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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS

Mohamed Boucetta1 and Hicham Lebzioui2

1Université Cadi-Ayyad, Faculté des sciences et techniques, Marrakech,
Marocco
2Université Moulay Smail, Faculté des sciences, Meknès, Marocco

A flat Lorentzian Lie algebra is a left symmetric algebra endowed with a symmetric
bilinear form of signature �−� +� � � � � +� such that left multiplications are skew-
symmetric. In geometrical terms, a flat Lorentzian Lie algebra is the Lie algebra of
a Lie group with a left-invariant Lorentzian metric with vanishing curvature. In this
article, we show that any flat nonunimodular Lorentzian Lie algebras can be obtained
as a double extension of flat Riemannian Lie algebras. As an application, we give all
flat nonunimodular Lorentzian Lie algebras up to dimension 4.

Key Words: Double extension; Flat Lorentzian Lie algebras; Nonunimodular Lie algebras;
Representations of solvable Lie algebras.

2010 Mathematics Subject Classification: 17B60; 17B30; 17B10; 53C50.

1. INTRODUCTION AND MAIN RESULTS

A pseudo-Riemannian Lie group is a Lie group G with a left invariant pseudo-
Riemannian metric g. The Lie algebra � = TeG of G endowed with � � � = g�e� is
called pseudo-Riemannian Lie algebra. The Levi–Civita connection of �G� g� defines
a product �u� v� �→ u�v on � called Levi–Civita product given by Koszul’s formula

2�u�v� w� = ��u� v�� w� + ��w� u�� v� + ��w� v�� u��

For any u ∈ �, we denote by Lu � � −→ � and Ru � � −→ �, respectively, the left
multiplication and the right multiplication by u given by Luv = u�v and Ruv = v�u�
For any u ∈ �, Lu is skew-symmetric with respect to � � � and adu = Lu − Ru� where
adu � � −→ � is given by aduv = �u� v�. The curvature of g at e is given by

K�u� v� = L�u�v� − �Lu� Lv��

If K vanishes, then �G� g� is called flat pseudo-Riemannian Lie group, and ��� � � ��
is called flat pseudo-Riemannian Lie algebra. The vanishing of the curvature is
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4186 BOUCETTA AND LEBZIOUI

equivalent to the fact that � endowed with the Levi–Civita product is a left
symmetric algebra, i.e., for any u� v� w ∈ �,

ass�u� v� w� = ass�v� u� w��

where ass�u� v� w� = �u�v��w − u��v�w�� This relation is equivalent to

Ru�v − Rv � Ru = �Lu� Rv�� (1)

for any u� v ∈ �. So a flat pseudo-Riemannian Lie algebra can be viewed as a left
symmetric algebra with a bilinear symmetric nondegenerate form for which the left
multiplications are skew-symmetric. If g is geodesically complete, then ��� � � �� is
called complete. A flat pseudo-Riemannian Lie algebra is complete if and only if
it is unimodular (see [2]). A Riemannian (resp. Lorentzian) Lie group is a pseudo-
Riemannian Lie group for which the metric is definite positive (resp. of signature
�−� + · · · +�). In [7], Milnor showed that a Riemannian Lie group is flat if and
only if its Lie algebra is a semidirect product of an abelian algebra � with an
abelian ideal � and, for any u ∈ �, adu is skew-symmetric. The determination of flat
Lorentzian Lie groups is an open problem. A flat Lorentzian Lie algebra must be
solvable (see [3]). In [2], Aubert and Medina showed that nilpotent flat Lorentzian
Lie algebras are obtained by the double extension process from Riemannian abelian
Lie algebras. In [4], Guediri studied Lie groups which may act isometrically and
simply transitively on Minkowski space and get a precise description of nilpotent
flat Lorentzian Lie groups. In [1], the authors showed that flat Lorentzian Lie
algebras with degenerate center can be obtained by the double extension process
from flat Riemannian Lie algebras. In the first part of this article, we show that
any flat nonunimodular Lorentzian Lie algebra is obtained by the double extension
process from a flat Riemannian Lie algebra. In the second part, as application
of this result, we determine all nonunimodular flat Lorentzian Lie algebras up to
dimension 4.

Let us state our main result in a more precise way. To do so, we need to recall
some basic material.

