$. Moreover, if (x_1, \dots, x_n) is an affine coordinates system and $\mu = \Omega(\partial_{x_1}, \dots, \partial_{x_n})$ then

$$\nabla_{X_f}\Omega(\partial_{x_1},\ldots,\partial_{x_n})=X_f(\mu)=X_{\ln|\mu|}(f)\mu.$$

So in the coordinates system (x_1, \ldots, x_n) , we have $\mathbf{M}_{\Omega} = X_{\ln |\mu|}$. This implies $\mathbf{d}_h \mathbf{M}_{\Omega} = 0$. The cohomology class of \mathbf{M}_{Ω} doesn't depend on Ω and we call it the *modular class* of (M, ∇, h) .

Proposition 2.15. The modular class of (M, ∇, h) vanishes if and only if there exists a volume form Ω such that $\nabla_{X_f} \Omega = 0$ for any $f \in C^{\infty}(M, \mathbb{R})$.

By analogy with the case of Poisson manifolds, one can ask if it is possible to find a volume form Ω such that $\mathcal{L}_{X_f}\Omega=0$ for any $f\in C^\infty(M,\mathbb{R})$. The following proposition gives a negative answer to this question unless h=0.

Proposition 2.16. Let (M, ∇, h) be an orientable contravariant pseudo-Hessian manifold. Then:

1. For any volume form Ω and any $f \in C^{\infty}(M, \mathbb{R})$,

$$\mathcal{L}_{X_f}\Omega = \left[\mathbf{M}_{\Omega}(f) + \operatorname{div}_{\nabla}(h)(f) + \prec h, \operatorname{Hess}(f) \succ \right]\Omega,$$

where $\operatorname{Hess}(f)(X,Y) = \nabla_X(df)(Y)$ and $\prec h, \operatorname{Hess}(f) \succ is$ the pairing between the bivector field h and the 2-form $\operatorname{Hess}(f)$.

2. There exists a volume form Ω such that $\mathcal{L}_{X_f}\Omega=0$ for any $f\in C^\infty(M,\mathbb{R})$ if and only if h=0.

Proof. 1. Let (x_1, \ldots, x_n) be an affine coordinates system. Then:

$$\begin{split} [X_f,\partial_{x_i}] &= \sum_{l,j=1}^n \left[\partial_{x_j}(f)h_{jl}\partial_{x_l},\partial_{x_i}\right] \\ &= -\sum_{l,j=1}^n \left(h_{jl}\partial_{x_i}\partial_{x_j}(f) + \partial_{x_j}(f)\partial_{x_i}(h_{jl})\right)\partial_{x_l}, \\ \mathcal{L}_{X_f}\Omega(\partial_{x_1},\ldots,\partial_{x_n}) &= (\nabla_{X_f}\Omega)(\partial_{x_1},\ldots,\partial_{x_n}) - \sum_{i=1}^n \Omega((\partial_{x_1},\ldots,[X_f,\partial_{x_i}],\ldots,\partial_{x_n})) \\ &= (\nabla_{X_f}\Omega)(\partial_{x_1},\ldots,\partial_{x_n}) + \sum_{i,j=1}^n \left(h_{ji}\partial_{x_i}\partial_{x_j}(f) + \partial_{x_j}(f)\partial_{x_i}(h_{ji})\right)\Omega(\partial_{x_1},\ldots,\partial_{x_n}) \end{split}$$

and the formula follows since $\operatorname{div}_{\nabla}(h) = \sum_{i = 1}^{n} \partial_{x_{i}}(h_{ji}) \partial_{x_{j}}$.

2. This is a consequence of the fact that \mathbf{M}_{Ω} and $\operatorname{div}_{\nabla}(h)$ are derivation and

$$\prec h, \operatorname{Hess}(fg) \succ = f \prec h, \operatorname{Hess}(g) \succ +g \prec h, \operatorname{Hess}(f) \succ + \prec h, df \odot dg \succ . \quad \Box$$

3. The tangent bundle of a contravariant pseudo-Hessian manifold

In this section, we define and study the associated Poisson tensor on the tangent bundle of a contravariant pseudo-Hessian manifold. We will start this paragraph by recalling some useful results concerning the geometry of the tangent bundle.

Let (M, ∇) be an *n*-dimensional smooth manifold with a connection and denote by $p: TM \to M$ the canonical projection of the tangent bundle. It is a well known fact that one can define on TM the so called Sasaki connection $\overline{\nabla}$ associated to ∇ , and also the Sasaki almost complex structure $J: T(TM) \to T(TM)$. For more details one can see [6,16,11]. Indeed, associated to ∇ there exists a splitting

$$TTM = V(M) \oplus H(M)$$

such that for any $u \in TM$, $T_up: H_u(M) \longrightarrow T_{p(x)}M$ is an isomorphism. For any $X \in \Gamma(TM)$ we denote by $X^v \in \Gamma(V(M))$ its vertical lift and by $X^h \in \Gamma(H(M))$ its horizontal lift. There are given, for any $u \in TM$, by

$$X_u^v = \frac{d}{dt}_{|_{t=0}}(u + tX_{p(u)}), \text{ and } Tp(X_u^h) = X_{p(u)}.$$

The Sasaki almost complex structure $J: TTM \longrightarrow TTM$ determined by ∇ is defined by

$$J(X^h) = X^v$$
 and $J(X^v) = -X^h$.

It is integrable to a complex structure on TM if and only if ∇ is flat.

Suppose now that (M, ∇) is an affine manifold. Since the curvature of ∇ vanishes, for any $X, Y \in \Gamma(TM)$,

$$[X^h, Y^h] = [X, Y]^h, [X^h, Y^v] = (\nabla_X Y)^v \text{ and } [X^v, Y^v] = 0.$$
 (3.1)

As for the vector fields, for any $\alpha \in \Omega^1(M)$, we define $\alpha^v, \alpha^h \in \Omega^1(TM)$ by

$$\begin{cases} \alpha^{v}(X^{v}) = \alpha(X) \circ p, \\ \alpha^{v}(X^{h}) = 0, \end{cases} \text{ and } \begin{cases} \alpha^{h}(X^{h}) = \alpha(X) \circ p, \\ \alpha^{h}(X^{v}) = 0. \end{cases}$$

The Sasaki connection $\overline{\nabla}$ on TM is defined by

$$\overline{\nabla}_{X^h} Y^h = (\nabla_X Y)^h, \ \overline{\nabla}_{X^h} Y^v = (\nabla_X Y)^v \quad \text{and} \quad \overline{\nabla}_{X^v} Y^h = \overline{\nabla}_{X^v} Y^v = 0, \tag{3.2}$$

where $X, Y \in \Gamma(TM)$. This connection is torsionless and flat and hence defines an affine structure on TM. Moreover, the endomorphism vector field $J: TTM \to TTM$ is parallel with respect to $\overline{\nabla}$.

Remark 3.1. All the above geometrical structures on TM could be described locally in an easy way. In fact, let (x_1, \dots, x_n) be an affine coordinates system on an open set $U \subset M$. Then we can easily see that the connection $\overline{\nabla}$ is the canonical one for which the associated canonical coordinate system $(x_1, \dots, x_n, y_1, \dots, y_n)$ on TU is affine (where $x_i(u) := x_i(p(u))$ and $y_j(u) := dx_i(u)$ for any $u \in TU$). The complex structure is given by $J(\partial_{x_i}) = \partial_{y_i}$, $J(\partial_{y_i}) = -\partial_{x_i}$.

Now, let h be a symmetric bivector field on M. We associate to h a skew-symmetric bivector field Π on TM by putting

$$\Pi(\alpha^v, \beta^v) = \Pi(\alpha^h, \beta^h) = 0$$
 and $\Pi(\alpha^h, \beta^v) = -\Pi(\beta^v, \alpha^h) = h(\alpha, \beta) \circ p$,

for any $\alpha, \beta \in \Omega^1(M)$. For any $\alpha \in \Omega^1(M)$,

$$\Pi_{\#}(\alpha^{v}) = -(\alpha^{\#})^{h} \quad \text{and} \quad \Pi_{\#}(\alpha^{h}) = (\alpha^{\#})^{v}.$$
 (3.3)

To prove one of our main result in this section, we need the following proposition which is a part of the folklore.

Proposition 3.2. Let (P, ∇) be a manifold endowed with a torsionless connection and π is a bivector field on P. Then the Nijenhuis-Schouten bracket $[\pi, \pi]$ is given by

$$[\pi, \pi](\alpha, \beta, \gamma) = 2 \left(\nabla_{\pi_{\#}(\alpha)} \pi(\beta, \gamma) + \nabla_{\pi_{\#}(\beta)} \pi(\gamma, \alpha) + \nabla_{\pi_{\#}(\gamma)} \pi(\alpha, \beta) \right).$$

Theorem 3.3. The following assertions are equivalent:

- (i) (M, ∇, h) is a contravariant pseudo-Hessian manifold.
- (ii) (TM,Π) is a Poisson manifold.

In this case, if L is a leaf of $\mathrm{Im} h_{\#}$ then $TL \subset TM$ is a symplectic leaf of Π which is also a complex submanifold of TM. Moreover, if ω_L is the symplectic form of TL induced by Π and g_L is the pseudo-Riemannian metric given by $g_L(U,V) = \omega(JU,V)$ then (TL,g_L,ω_L,J) is a pseudo-Kähler manifold.

Proof. We will use Proposition 3.2 to prove the equivalence. Indeed, by a direct computation one can establish easily, for any $\alpha, \beta, \gamma \in \Omega^1(M)$, the following relations

$$\overline{\nabla}_{\Pi_{\#}(\alpha^{v})}\Pi(\beta^{v},\gamma^{v}) = \overline{\nabla}_{\Pi_{\#}(\alpha^{v})}\Pi(\beta^{h},\gamma^{h}) = \overline{\nabla}_{\Pi_{\#}(\alpha^{h})}\Pi(\beta^{v},\gamma^{v}) = \overline{\nabla}_{\Pi_{\#}(\alpha^{h})}\Pi(\beta^{h},\gamma^{h}) = \overline{\nabla}_{\Pi_{\#}(\alpha^{h})}\Pi(\beta^{h},\gamma^{v}) = 0,$$

$$\overline{\nabla}_{\Pi_{\#}(\alpha^{v})}\Pi(\beta^{h},\gamma^{v}) = \nabla_{\alpha^{\#}}(h)(\beta,\gamma) \circ p,$$

and the equivalence follows. The second part of the theorem is obvious and the only point which need to be checked is that g_L is nondegenerate. \Box

Remark 3.4.

- 1. The total space of the dual of a Lie algebroid carries a Poisson tensor (see [12]). If (M, ∇, h) is a contravariant pseudo-Hessian manifold then, according to Theorem 2.4, T^*M carries a Lie algebroid structure and one can see easily that Π is the corresponding Poisson tensor on TM.
- 2. The equivalence of (i) and (ii) in Theorem 3.3 deserves to be stated explicitly in the case of \mathbb{R}^n endowed with its canonical affine structure ∇ . Indeed, let $(h_{ij})_{1 \leq i,j \leq n}$ be a symmetric matrix where $h_{ij} \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ and h the associated symmetric bivector field on \mathbb{R}^n . The associated bivector field Π_h on $T\mathbb{R}^n = \mathbb{C}^n$ is

$$\Pi_h = \sum_{i,j=1}^n h_{ij}(x) \partial_{x_i} \wedge \partial_{y_j},$$

where $(x_1 + iy_1, ..., x_n + iy_n)$ are the canonical coordinates of \mathbb{C}^n . Then, according to Theorem 2.4, $(\mathbb{R}^n, \nabla, h)$ is a contravariant pseudo-Hessian manifold if and only if (\mathbb{C}^n, Π_h) is a Poisson manifold.

We explore now some relations between some invariants of (M, ∇, h) and some invariants of (TM, Π) .

Proposition 3.5. Let (M, ∇, h) be a contravariant pseudo-Hessian manifold. Then $(\operatorname{div}_{\nabla} h)^v = \operatorname{div}_{\overline{\nabla}} \Pi$.

Proof. Fix $(x,u) \in TM$ and choose a basis (e_1,\ldots,e_n) of T_xM . Then $(e_1^v,\ldots,e_n^v,e_1^h,\ldots,e_n^h)$ is a basis of $T_{(x,u)}TM$ with $((e_1^*)^v,\ldots,(e_n^*)^v,(e_1^*)^h,\ldots,(e_n^*)^h)$ as a dual basis. For any $\alpha \in T_x^*M$, we have

$$\begin{split} \prec \alpha^v, \mathrm{div}_{\overline{\nabla}} \Pi \succ &= \sum_{i=1}^n \left(\overline{\nabla}_{e_i^v} (\Pi) ((e_i^*)^v, \alpha^v) + \overline{\nabla}_{e_i^h} (\Pi) ((e_i^*)^h, \alpha^v) \right) \\ &\stackrel{(3.2)}{=} \prec \alpha, \mathrm{div}_{\overline{\nabla}} (h) \succ \circ p = \prec \alpha^v, (\mathrm{div}_{\overline{\nabla}} (h))^v \succ . \end{split}$$

In the same way we get that $\prec \alpha^h$, $\operatorname{div}_{\overline{\nabla}}\Pi \succ = 0$ and the result follows. \Box

Let (M, ∇, h) be a contravariant pseudo-Hessian manifold. For any multivector field Q on M we define its vertical lift Q^v on TM by

$$i_{\alpha^h}Q^v = 0$$
 and $Q^v(\alpha_1^v, \dots, \alpha_q^v) = Q(\alpha_1, \dots, \alpha_q) \circ p$.

Recall that h defines a Lie algebroid structure on T^*M whose anchor is $h_\#$ and the Lie bracket is given by (2.3). The Poisson tensor Π defines a Lie algebroid structure on T^*TM whose anchor is $\Pi_\#$ and the Lie bracket is the Koszul bracket

$$[\phi_1, \phi_2]_{\Pi} = \mathcal{L}_{\Pi_{\#}(\phi_1)}\phi_2 - \mathcal{L}_{\Pi_{\#}(\phi_2)}\phi_1 - d\Pi(\phi_1, \phi_2), \quad \phi_1, \phi_2 \in \Omega^1(TM).$$

We denote by \mathbf{d}_h (resp. \mathbf{d}_{Π}) the differential associated to the Lie algebroid structure on T^*M (resp. T^*TM) defined by h (resp. Π).

Proposition 3.6.

(i) For any $\alpha, \beta \in \Omega^1(M)$ and $X \in \Gamma(TM)$,

$$\begin{cases} \mathcal{L}_{X^h}\alpha^h = (\mathcal{L}_X\alpha)^h, \ \mathcal{L}_{X^h}\alpha^v = (\nabla_X\alpha)^v, \ \mathcal{L}_{X^v}\alpha^h = 0 \quad and \quad \mathcal{L}_{X^v}\alpha^v = (\mathcal{L}_X\alpha)^h - (\nabla_X\alpha)^h, \\ [\alpha^h, \beta^h]_\Pi = 0, \ [\alpha^v, \beta^v]_\Pi = -[\alpha, \beta]_h^v \quad and \quad [\alpha^h, \beta^v]_\Pi = (\mathcal{D}_\beta\alpha)^h, \end{cases}$$

where \mathcal{D} is the connection given by (2.4).

$$(ii) \ (\mathbf{d}_h Q)^v = -\mathbf{d}_{\Pi}(Q^v).$$

Proof. The relations in (i) can be established by a straightforward computation. From these relations and the fact that $\Pi_{\#}(\alpha^h) = (\alpha^{\#})^v$ one can deduce easily that $i_{\alpha^h} \mathbf{d}_{\Pi}(Q^v) = 0$. On the other hand, since $\Pi_{\#}(\alpha^v) = -(\alpha^{\#})^h$ and $[\alpha^v, \beta^v]_{\Pi} = -[\alpha, \beta]^v$ we can conclude. \square

Remark 3.7. From Propositions 2.14 and Proposition 3.6, we can deduce that $\mathbf{d}_{\Pi}(\operatorname{div}_{\overline{\nabla}}\Pi) = 0$. This is not a surprising result because $\overline{\nabla}$ is flat and $\operatorname{div}_{\overline{\nabla}}\Pi$ is a representative of the modular class of Π .

As a consequence of Proposition 3.6 we can define a linear map from the cohomology of $(T^*M, h_\#, [\ ,\]_h)$ to the cohomology of $(T^*TM, \Pi_\#, [\ ,\]_\Pi)$ by

$$V: H^*(M,h) \longrightarrow H^*(TM,\Pi), [Q] \mapsto [Q^v].$$

Proposition 3.8. *V* is injective.