• The double extension process was described in [2]. In particular, Propositions
3.1 and 3.2 of [2] are essential in this process. Let �B� � � �0� � � �0� be a pseudo-
Riemannian flat Lie algebra, 	� D � B −→ B two endomorphisms of B, b0 ∈ B and

 ∈ R such that the following statements hold:

1. 	 is a 1-cocycle of �B� � � �0� with respect to the representation L � B −→
End�B� defined by the left multiplication associated to the Levi–Civita product,
i.e., for any a� b ∈ B,

	��a� b�� = La	�b� − Lb	�a�� (2)

2. D − 	 is skew-symmetric with respect to � � �0,

�D� 	� = 	2 − 
	 − Rb0
� (3)
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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS 4187

and for any a� b ∈ B

a�	�b� − 	�a�b� = D�a��b + a�D�b� − D�a�b�� (4)

We call �	� D� 
� b0� satisfying the two conditions above admissible.
Given �	� D� 
� b0� admissible, we endow the vector space � = Re ⊕ B ⊕ Rē with
the inner product � � � which extends � � �0, for which span�e� ē and B are
orthogonal, �e� e� = �ē� ē� = 0 and �e� ē� = 1. We define also on � the brackets

�ē� e� = 
e� �ē� a� = D�a� − �b0� a�0e and �a� b� = �a� b�0 + ��	 − 	∗��a�� b�0e�
(5)

where a� b ∈ B and 	∗ is the adjoint of 	 with respect to � � �0. Then ��� � � �� � � ��
is a flat pseudo-Riemannian Lie algebra called double extension of �B� � � �0� � � �0�

according to �	� D� 
� b0�.
• The modular vector of a pseudo-Riemannian Lie algebra ��� � � �� is the vector

h ∈ � given by

�h� u� = tr�adu� = −tr�Ru�� ∀u ∈ �� (6)

The Lie algebra � is unimodular if and only if h = 0. Denote by H = span�h and
H⊥ its orthogonal with respect to � � �.

We can now state our main result.

Theorem 1.1. Let ��� � � �� be a flat nonunimodular Lorentzian Lie algebra.

(i) The left multiplication by h vanishes, i.e., Lh = 0 and both H and H⊥ are two-sided
ideals with respect to the Levi–Civita product.

(ii) ��� � � �� is obtained by the double extension process from a flat Riemannian Lie
algebra �B� � � �0� � � �0� according to �	� D� 
� b0� with tr�D� �= −
.

The proof of Theorem 1.1 is given in Section 3. It is based on a property
of the modular vector given in Proposition 3.1, and on the fact that a Lorentzian
representation of a solvable Lie algebra can be reduced in an useful way by virtue
of Lie’s Theorem (see [5] Theorem 1.25 pp. 42). Section 2 is devoted to the study
of Lorentzian representations of solvable Lie algebras. In Section 4 we give all flat
nonunimodular Lorentzian Lie algebras up to dimension 4 (see Tables 1 and 2).

Table 1 Three-dimensional flat nonunimodular Lorentzian Lie algebras

The Lie algebra The non vanishing brackets The metric �
 �= 0�

A2 ⊕ A1 �ē� e� = e� 
ē∗  e∗ + e∗
1  e∗

1
A3�3 �ē� e� = e� �ē� e1� = e1� 
ē∗  e∗ + e∗

1  e∗
1

A3�2 �ē� e� = e� �ē� e1� = e1 + e� 
ē∗  e∗ + e∗
1  e∗

1
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4188 BOUCETTA AND LEBZIOUI