Proof. An element $P \in \Gamma(\wedge^d TTM)$ is of type (r, d-r) if for any $q \neq r$

$$P(\alpha_1^v, \dots, \alpha_q^v, \beta_1^h, \dots, \beta_{d-q}^h) = 0,$$

for any $\alpha_1, \ldots, \alpha_q, \beta_1, \ldots, \beta_{d-q} \in \Omega^1(M)$. We have

$$\begin{cases} \Gamma(\wedge^d TTM) = \bigoplus_{r=0}^d \Gamma_{(r,d-r)}(\wedge^d TTM), \\ \mathbf{d}_{\Pi}(\Gamma_{(r,d-r)}(\wedge^d TTM)) \subset \Gamma_{(r+1,d-r)}(\wedge^{d+1} TTM) \oplus \Gamma_{(r,d+1-r)}(\wedge^{d+1} TTM). \end{cases}$$

Let $Q \in \Gamma(\wedge^d TM)$ such that $\mathbf{d}_h Q = 0$ and there exists $P \in \Gamma(\wedge^{d-1} TTM)$ such that $\mathbf{d}_{\Pi} P = Q^v$. Since $Q^v \in \Gamma_{(d,0)}(\wedge^d TTM)$ then $P \in \Gamma_{(d-1,0)}(\wedge^{d-1} TTM)$. Let us show that $P = T^v$. For $\alpha_1, \ldots, \alpha_{d-1}, \beta \in \Omega^1(M)$, we have

$$0 = \mathbf{d}_{\Pi} P(\beta^h, \alpha_1^v, \dots, \alpha_{d-1}^v) = (\beta^{\#})^v . P(\alpha_1^v, \dots, \alpha_{d-1}^v).$$

So the function $P(\alpha_1^v, \dots, \alpha_{d-1}^v)$ is constant on the fibers of TM and hence there exists $T \in \Gamma(\wedge^{d-1}TM)$ such that $P(\alpha_1^v, \dots, \alpha_{d-1}^v) = T(\alpha_1, \dots, \alpha_{d-1}) \circ p$. So [Q] = 0 which completes the proof. \square

4. Linear, affine and multiplicative contravariant pseudo-Hessian structures

4.1. Linear and affine contravariant pseudo-Hessian structures

As in the Poisson geometry context, we have the notions of linear and affine contravariant pseudo-Hessian structures. One can see [10] for the notion of cocycle in associative algebras.

Let (V, ∇) be a finite dimensional real vector space endowed with its canonical affine structure. A symmetric bivector field h on V is called affine if there exists a commutative product \bullet on V^* and a symmetric bilinear form B on V^* such that, for any $\alpha, \beta \in V^* \subset \Omega^1(V)$ and $u \in V$,

$$h(\alpha, \beta)(u) = \prec \alpha \bullet \beta, u \succ +B(\alpha, \beta).$$

One can see easily that if $\alpha, \beta \in \Omega^1(V) = C^{\infty}(V, V^*)$ then

$$h(\alpha, \beta)(u) = \prec \alpha(u) \bullet \beta(u), u \succ +B(\alpha(u), \beta(u)).$$

If B = 0, h is called linear.

If (x_1, \ldots, x_n) is a linear coordinates system on V^* associated to a basis (e_1, \ldots, e_n) then

$$h(dx_i, dx_j) = b_{ij} + \sum_{k=1}^{n} C_{ij}^k x_k,$$

where $e_i \bullet e_j = \sum_{k=1}^n C_{ij}^k e_k$ and $b_{ij} = B(e_i, e_j)$.

Proposition 4.1. (V, ∇, h) is a contravariant pseudo-Hessian manifold if and only if \bullet is associative and B is a scalar 2-cocycle of (V^*, \bullet) , i.e.,

$$B(\alpha \bullet \beta, \gamma) = B(\alpha, \beta \bullet \gamma)$$

for any $\alpha, \beta, \gamma \in V^*$.

Proof. For any $\alpha \in V^*$ and $u \in V$, $\alpha^{\#}(u) = L_{\alpha}^* u + i_{\alpha} B$ where $L_{\alpha}(\beta) = \alpha \bullet \beta$ and $i_{\alpha} B \in V^{**} = V$. We denote by $\phi^{\alpha^{\#}}$ the flow of the vector field $\alpha^{\#}$. Then, for any $\alpha, \beta, \gamma \in V^*$,

$$\nabla_{\alpha^{\#}}(h)(\beta,\gamma)(u) = \frac{d}{dt}_{|t=0} \left(\prec \beta \bullet \gamma, \phi^{\alpha^{\#}}(t,u) \succ +B(\beta,\gamma) \right)$$
$$= \prec \beta \bullet \gamma, L_{\alpha}^{*}u + i_{\alpha}B \succ$$
$$= \prec \alpha \bullet (\beta \bullet \gamma), u \succ +B(\alpha,\beta \bullet \gamma)$$

and the result follows. \Box

Conversely, we have the following result.

Proposition 4.2. Let (A, \bullet, B) be a commutative and associative algebra endowed with a symmetric scalar 2-cocycle. Then:

1. \mathcal{A}^* carries a structure of a contravariant pseudo-Hessian structure (∇, h) where ∇ is the canonical affine structure of \mathcal{A}^* and h is given by

$$h(u,v)(\alpha) = \prec \alpha, u(\alpha) \bullet v(\alpha) \succ +B(u(\alpha),v(\alpha)), \quad \alpha \in \mathcal{A}^*, u,v \in \Omega^1(\mathcal{A}^*).$$

- 2. When B=0, the leaves of the affine foliation associated to $\mathrm{Im}h_{\#}$ are the orbits of the action Φ of $(\mathcal{A},+)$ on \mathcal{A}^* given by $\Phi(u,\alpha)=\exp(\mathrm{L}_u^*)(\alpha)$.
- 3. The associated Poisson tensor Π on $TA^* = A^* \times A^*$ is the affine Poisson tensor dual associated to the Lie algebra $(A \times A, [\ ,\])$ endowed with the 2-cocycle B_0 where

$$[(a,b),(c,d)] = (a \bullet d - b \bullet c,0)$$
 and $B_0((a,b),(c,d)) = B(a,d) - B(c,b).$

Proof. It is only the third point which need to be checked. One can see easily that $[\ ,\]$ is a Lie bracket on $\mathcal{A} \times \mathcal{A}$ and \mathcal{B}_0 is a scalar 2-cocycle for this Lie bracket. For any $a \in \mathcal{A} \subset \Omega^1(\mathcal{A}^*)$, $a^v = (0, a) \in \mathcal{A} \times \mathcal{A} \subset \Omega^1(\mathcal{A}^* \times \mathcal{A}^*)$ and $a^h = (a, 0)$. So

$$\Pi(a^h, b^v)(\alpha, \beta) = h(a, b)(\alpha) = \prec \alpha, a \bullet b \succ +B(a, b).$$

On the other hand, if Π^* is the Poisson tensor dual, then

$$\Pi^*(a^h, b^v)(\alpha, \beta) = \Pi^*((a, 0), (0, b))(\alpha, \beta)$$

$$= \langle (\alpha, \beta), [(a, 0), (0, b)] \rangle + B_0((a, 0), (0, b))$$

$$= \langle \alpha, a \bullet b \rangle + B(a, b)$$

$$= \Pi(a^h, b^v)(\alpha, \beta).$$

In the same way one can check the other equalities. \Box

This proposition can be used as a machinery to build examples of pseudo-Hessian manifolds. Indeed, by virtue of Proposition 2.5, any orbit L of the action Φ has an affine structure ∇_L and a pseudo-Riemannian metric g_L such that (L, ∇_L, g_L) is a pseudo-Hessian manifold.

Example 4.3. Let \mathcal{A} be the algebra generated by one element x satisfying the relation $x^5 = 0$, and setting $e_k := x^k$. It is clear that \mathcal{A} is a commutative associative algebra. We endow \mathcal{A}^* with the linear contravariant

pseudo-Hessian structure associated to product of \mathcal{A} . We denote by (a, b, c, d) the linear coordinates on \mathcal{A} and (x, y, z, t) the dual coordinates on \mathcal{A}^* . We have

$$\Phi(ae_1 + be_2 + ce_3 + de_4^*, xe_1^* + ye_2^* + ze_3^* + te_4^*) = (x + ay + (\frac{1}{2}a^2 + b)z + (\frac{1}{6}a^3 + ab + c)t, y + az + (\frac{1}{2}a^2 + b)t, z + at, t)$$

and

$$X_{e_1}=y\partial_x+z\partial_y+t\partial_z,\; X_{e_2}=z\partial_x+t\partial_y,\; X_{e_3}=t\partial_x \quad {\rm and} \quad X_{e_4}=0.$$

Let us describe the pseudo-Hessian structure of the hyperplane $M_c = \{t = c, c \neq 0\}$ endowed with the coordinates (x, y, z). We denote by g_c the pseudo-Riemannian of M_c . We have, for instance,

$$g_c(X_{e_1}, X_{e_1})(x, y, z, c) = h(e_1, e_1)(x, y, z, c) = \prec e_1 \bullet e_1, (x, y, z, c) \succ = y.$$

So, one can see that the matrix of g_c in $(X_{e_1}, X_{e_2}, X_{e_3})$ is the passage matrix P from $(X_{e_1}, X_{e_2}, X_{e_3})$ to $(\partial_x, \partial_y, \partial_z)$ and hence

$$g_c=rac{1}{c}\left(2dxdz+dy^2-rac{2z}{c}dydz+rac{(z^2-yc)}{c^2}dz^2
ight).$$

The signature of this metric is (+,+,-) if c>0 and (+,-,-) if c<0. One can check easily that g_c is the restriction of $\nabla d\phi$ to M_c , where

$$\phi(x, y, z, t) = \frac{z^4}{12t^3} + \frac{y^2}{2t} - \frac{z^2y}{2t} + \frac{xz}{t}.$$

4.2. Multiplicative contravariant pseudo-Hessian structures

A contravariant pseudo-Hessian structure (∇, h) on a Lie group G is called multiplicative if the multiplication $m: (G \times G, \nabla \oplus \nabla, h \oplus h) \longrightarrow (G, \nabla, h)$ is affine and sends $h \oplus h$ to h.

Lemma 4.4. Let G be a connected Lie group and ∇ a connection on G such that the multiplication $m: (G \times G, \nabla \oplus \nabla) \longrightarrow (G, \nabla)$ preserves the connections. Then G is abelian and ∇ is bi-invariant.

Proof. We will denote by $\chi^r(G)$ (resp. $\chi^l(G)$) the space of right invariant vector fields (resp. the left invariant vector fields) on G. It is clear that for any $X \in \chi^r(G)$ and $Y \in \chi^l(G)$, the vector field (X,Y) on $G \times G$ is m-related to the vector field X + Y on G:

$$Tm(X_a, Y_b) = X_a.b + a.Y_b = X_{ab} + Y_{ab} = (X + Y)_{ab}$$

It follows that for any $X_1, X_2 \in \chi^r(G)$ and $Y_1, Y_2 \in \chi^l(G)$, the vector field $(\nabla \oplus \nabla)_{(X_1, Y_1)}(X_2, Y_2)$ is m-related to $\nabla_{X_1+Y_1}(X_2+Y_2)$, hence:

$$Tm((\nabla_{X_1}X_2)_a, (\nabla_{Y_1}Y_2)_b) = (\nabla_{(X_1+Y_1)}(X_2+Y_2))_{ab}$$

So we get

$$(\nabla_{X_1} X_2)_a.b + a.(\nabla_{Y_1} Y_2)_b = (\nabla_{X_1} X_2 + \nabla_{X_1} Y_2 + \nabla_{Y_1} X_2 + \nabla_{Y_1} Y_2)_{ab}$$

$$(4.1)$$

If we take $Y_1=0=Y_2$ we obtain that ∇ is right invariant. In the same way we get that ∇ is left invariant. Now, if we return back to the equation (4.1) we obtain that for any $X \in \chi^r(G)$ and $Y \in \chi^l(G)$

we have $\nabla X = 0 = \nabla Y$. This implies that any left invariant vector field is also right invariant; indeed, if $Y = \sum_{i=1}^{n} f_i X_i$ with $Y \in \chi^l(G)$ and $X_i \in \chi^r(G)$ then $X_j f_i = 0$ for all $i, j = 1, \cdot, n$. Hence the adjoint representation is trivial and hence G must be abelian. \square

At the end of the paper, we give another proof of this Lemma based on parallel transport.

Corollary 4.5. Let (∇, h) be multiplicative contravariant pseudo-Hessian structure on a simply connected Lie group G. Then G is a vector space, ∇ its canonical affine connection and h is linear.

Example 4.6. Based on the classification of complex associative commutative algebras given in [14], we can give a list of examples of affine contravariant pseudo-Hessian structures up to dimension 4.

1. On \mathbb{R}^2 :

$$h_1 = \begin{pmatrix} x_2 & 0 \\ 0 & 0 \end{pmatrix}, h_2 = \begin{pmatrix} x_1 & x_2 \\ x_2 & 0 \end{pmatrix}$$
 and $h_3 = \begin{pmatrix} x_2 & 1 \\ 1 & 0 \end{pmatrix}$.

2. On \mathbb{R}^3 :

$$h_1 = \begin{pmatrix} a & 0 & x_2 \\ 0 & 0 & 0 \\ x_2 & 0 & b \end{pmatrix}, \quad h_2 = \begin{pmatrix} x_2 & x_3 & a \\ x_3 & a & 0 \\ a & 0 & 0 \end{pmatrix}, \quad h_3 = \begin{pmatrix} a & 0 & x_1 \\ 0 & 0 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix},$$

$$h_4 = \begin{pmatrix} x_2 & 0 & x_2 \\ 0 & 0 & x_2 + a \\ x_2 & x_2 + a & x_3 \end{pmatrix} \quad \text{and} \quad h_5 = \begin{pmatrix} x_2 & 0 & x_1 \\ 0 & 0 & x_2 \\ x_1 & x_2 & x_3 \end{pmatrix}.$$

3. On \mathbb{R}^4 :

$$h_{1} = \begin{pmatrix} x_{3} & a & x_{4} + b & 0 \\ a & -x_{4} + c & 0 & 0 \\ x_{4} + b & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad h_{2} = \begin{pmatrix} x_{2} & x_{3} & x_{4} & a \\ x_{3} & x_{4} & a & 0 \\ x_{4} & a & 0 & 0 \\ a & 0 & 0 & 0 \end{pmatrix}, \quad h_{3} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{2} & 0 & 0 & 0 \\ x_{3} & 0 & 0 & 0 \\ x_{4} & 0 & 0 & 0 \end{pmatrix},$$

$$h_{4} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{2} & x_{4} & 0 & 0 \\ x_{3} & 0 & 0 & 0 \\ x_{4} & 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad h_{5} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{2} & x_{3} & x_{4} & 0 \\ x_{3} & x_{4} & 0 & 0 \\ x_{4} & 0 & 0 & 0 \end{pmatrix}.$$

5. Quadratic contravariant pseudo-Hessian structures

Let V be a vector space of dimension n. Denote by ∇ its canonical affine connection. A symmetric bivector field h on V is quadratic if there exists a basis \mathbb{B} of V such that, for any $i, j = 1, \ldots, n$,

$$h(dx_i, dx_j) = \sum_{l,k=1}^n a_{l,k}^{i,j} x_l x_k,$$

where the $a_{k,l}^{i,j}$ are real constants and (x_1,\ldots,x_n) are the linear coordinates associated to \mathbb{B} .

For any linear endomorphism A on V we denote by \widetilde{A} the associated linear vector field on V.

The key point is that if h is a quadratic contravariant pseudo-Hessian bivector field on V then its divergence is a linear vector field, i.e., $\operatorname{div}_{\nabla}(h) = \widetilde{L^h}$ where L^h is a linear endomorphism of V. Moreover, if F = (A, u) is an affine transformation of V then $\operatorname{div}_{\nabla}(F_*h) = A^{-1}L^hA$. So the Jordan form of L_h is an invariant of the quadratic contravariant pseudo-Hessian structure. By using Maple we can classify quadratic

contravariant pseudo-Hessian structures on \mathbb{R}^2 . The same approach has been used by [8] to classify quadratic Poisson structures on \mathbb{R}^4 . Note that if h is a quadratic contravariant pseudo-Hessian tensor on \mathbb{R}^n then its associated Poisson tensor on \mathbb{C}^n is also quadratic.

Theorem 5.1.

1. Up to an affine isomorphism, there is two quadratic contravariant pseudo-Hessian structures on \mathbb{R}^2 which are divergence free

$$h_1 = \begin{pmatrix} 0 & 0 \\ 0 & ux^2 \end{pmatrix} \quad and \quad h_2 = \begin{pmatrix} \frac{r^2x^2}{c} - 2rxy + cy^2 & \frac{r^3x^2}{c^2} - \frac{2r^2xy}{c^2} + ry^2 \\ \frac{r^3x^2}{c^2} - \frac{2r^2xy}{c} + ry^2 & -\frac{2r^3xy}{c^2} + \frac{r^4x^2}{c^3} + \frac{r^2y^2}{c} \end{pmatrix}.$$

2. Up to an affine isomorphism, there is two quadratic contravariant pseudo-Hessian structures on \mathbb{R}^2 with the divergence equivalent to the Jordan form $\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$,

$$h_1 = \begin{pmatrix} cy^2 + xy & 0 \\ 0 & 0 \end{pmatrix} \quad and \quad h_2 = \begin{pmatrix} \frac{1}{2}xy + cy^2 & \frac{y^2}{4} \\ \frac{y^2}{4} & 0 \end{pmatrix}.$$