Table 2 Four-dimensional flat nonunimodular Lorentzian Lie algebras

� The non vanishing brackets The metric �
 �= 0� � �= 0� �� � ∈ R�

A3�3 ⊕ A1 �ē� e� = e� �ē� e1� = e1 
ē∗  e∗ + e∗
1  e∗

1 + e∗
2  e∗

2 + �ē∗  e∗
2

A3�2 ⊕ A1 �ē� e� = e� �ē� e1� = e1 + e 
ē∗  e∗ + e∗
1  e∗

1 + e∗
2  e∗

2 + �ē∗  e∗
2

A0
4�9 �ē� e� = e� �ē� e1� = e1� 
ē∗  e∗ + �� + 1�e∗

1  e∗
1 + �e∗

2  e∗
2 + �ē∗  e∗

2
�e1� e2� = e +��ē∗  ē∗ + ē∗  e∗

1�� � �= 0
A2 ⊕ 2A1 �ē� e� = e 
ē∗  e∗ + e∗

1  e∗
1 + e∗

2  e∗
2 + �ē∗  e∗

1
+�ē∗  e∗

2

A
�−1�0
4�6 �ē� e� = e� �ē� e1� = �e2� 
ē∗  e∗ + �1 + ���e∗

1  e∗
1 + e∗

2  e∗
2�

�ē� e2� = −�e1� � �= 0 +�ē∗  e∗
2 + �ē∗  e∗

1

A
�−1��−1

4�6 �ē� e� = e � �ē� e1� = e1 + �e2 � 
ē∗  e∗ + e∗
1  e∗

1 + e∗
2  e∗

2
�ē� e2� = −�e1 + e2� � �= 0 +�ē∗  e∗

1 + �ē∗  e∗
2

A1�1
4�5 �ē� e� = e � �ē� e1� = e1 � 
ē∗  e∗ + e∗

1  e∗
1 + e∗

2  e∗
2

�ē� e2� = e2

A1
4�2 �ē� e� = e � �ē� e1� = e1 � 
ē∗  e∗ + e∗

1  e∗
1 + �1 + �2�e∗

2  e∗
2 + �e∗

1  e∗
2

�ē� e2� = e2 + e

2. LORENTZIAN REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS

In this section, by using Lie’s Theorem (see [5] Theorem 1.25, p. 42), we derive
some interesting results on Euclidean and Lorentzian representations of solvable Lie
algebras. Through this section, � is a real solvable Lie algebra. We fix an ordering
on �∗ and, for any � ∈ �∗, we denote by d� the element of ∧2�∗ given by d��u� v� =
−���u� v��.

A pseudo-Euclidean vector space is a real vector space of finite dimension n
endowed with a nondegenerate symmetric inner product of signature �q� n − q� =
�−� � � � � −� +� � � � � +�. When the signature is �0� n� (resp. �1� n − 1�) the space is
called Euclidean (resp. Lorentzian). Let �V� � � �� be a pseudo-Euclidean vector space
whose signature is �q� n − q�, we denote by so�V� the Lie algebra of skew-symmetric
endomorphisms of �V� � � ��. It is a well-known fact that the dimension of a totally
isotropic subspace of V is less or equal to min�q� n − q�. In particular, if V is
Lorentzian, then any nontrivial totally isotropic space has dimension 1. This fact
will be used frequently in this article.

Let � � � −→ so�V� be a representation of �. For any � ∈ �∗, put

V� = �x ∈ V� ��u�x = ��u�x for all u ∈ ��

The representation � is called indecomposable if V does not contain any
nondegenerate invariant vector subspace.

Proposition 2.1. Let � be a real solvable Lie algebra, and let � � � −→ so�V� be an
indecomposable Lorentzian representation. Then one of the following cases occurs:

1. dim V = 1 and V = V0.
2. dim V = 2, there exists � > 0 such that d� = 0 and a basis �e� ē� of V such that

�e� e� = �ē� ē� = 0, �e� ē� = 1 and, for any u ∈ �,

��u�e = ��u�e and ��u�ē = −��u�ē�
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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS 4189

3. dim V ≥ 3, there exists � ∈ �∗ such that d� = 0 and V� is a totally isotropic one
dimensional vector space. Moreover, for any 
 �= �, V
 = �0.

Proof. We consider the complexification V C of V . Then � extends to a
representation �C � � −→ EndC�V C� by putting

�C�u��a + ıb� = ��u��a� + ı��u��b��

Since � is solvable then, by virtue of Lie’s Theorem, there exists � = �1 + ı�2 �
�−→ C and z = x + ıy �= 0 such that, for any u ∈ �, �C�u��z� = ��u�z� This is
equivalent to

��u��x� = �1�u�x − �2�u�y and ��u��y� = �2�u�x + �1�u�y� (7)

From

���u�x� x� = ���u�y� y� = 0 and ���u�x� y� = −���u�y� x��

we get

⎛
⎝ �1�u� −�2�u� 0

0 �2�u� �1�u�
�2�u� 2�1�u� −�2�u�

⎞
⎠
⎛
⎝�x� x�

�y� x�
�y� y�

⎞
⎠ = 0� (8)

We distinguish two cases.