3. Up to an affine isomorphism, there is five quadratic contravariant pseudo-Hessian structures on \mathbb{R}^2 with diagonalizable divergence

$$\begin{split} h_1 &= \begin{pmatrix} ax^2 & 0 \\ 0 & by^2 \end{pmatrix}, \ h_2 &= \begin{pmatrix} ax^2 + by^2 & 0 \\ 0 & 0 \end{pmatrix}, \ h_3 &= \begin{pmatrix} ax^2 & axy \\ axy & ay^2 \end{pmatrix}, \\ h_4 &= \begin{pmatrix} \frac{2r^2x^2}{c} - 2rxy + cy^2 & ry^2 \\ ry^2 & \frac{2r^2y^2}{c} \end{pmatrix} \quad and \\ h_5 &= \begin{pmatrix} (\frac{2p^2}{u} + \frac{q}{2})x^2 + \frac{pqxy}{u} + \frac{q^2y^2}{4u} & px^2 + qxy - \frac{pqy^2}{2u} \\ px^2 + qxy - \frac{pqy^2}{2u} & (\frac{2p^2}{u} + \frac{q}{2})y^2 + ux^2 - 2pxy \end{pmatrix}. \end{split}$$

4. Up to an affine isomorphism, there is a unique quadratic pseudo-Hessian structure on \mathbb{R}^2 with the divergence having non real eigenvalues

$$h = \begin{pmatrix} -2pxy - ux^2 + uy^2 & px^2 - py^2 - 2uxy \\ px^2 - py^2 - 2uxy & 2pxy + ux^2 - uy^2 \end{pmatrix}.$$

Example 5.2. The study of quadratic contravariant pseudo-Hessian structures on \mathbb{R}^3 is more complicated and we give here a class of quadratic pseudo-Hessian structures on \mathbb{R}^3 of the form $\widetilde{A} \odot \widetilde{I}_3$ where \widetilde{A} is linear.

1. A is diagonal:

$$h_1 = \begin{pmatrix} x^2 & xy & xz \\ xy & y^2 & yz \\ xz & yz & z^2 \end{pmatrix}$$
 and $h_2 = \begin{pmatrix} x^2 & xy & 0 \\ xy & y^2 & 0 \\ 0 & 0 & -z^2 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$
:

$$h_{3} = \begin{pmatrix} 2x(y-px) & (y-px)y+pyx & pxz+(y-px)z\\ (y-px)y+pyx & 2py^{2} & 2pyz\\ pxz+(y-px)z & 2pyz & 2pz^{2} \end{pmatrix},$$

$$h_{4} = \begin{pmatrix} 2x(y+px) & (y+px)y-pyx & pxz+(y+px)z\\ (y+px)y+pyx & -2py^{2} & 0\\ pxz+(y+px)z & 0 & 2pz^{2} \end{pmatrix}.$$

6. Right-invariant contravariant pseudo-Hessian structures on Lie groups

Let (\mathfrak{g}, \bullet) be a left symmetric algebra, i.e., for any $u, v, w \in \mathfrak{g}$,

$$ass(u, v, w) = ass(v, u, w)$$
 and $ass(u, v, w) = (u \bullet v) \bullet w - u \bullet (v \bullet w)$.

This implies that $[u, v] = u \bullet v - v \bullet u$ is a Lie bracket on \mathfrak{g} and $L : \mathfrak{g} \to \operatorname{End}(\mathfrak{g}), u \mapsto L_u$ is a representation of the Lie algebra $(\mathfrak{g}, [\ ,\])$. We denote by L_u the left multiplication by u.

We consider a connected Lie group G whose Lie algebra is $(\mathfrak{g}, [\ ,\])$ and we define on G a right invariant connection by

$$\nabla_{u^{-}}v^{-} = -(u \bullet v)^{-}, \tag{6.1}$$

where u^- is the right vector field associated to $u \in \mathfrak{g}$. This connection is torsionless and without curvature and hence (G, ∇) is an affine manifold. Let $r \in \mathfrak{g} \otimes \mathfrak{g}$ which is symmetric and let r^- be the associated right invariant symmetric bivector field.

Proposition 6.1. (G, ∇, r^-) is a contravariant pseudo-Hessian manifold if and only if, for any $\alpha, \beta, \gamma \in \mathfrak{g}^*$,

$$[[r,r]](\alpha,\beta,\gamma) := \prec \gamma, [\alpha,\beta]_r^\# - [\alpha^\#,\beta^\#] \succ = 0, \tag{6.2}$$

where

$$[\alpha,\beta]_r = \mathcal{L}_{\alpha^\#}^*\beta - \mathcal{L}_{\beta^\#}^*\alpha \quad and \quad \prec \mathcal{L}_u^*\alpha, v \succ = - \prec \alpha, u \bullet v \succ.$$

In this case, the product on \mathfrak{g}^* given by $\alpha.\beta = L_{\alpha^{\#}}^*\beta$ is left symmetric, $[\ ,\]_r$ is a Lie bracket and $r_{\#}$ is a morphism of Lie algebras.

Proof. Note first that for any $\alpha \in \mathfrak{g}^*$, $(\alpha^-)^{\#} = (\alpha^{\#})^-$ and $\nabla_{u^-}\alpha^- = -(\mathcal{L}_u^*\alpha)^-$ and hence, for any $\alpha, \beta, \gamma \in \mathfrak{g}^*$,

$$\nabla_{(\alpha^-)^\#}(r^-)(\beta^-,\gamma^-) = r(\mathbf{L}_{\alpha^\#}^*\beta,\gamma) + r(\beta,\mathbf{L}_{\alpha^\#}^*\gamma).$$

So, (G, ∇, r^-) is a contravariant pseudo-Hessian manifold if and only if, for any $\alpha, \beta, \gamma \in \mathfrak{g}^*$,

$$0 = r(\mathbf{L}_{\alpha^{\#}}^{*}\beta, \gamma) + r(\beta, \mathbf{L}_{\alpha^{\#}}^{*}\gamma) - r(\mathbf{L}_{\beta^{\#}}^{*}\alpha, \gamma) - r(\alpha, \mathbf{L}_{\beta^{\#}}^{*}\gamma)$$

$$= \langle \gamma, [\alpha, \beta]_{r}^{\#} - \alpha^{\#} \bullet \beta^{\#} + \beta^{\#} \bullet \alpha^{\#} \succ$$

$$= \langle \gamma, [\alpha, \beta]_{r}^{\#} - [\alpha^{\#}, \beta^{\#}] \succ$$

and the first part of the proposition follows. Suppose now that $[\alpha, \beta]_r^\# = [\alpha^\#, \beta^\#]$ for any $\alpha, \beta \in \mathfrak{g}^*$. Then, for any $\alpha, \beta, \gamma \in \mathfrak{g}^*$,

$$\operatorname{ass}(\alpha,\beta,\gamma) - \operatorname{ass}(\beta,\alpha,\gamma) = \operatorname{L}^*_{[\alpha,\beta]_r^\#} \gamma - \operatorname{L}^*_{\alpha^\#} \operatorname{L}^*_{\beta^\#} \gamma + \operatorname{L}^*_{\beta^\#} \operatorname{L}^*_{\alpha^\#} \gamma = 0.$$

This completes the proof. \Box

Definition 6.2.

- 1. Let (\mathfrak{g}, \bullet) be a left symmetric algebra. A symmetric bivector $r \in \mathfrak{g} \otimes \mathfrak{g}$ satisfying [[r, r]] = 0 is called a S-matrix.
- 2. A left symmetric algebra $(\mathfrak{g}, \bullet, r)$ endowed with a S-matrix is called a contravariant pseudo-Hessian algebra.

Let $(\mathfrak{g}, \bullet, r)$ be a contravariant pseudo-Hessian algebra, $[u, v] = u \bullet v - v \bullet u$ and G a connected Lie group with $(\mathfrak{g}, [\ ,\])$ as a Lie algebra. We have shown that G carries a right invariant contravariant pseudo-Hessian structure (∇, r^-) . On the other hand, in Section 3, we have associated to (∇, r^-) a flat connection $\overline{\nabla}$, a complex structure J and a Poisson tensor Π on TG. Now we will show that TG carries a structure of Lie group and the triple $(\overline{\nabla}, J, \Pi)$ is right invariant. This structure of Lie group on TG is different from the usual one defined by the adjoint action of G on \mathfrak{g} .

Let us start with a general algebraic construction which is interesting on its own. Let (\mathfrak{g}, \bullet) be a left symmetric algebra, put $\Phi(\mathfrak{g}) = \mathfrak{g} \times \mathfrak{g}$ and define a product \star and a bracket on $\Phi(\mathfrak{g})$ by

$$(a,b)\star(c,d)=(a\bullet c,a\bullet d)$$
 and $[(a,b),(c,d)]=([a,c],a\bullet d-c\bullet b),$

for any $(a,b),(c,d) \in \Phi(\mathfrak{g})$. It is easy to check that \star is left symmetric, $[\ ,\]$ is the commutator of \star and hence is a Lie bracket. We define also $J_0:\Phi(\mathfrak{g})\longrightarrow\Phi(\mathfrak{g})$ by $J_0(a,b)=(b,-a)$. It is also a straightforward computation to check that

$$N_{J_0}((a,b),(c,d)) = [J_0(a,b),J_0(c,d)] - J_0[(a,b),J_0(c,d)] - J_0[J_0(a,b),(c,d)] - [(a,b),(c,d)] = 0.$$

For $r \in \otimes^2 \mathfrak{g}$ symmetric, we define $R \in \otimes^2 \Phi(\mathfrak{g})$ by

$$R((\alpha_1, \beta_1), (\alpha_2, \beta_2)) = r(\alpha_1, \beta_2) - r(\alpha_2, \beta_1), \tag{6.3}$$

for any $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathfrak{g}^*$. We have obviously that $R_{\#}(\alpha_1, \beta_1) = (-\beta_1^{\#}, \alpha_1^{\#})$.

Proposition 6.3. [[r,r]] = 0 if and only if [R,R] = 0, where [R,R] is the Schouten bracket associated to the Lie algebra structure of $\Phi(\mathfrak{g})$ and given by

$$[R,R](\alpha,\beta,\gamma) = \oint_{\alpha,\beta,\gamma} \prec \gamma, [R_{\#}(\alpha),R_{\#}(\beta)] \succ, \quad \alpha,\beta,\gamma \in \Phi^*(\mathfrak{g}).$$

Proof. For any $\alpha = (\alpha_1, \alpha_2), \beta = (\beta_1, \beta_2), \gamma = (\gamma_1, \gamma_2) \in \Phi(\mathfrak{g})^*$,

$$\begin{split} \prec \gamma, [R_{\#}(\alpha), R_{\#}(\beta)] &= \prec (\gamma_{1}, \gamma_{2}), [(-\alpha_{2}^{\#}, \alpha_{1}^{\#}), (-\beta_{2}^{\#}, \beta_{1}^{\#})] \succ \\ &= \prec \gamma_{1}, [\alpha_{2}^{\#}, \beta_{2}^{\#}] \succ - \prec \gamma_{2}, \alpha_{2}^{\#} \bullet \beta_{1}^{\#} \succ + \prec \gamma_{2}, \beta_{2}^{\#} \bullet \alpha_{1}^{\#} \succ \\ &= \prec \gamma_{1}, [\alpha_{2}^{\#}, \beta_{2}^{\#}] \succ + \prec \beta_{1}, (L_{\alpha_{2}^{\#}}^{*} \gamma_{2})^{\#} \succ - \prec \alpha_{1}, (L_{\beta_{2}^{\#}}^{*} \gamma_{2})^{\#} \succ, \end{split}$$

$$\begin{split} & \prec \beta, [R_{\#}(\gamma), R_{\#}(\alpha)] \succ = \prec \beta_1, [\gamma_2^{\#}, \alpha_2^{\#}] \succ + \prec \alpha_1, (\mathcal{L}_{\gamma_2^{\#}}^{*}\beta_2)^{\#} \succ - \prec \gamma_1, (\mathcal{L}_{\alpha_2^{\#}}^{*}\beta_2)^{\#} \succ \\ & \prec \alpha, [R_{\#}(\beta), R_{\#}(\gamma)] \succ = \prec \alpha_1, [\beta_2^{\#}, \gamma_2^{\#}] \succ + \prec \gamma_1, (\mathcal{L}_{\beta_2^{\#}}^{*}\alpha_2)^{\#} \succ - \prec \beta_1, (\mathcal{L}_{\gamma_2^{\#}}^{*}\alpha_2)^{\#} \succ . \end{split}$$

So

$$[R, R](\alpha, \beta, \gamma) = -[[r, r]](\beta_2, \gamma_2, \alpha_1) - [[r, r]](\gamma_2, \alpha_2, \beta_1) - [[r, r]](\alpha_2, \beta_2, \gamma_1)$$

and the result follows. \Box

Let G be a Lie group whose Lie algebra is $(\mathfrak{g}, [\ ,\])$ and let $\rho: G \longrightarrow \mathrm{GL}(\mathfrak{g})$ be the homomorphism of groups such that $d_e \rho = L$ where $L: \mathfrak{g} \longrightarrow \mathrm{End}(\mathfrak{g})$ is the representation associated to \bullet . Then the product

$$(g,u).(h,v) = (gh, u + \rho(g)(v)), \quad g,h \in G, u,v \in \mathfrak{g}$$

induces a Lie group structure on $G \times \mathfrak{g}$ whose Lie algebra is $(\Phi(\mathfrak{g}), [\ ,\])$. The complex endomorphism J_0 and the left symmetric product \star induce a right invariant complex tensor J_0^- and a right invariant connection $\widetilde{\nabla}$ given by

$$J_0^-(a,b)^- = (b,-a)^-$$
 and $\widetilde{\nabla}_{(a,b)^-}(c,d)^- = -((a,b)\star(c,d))^-$.

Let $r \in \otimes^2 \mathfrak{g}$ symmetric such that [[r,r]] = 0, r^- the associated right invariant symmetric bivector field and ∇ the affine connection given by (6.1). Then (G, ∇, r^-) is a contravariant pseudo-Hessian manifold and let $\overline{\nabla}$, J and Π be the associated structure on TG defined in Section 3.

Theorem 6.4. If we identify TG with $G \times \mathfrak{g}$ by $u_g \longrightarrow (g, T_g R_{g^{-1}} u_g)$ we denote also by Π , $\overline{\nabla}$ and J the images of Π , $\overline{\nabla}$ and J under this identification then $\Pi = R^-$, $\overline{\nabla} = \widetilde{\nabla}$ and $J = J_0^-$.

To prove this theorem, we need some preparation.

Proposition 6.5. Let (G, ∇) be a Lie group endowed with a right invariant connection and $\gamma: [0,1] \longrightarrow G$ a curve. Let $V: [0,1] \longrightarrow TG$ be a vector field along γ . We define $\mu: [0,1] \longrightarrow \mathfrak{g}$ and $W: [0,1] \longrightarrow \mathfrak{g}$ by

$$\mu(t) = T_{\gamma(t)} R_{\gamma(t)^{-1}}(\gamma'(t))$$
 and $W(t) = T_{\gamma(t)} R_{\gamma(t)^{-1}}(V(t))$.

Then V is parallel along γ with respect ∇ if and only if

$$W'(t) - \mu(t) \bullet W(t) = 0,$$

where $u \bullet v = -(\nabla_{u^-} v^-)(e)$.

Proof. We consider (u_1, \ldots, u_n) a basis of \mathfrak{g} and (X_1, \ldots, X_n) the corresponding right invariant vector fields. Then

$$\begin{cases} \mu(t) = \sum_{i=1}^{n} \mu_i(t)u_i, \ W(t) = \sum_{i=1}^{n} W_i(t)u_i, \\ \gamma'(t) = \sum_{i=1}^{n} \mu_i(t)X_i, \ V(t) = \sum_{i=1}^{n} W_i(t)X_i. \end{cases}$$

Then

$$\nabla_t V(t) = \sum_{i=1}^n W_i'(t) X_i + \sum_{i=1}^n W_i(t) \nabla_{\gamma'(t)} X_i$$

$$= \sum_{i=1}^n W_i'(t) X_i + \sum_{i,j=1}^n W_i(t) \mu_j(t) \nabla_{X_j} X_i$$

$$= \sum_{i=1}^n W_i'(t) X_i - \sum_{i,j=1}^n W_i(t) \mu_j(t) (u_j \bullet u_i)^-$$

$$= (W'(t) - \mu(t) \bullet W(t))^-$$

and the result follows having in mind that u^- is the right invariant vector field associated to $u \in \mathfrak{g}$.

Let (G, ∇) be a Lie group endowed with a right invariant connection. Then ∇ induces a splitting of $TTG = \ker dp \oplus \mathcal{H}$. For any tangent vector $X \in T_gG$, we denote by $X^v, X^h \in T_{(g,u)}TG$ the vertical and the horizontal lift of X.