(a) The vectors x� y are linearly dependent say y = ax with x �= 0. From
(7) and (8), we get �2 = 0 and, for any u ∈ �, �1�u��x� x� = 0. If �x� x� �= 0, then
dim V = 1, V = V0, and we are in the first case.

Suppose now that �x� x� = 0. If V�1
is not totally isotropic, then it contains a

nonisotropic vector z and hence V = span�z, which is impossible since x ∈ V . So V�1

must be totally isotropic and hence V�1
= span�x. We then have two situations. The

first one is that there exists 
 �= �1 such that V
 = span�z is a totally isotropic one
dimensional vector space. From the relation ���u�x� z� = −���u�z� x� and �x� z� �= 0,
we deduce that 
 = −�1. Then �1 �= 0 and hence V = V�1

⊕ V
, and we are in the
second case. The second situation is that, for any 
 �= �1, V
 = �0. In this case
dim V ≥ 3, and we are in the third case. Indeed, if dim V = 2, choose an isotropic
vector x̄ such that �x� x̄� = 1. It is easy to check that x̄ ∈ V−�1

, which is impossible.

(b) The vectors x� y are linearly independent. Since span�x� y cannot be
totally isotropic, we can deduce from (8) that �1 = 0, �2 �= 0, �x� y� = 0, and �x� x� =
�y� y� �= 0. So span�x� y is Euclidean nondegenerate invariant, which is impossible.

�

Complement to Proposition 2.1. Let us study the third case in Proposition 2.1 more
deeply. Let � � � −→ so�V� be an indecomposable Lorentzian representation with
dim V ≥ 3. Then there exists � ∈ �∗ such that d� = 0, V� is a one dimensional totally
isotropic subspace and, for any 
 �= �, V
 = �0. The quotient Ṽ = V ⊥

� /V� is an
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4190 BOUCETTA AND LEBZIOUI

Euclidean vector space and � induces a representation �̃ � � −→ so�Ṽ �. So, it is a
well-known fact that

Ṽ =
q⊕

i=1

Ẽi ⊕ Ṽ0�

where, for any i = 1� � � � � q, dim Ẽi = 2, and there exists �i ∈ �∗\�0 and an
orthonormal basis �ēi� f̄i� of Ẽi such that d�i = 0 and, for any u ∈ �,

�̃�u�ēi = �i�u�f̄i and �̃�u�f̄i = −�i�u�ēi� (9)

Denote by � � V ⊥
� −→ Ṽ the natural projection, and choose a generator e of V�.

Put E0 = �−1�Ṽ0� and, for any i ∈ �1� � � � � q, choose �ei� fi� such that ��ei� = ēi and
��fi� = f̄i.

For any x ∈ E0 there exists ax ∈ �∗ such that, for any u ∈ �,

��u��x� = ax�u�e� (10)

For any u� v ∈ �, we have

���u� v���x� = ax��u� v��e

= ���u�ax�v� − ��v�ax�u��e�

Thus, for any x ∈ E0,

dax = ax ∧ �� (11)

On the other hand, for any i ∈ �1� � � � � q, by virtue of (9), there exists bi� ci ∈ �∗

such that, for any u ∈ �,

��u�ei = bi�u�e + �i�u�fi and ��u�fi = ci�u�e − �i�u�ei� (12)

We have, for any u� v ∈ �,

���u� v��ei = bi��u� v��e + �i��u� v��fi

= ��u��bi�v�e + �i�v�fi� − ��v��bi�u�e + �i�u�fi�

= ���u�bi�v� − ��v�bi�u� + �i�v�ci�u� − �i�u�ci�v��e�

so

bi��u� v�� = ��u�bi�v� − ��v�bi�u� + �i�v�ci�u� − �i�u�ci�v��

In the same way, by computing ���u� v��fi, we get

ci��u� v�� = ��u�ci�v� − ��v�ci�u� − �i�v�bi�u� + �i�u�bi�v��
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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS 4191

Thus

dbi = bi ∧ � + �i ∧ ci and dci = ci ∧ � + bi ∧ �i� (13)

3. PROOF OF THEOREM 1.1

Before proving Theorem 1.1, we establish an important property of the
modular vector of a flat pseudo-Riemannian Lie algebra which will be crucial in the
proof.