Proposition 6.6. If we identify TG to $G \times \mathfrak{g}$ by $X_g \mapsto (g, T_g R_{g^{-1}}(X_g))$ then for any $X \in T_g G$,

$$X^{v}(g,u) = (0, T_{g}R_{q^{-1}}(X))$$
 and $X^{h}(g,u) = (X, T_{g}R_{q^{-1}}(X) \bullet u).$

Proof. The first relation is obvious. Recall that the horizontal lift of X at $u_q \in TG$ is given by:

$$X^h(u_g) = \frac{d}{dt}_{|t=0} V(t)$$

where $V:[0,1] \longrightarrow TG$ is the parallel vector field along $\gamma:[0,1] \longrightarrow G$ a curve such that $\gamma(0)=g$ and $\gamma'(0)=X$. If we denote by $\Theta_R:TG \longrightarrow G \times \mathfrak{g}$ the identification $u_g \mapsto (g,T_gR_{g^{-1}}(u_g))$ then, by virtue of Proposition 6.5,

$$T_{u_g}\Theta_R(X^h) = \frac{d}{dt}_{|t=0}(\gamma(t), W(t)) = (X, T_g R_{g^{-1}}(X) \bullet u). \quad \Box$$

Proposition 6.7. For any $(a,b) \in \mathfrak{g} \times \mathfrak{g}$ and $(\alpha,\beta) \in \mathfrak{g}^* \times \mathfrak{g}^*$,

$$(a,b)^- = (a^-)^h + (b^-)^v$$
 and $(\alpha,\beta)^- = (\alpha^-)^h + (\beta^-)^v$.

Proof. We have

$$(a,b)^{-}(g,u) = T_{(e,0)}R_{(g,u)}(a,b)$$

$$= \frac{d}{dt}_{|t=0}(\exp(ta),tb)(g,u)$$

$$= \frac{d}{dt}_{|t=0}(\exp(ta)g,tb + \rho(\exp(ta))(u))$$

$$= (a^{-}(g), b + a \bullet u)$$

$$= (a^{-}(g), T_g R_{g^{-1}}(a^{-}(g)) \bullet u) + (0, T_g R_{g^{-1}}(b^{-}(g))$$

$$= (a^{-})^h (g, u) + (b^{-})^v (g, u). \qquad (Proposition 6.5)$$

The second relation can be deduced easily from the first one. \Box

Proof of Theorem 6.4. Let Π be the Poisson tensor on $G \times \mathfrak{g}$ associated to r^- . Then, by using the precedent proposition,

$$\Pi((\alpha_{1}, \beta_{1})^{-}, (\alpha_{2}, \beta_{2})^{-}) = \Pi((\alpha_{1}^{-})^{h} + (\beta_{1}^{-})^{v}, (\alpha_{2}^{-})^{h} + (\beta_{2}^{-})^{v})$$

$$= r^{-}(\alpha_{1}^{-}, \beta_{2}^{-}) - r^{-}(\alpha_{2}^{-}, \beta_{1}^{-})$$

$$= r(\alpha_{1}, \beta_{2}) - r(\alpha_{2}, \beta_{1})$$

$$= R^{-}((\alpha_{1}, \beta_{1})^{-}, (\alpha_{2}, \beta_{2})^{-}).$$

In the same way,

$$\begin{split} J_0^-(a,b)^- &= (b,-a)^- = (b^-)^h - (a^-)^v, \\ J(a,b)^- &= (b^-)^h - (a^-)^v, \\ \overline{\nabla}_{(a,b)^-}(c,d)^- &= (\nabla_{a^-}c^-)^h + (\nabla_{a^-}d^-)^v = -((a\bullet c)^-)^h - ((a\bullet d)^-)^v = -((a,b).(c,d))^- \\ &= \widetilde{\nabla}_{(a,b)^-}(c,d)^-. \quad \Box \end{split}$$

Let (\mathfrak{g}, \bullet) be a left symmetric algebra, (M, ∇) and affine manifold and $\rho : \mathfrak{g} \longrightarrow \Gamma(TM)$ a linear map such that $\rho(u \bullet v) = \nabla_{\rho(u)}\rho(v)$. Then ρ defines an action on M of the Lie algebra $(\mathfrak{g}, [\ ,\])$. We consider $\rho^l : \Phi(\mathfrak{g}) \longrightarrow \Gamma(TTM)$, $(u, v) \longrightarrow \rho(u)^h + \rho^v(v)$. It is easy to check that

$$\rho^l([a,b]) = [\rho^l(a), \rho^l(b)].$$

Let $r \in \otimes^2 \mathfrak{g}$ satisfying [[r, r]] = 0 and $R \in \otimes^2 \Phi(\mathfrak{g})$ given by (6.3).

Theorem 6.8. The bivector field on TM associated to $\rho(r)$ is $\rho^l(R)$ which is a Poisson tensor and $(M, \nabla, \rho(r))$ is a contravariant pseudo-Hessian manifold.

Proof. Let (e_1, \ldots, e_n) a basis of \mathfrak{g} and $E_i = (e_i, 0)$ and $F_i = (0, e_i)$. Then $(E_1, \ldots, E_n, F_1, \ldots, F_n)$ is a basis of $\Phi(\mathfrak{g})$. Then

$$r = \sum_{i,j} r_{i,j} e_i \otimes e_j$$
 and $R = \sum_{i,j} r_{i,j} \left(E_i \otimes F_j - F_i \otimes E_j \right)$.

So

$$\rho(r) = \sum_{i,j=1}^{n} r_{i,j} \rho(e_i) \otimes \rho(e_j) \quad \text{and} \quad \rho^l(R) = \sum_{i,j=1}^{n} r_{i,j} \left(\rho(e_i)^h \otimes \rho(e_j)^v - \rho(e_i)^v \otimes \rho(e_j)^h \right).$$

Then for any $\alpha, \beta \in \Omega^1(M)$

$$\rho^l(R)(\alpha^v, \beta^v) = \rho^l(R)(\alpha^h, \beta^h) = 0$$
 and $\rho^l(R)(\alpha^h, \beta^v) = \rho(r)(\alpha, \beta) \circ p$.

According to Proposition (6.3), R is a solution of the classical Yang-Baxer equation and hence $\rho^l(R)$ is a Poisson tensor. By using Theorem 3.3, we get that $(M, \nabla, \rho(r))$ is a contravariant pseudo-Hessian manifold. \square

Example 6.9.

- 1. Let $\mathfrak{g} = \mathrm{gl}(n,\mathbb{R})$ be the Lie algebra of *n*-square matrices. It has a structure of left symmetric algebra given by $A \bullet B = BA$. Let $\rho : \mathfrak{g} \longrightarrow \Gamma(T\mathbb{R}^n)$ given by $\rho(A) = A$. Then $\rho(A \bullet B) = \nabla_A B$, where ∇ is the canonical connection of \mathbb{R}^n . According to Theorem 6.8, any S-matrix on \mathfrak{g} gives rise to a quadratic contravariant pseudo-Hessian structure on \mathbb{R}^n .
- 2. More generally, let (M, ∇) be an affine manifold and \mathfrak{g} the finite dimensional Lie algebra of affine vector fields. Recall that $X \in \mathfrak{g}$ if for any $Y, Z \in \Gamma(TM)$,

$$[X, \nabla_Y Z] = \nabla_{[X,Y]} Z + \nabla_Y [X, Z].$$

Since the curvature and the torsion of ∇ vanish this is equivalent to

$$\nabla_{\nabla_Y Z} X = \nabla_Y \nabla_Z X.$$

From this relation, one can see easily that, for any $X,Y\in\mathfrak{g},\ X\bullet Y:=\nabla_XY\in\mathfrak{g}$ and (\mathfrak{g},\bullet) is an associative finite dimensional Lie algebra which acts on M by $\rho(X)=X$. Moreover, $\rho(X\bullet Y)=\nabla_XY$. According to Theorem 6.8, any S-matrix on \mathfrak{g} gives rise to a contravariant pseudo-Hessian structure on M.

Classification of two-dimensional contravariant pseudo-Hessian algebras

Using the classification of two-dimensional non-abelian left symmetric algebras given in [4] and the classification of abelian left symmetric algebras given in [14], we give a classification (over the field \mathbb{R}) of 2-dimensional contravariant pseudo-Hessian algebras. We proceed as follows:

- 1. For any left symmetric 2-dimensional algebra \mathfrak{g} , we determine its automorphism group $\operatorname{Aut}(\mathfrak{g})$ and the space of S-matrices on \mathfrak{g} , we denote by $\mathcal{A}(\mathfrak{g})$.
- 2. We give the quotient $\mathcal{A}(\mathfrak{g})/\sim$ where \sim is the equivalence relation:

$$r^1 \sim r^2 \Longleftrightarrow \exists \; A \in \operatorname{Aut}(\mathfrak{g}) \; \text{ or } \; \exists \; \lambda \in \mathbb{R} \text{ such that } r^2_{\sharp} = A \circ r^1_{\sharp} \circ A^t \text{ or } r^2 = \lambda r^1.$$

We end this paper by giving another proof to Lemma 4.4.