Let ��� � � �� be a flat pseudo-Riemannian Lie algebra. One can see easily that
the orthogonal of the derived ideal of � is given by

��� ��⊥ = �u ∈ �� Ru = R∗
u� (14)

The first assertion of the following proposition appeared in [1]. The second
one has been pointed out to us by the referee.

Proposition 3.1. Let ��� � � �� � � �� be a flat pseudo-Riemannian Lie algebra.

1. The modular vector satisfies h ∈ ��� �� ∩ ��� ��⊥ and Rh is symmetric with respect to
� � �. In particular, if � is nonunimodular then ��� �� is degenerate, �h� h� = 0 and
h�h = 0.

2. If � � � is Lorentzian, then H = span�h is a two-sided ideal �with respect to the
Levi–Civita product� in H⊥.

Proof. 1. For any u ∈ ��� ��⊥ and any v ∈ �, since Ru is symmetric, we have
�u�u� v� = �u� v�u� = 0� and hence u�u = 0. So, by virtue of (1), we get �Ru� Lu� =
R2

u� One can deduce by induction that, for any k ∈ N
∗, �Rk

u� Lu� = kRk+1
u � and hence

tr�Rk
u� = 0 for any k ≥ 2, which implies that Ru is nilpotent. Since, for any u� v ∈ �,

tr�ad�u�v�� = 0, we deduce that h ∈ ��� ��⊥. Now, for any u ∈ ��� ��⊥, Ru is nilpotent
and hence

tr�adu� = −tr�Ru� = �h� u� = 0�

which implies h ∈ ��� ��. This implies that �h� h� = 0. From the relation �h�h� u� =
��u� h�� h� = 0, we deduce also that h�h = 0.

2. Suppose now that � � � is Lorentzian. According to [3] Corollary 3.6, �
must be solvable. From the relation h�h = 0 and the fact that Lh is skew-symmetric
and Rh is symmetric, we deduce that Lh�H

⊥� ⊂ H⊥ and Rh�H
⊥� ⊂ H⊥. Hence we get

two endomorphisms Lh and Rh of H⊥/H . Since � � � is Lorentzian and H is totally
isotropic, H⊥/H carries an Euclidean product for which Lh is skew-symmetric and
Rh is symmetric. We have seen that, for any u ∈ ��� ��⊥, Ru is nilpotent so Rh is
nilpotent, and hence Rh is a symmetric nilpotent endomorphism in an Euclidean
vector space; thus Rh = 0 and hence Rh�H

⊥� ⊂ H . On the other hand, ��� �� is
nilpotent and h ∈ ��� �� thus adh is nilpotent in restriction to ��� �� and, actually,
on all �. Now adh = Lh − Rh = Lh, and hence Lh is nilpotent, and being skew-
symmetric, it must vanish, so Lh�H

⊥� ⊂ H . This achieves the proof. �
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4192 BOUCETTA AND LEBZIOUI

3.1. Proof of Theorem 1.1

In this section, we give a proof of Theorem 1.1 based on Proposition 2.1, its
complement, and Proposition 3.1.

Proof. Remark first that, since the left multiplications are skew-symmetric and Rh

is symmetric, we can deduce that if H is a two-sided ideal then H⊥ is also a two-
sided ideal. With this remark in mind, we begin by proving the first assertion of the
theorem, i.e., Lh = 0 and ��H ⊂ H .

Let ��� � � �� be a flat nonunimodular Lorentzian Lie algebra. According
to [3] Corollary 3.6, � must be solvable. The left multiplication L � � −→ so���
is a representation and hence � = � ⊕ �� where � is L-invariant Lorentzian
nondegenerate indecomposable and � is L-invariant Euclidean nondegenerate. It is
obvious that � is a flat Riemannian Lie algebra and hence it is unimodular. This
implies that h ∈ �, it coincides with the modular vector of � and dim � ≥ 2. We have

Lh��� = Rh��� = 0� (15)

Indeed, � ⊂ H⊥, Lh��� ⊂ � and, according to Proposition 3.1, Lh�H
⊥� ⊂ H ⊂ �, so

Lh��� = 0. On the other hand, according to Proposition 3.1, Rh is symmetric and
hence, for any u ∈ � and v ∈ �,

�u�h� v� = �v�h� u� = −�v�u� h� = 0�

so Rh��� = 0.
According to (15), to reach our goal we need to prove that Lh��� = 0 and

��H ⊂ H .
Since dim � ≥ 2 and according to Proposition 2.1, we have two situations.

(i) There exists � > 0 with d� = 0, a basis �e� ē� of � such that �e� e� =
�ē� ē� = 0, �e� ē� = 1, and, for any u ∈ �,

u�e = ��u�e and u�ē = −��u�ē�

We have �e� ē� = −��e�ē − ��ē�e� Since ���e� ē�� = 0, we get ��e���ē� = 0� We can
suppose without loss of generality that ��e� = 0. So

e�e = e�ē = 0� ē�e = ��ē�e and ē�ē = −��ē�ē�

So h = ��ē�e and hence ��ē� �= 0. Thus Lh��� = 0 and ��H ⊂ H , and the first
assertion of the theorem holds in this case.

(ii) In this case, dim � ≥ 3, and there exists � ∈ �∗ such that d� = 0 and �� is
a totally isotropic one dimensional vector space. Moreover, for any 
 �= �, �
 = �0.

Choose a generator e of ��. Since tr�Re� = ��e�, we deduce from (6) that
�h� e� = −��e�. We will show first that ��e� = 0.

Suppose by contradiction that ��e� �= 0. Consider the Lorentzian
nondegenerate vector space V = span�e� h. We claim that V is L-invariant.
Indeed, for any u ∈ �, u�e = ��u�e, h�h = 0, and V ⊥ is contained in H⊥ so, by
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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS 4193

virtue of Proposition 3.1, V ⊥�h ⊂ H . Let us show now that e�h ∈ V . Remark first
that h ∈ ��� �� and hence ��h� = 0. Write e�h = ae + bh + v0 with v0 ∈ V ⊥. Since
�e�h� h� = 0, then a = 0. So e�h = bh + v0. Since d� = 0 and ��h� = 0, we have
��v0� = ��e�h� = ��h�e� = 0. Now, Rh is symmetric and then

�v0� v0� = �e�h� v0� = �e� v0�h� = −�v0�e� h� = −��v0���e� = 0�

Since V ⊥ is Euclidean, then v0 = 0, thus V is L-invariant. This is impossible since
� is indecomposable and dim � ≥ 3. This shows that ��e� = 0 and �e� h� = 0. Since
both e and h are isotropic, we deduce that H = �� and then ��H ⊂ H . We need now
to show that Lh��� = 0.

Denote by �⊥
� the orthogonal of �� in � so that H⊥ = �⊥

� ⊕ �. Since Rh is
symmetric, for any u� v ∈ �,

��u��h� v� = ��v��h� u��

So if u ∈ H⊥, then ��u� = 0, and hence H⊥�H = 0.
Let � � �⊥

� −→ �̃ be the canonical projection where �̃ is the quotient of �⊥
� by

��. The representation L induces a representation L̃ of � on �̃. As in the complement
to Proposition 2.1,

�̃ =
q⊕

i=1

�̃i ⊕ �̃0�

and, for any i ∈ �1� � � � � q, there exists �i ∈ �∗\�0 satisfying d�i = 0, bi� ci ∈ �∗

satisfying (13) and �ei� fi� an orthonormal couple in �⊥
� such that

u�ei = bi�u�h + �i�u�fi and u�fi = ci�u�h − �i�u�ei�

Moreover, for any x ∈ �−1��̃0�, there exists ax ∈ �∗ satisfying (11) such that, for any
u ∈ �,

u�x = ax�u�h�

According to Proposition 3.1, H�H⊥ ⊂ H and hence �i�h� = 0. Moreover, H⊥�H = 0
so �h� ei� = bi�h�h, �h� fi� = ci�h�h, and

�ei� fi� = �ci�ei� − bi�fi��h − �i�ei�ei − �i�fi�fi�

Since d�i = 0, by applying �i to �ei� fi�, we get �i�ei� = �i�fi� = 0. By applying dbi

and dci to �h� ei� and �h� fi� and by using (13), we get bi�h� = ci�h� = 0� On the other
hand, for any x ∈ �−1��̃0�, we have �h� x� = ax�h�h. So by applying dax to �h� x�
and by using (11), we get ax�h� = 0. These relations show that H��⊥

� = 0. Now, for
any u ∈ �\�⊥

� , �h�u� u� = 0 and, for any v ∈ �⊥
� , �h�u� v� = −�h�v� u� = 0, and hence

h�u = 0. Finally, Lh��� = 0, and the first assertion of the theorem holds also in this
case.
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4194 BOUCETTA AND LEBZIOUI