Proof. For any $\gamma:[0,1]\longrightarrow G\times G$, $t\mapsto (\gamma_1(t),\gamma_2(t))$ with $\gamma(0)=(a,b)$ and $\gamma(1)=(c,d)$,

$$\tau_{m(\gamma)}(T_{(a,b)}m(u,v)) = T_{(c,d)}m(\tau_{\gamma}(u,v)),$$

where $\tau_{\gamma}: T_{(a,b)}(G \times G) \longrightarrow T_{(c,d)}(G \times G)$ and $\tau_{m\gamma}: T_{ab}G \longrightarrow T_{cd}G$ are the parallel transports. But

$$T_{(a,b)}m(u,v) = T_a R_b(u) + T_b L_a(v)$$
 and $\tau_{\gamma}(u,v) = (\tau_{\gamma_1}(u), \tau_{\gamma_2}(v)).$

So we get

$$\tau_{\gamma_1 \gamma_2}(T_a R_b(u)) + \tau_{\gamma_1 \gamma_2}(T_b L_a(v)) = T_c R_d(\tau_{\gamma_1}(u)) + T_d L_c(\tau_{\gamma_2}(v)).$$

$(\mathfrak{g},.)$	$\operatorname{Aut}(\mathfrak{g})$	$\mathcal{A}(\mathfrak{g})/{\sim}$
$egin{array}{l} b_{1,lpha eq-1,1}\ e_2.e_1=e_1,e_2.e_2=lpha e_2 \end{array}$	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}, a \neq 0$	$r_{\sharp}^{1}=\left(egin{matrix} 1 & 0 \ 0 & 0 \end{smallmatrix} ight); r_{\sharp}^{2}=\left(egin{matrix} 0 & 0 \ 0 & 1 \end{smallmatrix} ight); r_{\sharp}^{3}=0$
$b_{1,\alpha=-1} \ e_2.e_1 = e_1, e_2.e_2 = -e_2$	$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}, a \neq 0$	$egin{aligned} r_{\sharp}^1 &= \left(egin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} ight); r_{\sharp}^2 &= \left(egin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} ight); \\ r_{\sharp}^3 &= \left(egin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} ight); r_{\sharp}^4 &= 0 \end{aligned}$
$egin{array}{l} b_{1,lpha=1}\ e_2.e_1=e_1,e_2.e_2=e_2 \end{array}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, ab \neq 0$	$r_{\sharp}^{1}=\left(egin{matrix} 1 & c \ c & c^{2} \end{matrix} ight); r_{\sharp}^{2}=\left(egin{matrix} 0 & 0 \ 0 & 1 \end{matrix} ight); r_{\sharp}^{3}=0$
$b_{2,eta eq0,1,2}\ e_{1}.e_{2}=eta e_{1},e_{2}.e_{1}=(eta-1)e_{1},e_{2}.e_{2}=eta e_{2}$	$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, a \neq 0$	$r_{\sharp}^{1}=\left(egin{matrix} 1 & 0 \ 0 & 0 \end{matrix} ight); r_{\sharp}^{2}=\left(egin{matrix} 0 & 0 \ 0 & 1 \end{matrix} ight); r_{\sharp}^{3}=0$
$egin{aligned} b_{2,eta=1}\ e_1.e_2 = e_1, e_2.e_2 = e_2 \end{aligned}$	$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, a \neq 0$	$r_{\sharp}^{1}=\left(egin{matrix} 1 & c \ c & c^{2} \end{matrix} ight); r_{\sharp}^{2}=\left(egin{matrix} 0 & 0 \ 0 & 1 \end{matrix} ight); r_{\sharp}^{3}=0$
$egin{array}{l} b_{2,eta=2} \ e_1.e_2 = 2e_1, \ e_2.e_1 = e_1, e_2.e_2 = 2e_2 \end{array}$	$\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}, a \neq 0$	$r_{\sharp}^{1}=\begin{pmatrix}1&0\\0&c\end{pmatrix};r_{\sharp}^{2}=\begin{pmatrix}0&0\\0&1\end{pmatrix};r_{\sharp}^{3}=0$
$egin{aligned} b_3 \ e_2.e_1 = e_1, e_2.e_2 = e_1 + e_2 \end{aligned}$	$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$	$r_{\sharp}^{1}=\left(egin{array}{cc} 1/2 & 1 \ 1 & 1 \end{array} ight);r_{\sharp}^{2}=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array} ight);r_{\sharp}^{3}=0$
$egin{array}{l} b_4 \ e_1.e_1 = 2e_1, e_1.e_2 = e_2, \ e_2.e_2 = e_1 \end{array}$	$\begin{pmatrix}1&0\\0&-1\end{pmatrix};\begin{pmatrix}1&0\\0&1\end{pmatrix}$	$r_{\sharp}^{1}=\left(egin{matrix} 1 & 0 \ 0 & 2 \end{matrix} ight); r_{\sharp}^{2}=\left(egin{matrix} 1 & 0 \ 0 & 0 \end{matrix} ight); r_{\sharp}^{3}=0$
$egin{array}{l} b_5 \ e_1.e_2 = e_1, e_2.e_2 = e_1 + e_2 \ As^1_2 \ e_1.e_1 = e_2 \end{array}$	$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} a & 0 \\ b & a^2 \end{pmatrix}, a \neq 0$	$egin{aligned} r_{\sharp}^{1} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; r_{\sharp}^{2} &= 0 \\ r_{\sharp}^{1} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; r_{\sharp}^{2} &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; r_{\sharp}^{3} &= 0 \end{aligned}$
$As_2^4 \ e_1.e_1 = e_1, e_1.e_2 = e_2, \ e_2.e_2 = e_2$	$\begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, a \neq 0$	$ \begin{aligned} r_{\sharp}^{1} &= \begin{pmatrix} 0 & 1 \\ 1 & c \end{pmatrix}; r_{\sharp}^{2} &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \\ r_{\sharp}^{3} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}; r_{\sharp}^{4} &= 0 \end{aligned} $

If we take v = 0 and $\gamma_2(t) = b = d$. We get

$$\tau_{\gamma_1 b}(T_a R_b(u)) = T_c R_b(\tau_{\gamma_1}(u))$$

and hence ∇ is right invariant. In the same way we get that ∇ is left invariant. And finally

$$\tau_{\gamma_1 \gamma_2}(T_a R_b(u)) = T_c R_d(\tau_{\gamma_1}(u))$$
 and $\tau_{\gamma_1 \gamma_2}(T_b L_a(v)) = T_d L_c(\tau_{\gamma_2}(v)).$

If we take $\gamma_2 = \gamma_1^{-1}$ we get that

$$\tau_{\gamma_1}(u) = T_a R_{a^{-1}c}(u) = T_a L_{ca^{-1}}(u).$$

This implies that the adjoint representation is trivial and hence G must be abelian. \Box

Acknowledgement

We thank the referee for having read the paper carefully, for valid suggestions and useful corrections which improved considerably the paper.

References

- [1] C. Bai, Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation, Commun. Contemp. Math. 10 (2) (2008) 221–260.
- [2] S. Benayadi, M. Boucetta, On para-Kähler Lie algebroids and contravariant pseudo-Hessian structures, Math. Nachr. (2019) 1–26.
- [3] S. Benayadi, M. Boucetta, On para-Kähler and hyper-Kähler Lie algebras, J. Algebra 436 (2015) 61-101.
- [4] D. Burde, Simple left-symmetric algebras with solvable Lie algebra, Manuscr. Math. 95 (1998) 397-411.
- [5] C. Calvin, L.M.C. Schochet, Global Analysis on Foliated Space, MISRP, 2006.
- [6] P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962) 73-78.

- [7] Jean-Paul Dufour, Nguyen Tien Zung, Poisson Structures and Their Normal Forms, vol. 242, Springer Science and Business Media, 2006.
- [8] J.P. Dufour, A. Haraki, Rotationnels et structures de Poisson quadratiques, C. R. Acad. Sci., Sér. 1 Math. 312 (1) (1991) 137–140.
- [9] R.L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002) 119–179.
- [10] Christian Kassel, Homology and cohomology of associative algebras. A concise introduction to cyclic homology, in: Thematic School, August 2004 at ICTP, Trieste (Italy), 2006, <cel-00119891>.
- [11] M. De León, P.R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, Elsevier, 2011.
- [12] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Ser., vol. 124, Cambridge Univ. Press, Cambridge, 1987.
- [13] H. Shima, The Geometry of Hessian Structures, World Scientific Publishing, 2007.
- [14] I.S. Rakhimov, I.M. Rikhsiboev, W. Basri, Complete lists of low dimensional complex associative algebras, arXiv:0910. 0932v2.
- [15] A. Weinstein, The local structure of Poisson manifolds, J. Differ. Geom. 18 (3) (1983) 523–557.
- [16] K. Yano, S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Dekker, 1973.