To complete the proof, we will show the second assertion of the theorem. Since
both H and H⊥ are two-sided ideals, according to Proposition 3.1 of [2], � is a
double extension of a flat Riemannian Lie algebra B according to �	� D� 
� b0�. The
Lie brackets are given by

�ē� e� = 
e� �ē� a� = D�a� − �b0� a�0e and �a� b� = �a� b�0 + ��	 − 	∗��a�� b�0e�

It is easy to see that h = �
 + tr�D��e. So � is nonunimodular iff tr�D� �= −
. �

4. FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS UP TO
DIMENSION 4

According to Theorem 1.1, one can determine entirely all flat nonunimodular
Lorentzian Lie algebras if one can find all admissible �	� D� 
� b0� on flat
Riemannian Lie algebras with tr�D� �= −
. In this section, we give all families of
flat nonunimodular Lorentzian Lie algebras up to dimension 4 (see Tables 1 and 2).
The notations Ai�j appearing in the first column of these tables are those used in the
classification of four-dimensional nonunimodular Lie algebras given in [6]. So we
get a classification up to an isomorphism of Lie algebras.

The Two-Dimensional Case. There is one flat nonunimodular Lorentzian Lie algebra
�A2� � � �� such that A2 = span�e� ē, �ē� e� = e, and � � � = 
e  ē with 
 �= 0.

The Three-Dimensional Case. Let ��� � � �� be a three-dimensional flat nonunimodular
Lorentzian Lie algebra. It is easy to show that �	� D� 
� b0� is admissible in a
one-dimensional Riemannian Lie algebra B = Re1 if and only if D = 	 = 0 or D =
	 = 
IdB. Put b0 = �e1, and by using (5), we get that � is isomorphic to �3 or �′

3, where
we have as follows:

(i) �3 = span�e� ē� e1, where the only nonvanishing brackets are

�ē� e� = 
e� �ē� e1� = �e� with 
 �= 0 and � ∈ R�

(ii) �′
3 = span�e� ē� e1, where the only nonvanishing brackets are

�ē� e� = 
e� �ē� e1� = 
e1 + �e� with 
 �= 0 and � ∈ R�

In both cases, the metric is given by � � � = ē∗  e∗ + e∗
1  e∗

1. By replacing ē by

−1ē and e by �e if � �= 0, we get Table 1 which gives, up to an isomorphism
which preserves both the Lie brackets and the metrics, all three-dimensional flat
nonunimodular Lorentzian Lie algebras.

The Four-Dimensional Case. Any flat Riemannian Lie algebra �B� � � �� of dimension
2 must be abelian. Then �D� 	� 
� b0� is admissible if and only if A = D − 	 is skew-
symmetric and

�A� 	� = 	2 − 
	� (16)

It is easy to solve this equation so we skip the details of the computation. By putting
b0 = �e1 + �e2, using (5), and replacing ē by 
−1ē, we get that any four-dimensional
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FLAT NONUNIMODULAR LORENTZIAN LIE ALGEBRAS 4195

flat nonunimodular Lorentzian Lie algebra is isomorphic to span�e� ē� e1� e2 with
the nonvanishing brackets one of the following ones:

(i) �ē� e� = e� �ē� e1� = e1 + �e2 + �e� �ē� e2� = �e� �e1� e2� = �e with �� �� � ∈ R�
(ii) �ē� e� = e� �ē� e1� = �e1 + �e2 + �e� �ē� e2� = −�e1 + �e2 + �e� with � = 0 or 1

and �� �� � ∈ R�

In both cases, the metric is given by � � � = 
ē∗  e∗ + e∗
1  e∗

1 + e∗
2  e∗

2 with 
 �= 0.
By studying carefully these two cases, we get eight classes of Lie algebras as

follows:

1. Three flat Lorentzian Lie algebras obtained from the case �i� by taking ��� �� =
�0� 0�, �� = 0� � �= 0�, or � �= 0.

2. Two flat Lorentzian Lie algebras obtained from the case �ii� by taking ��� �� =
�0� 0� or �� = 0� � �= 0�.

3. Three flat Lorentzian Lie algebras obtained from the case �ii� by taking
�� = 1� � �= 0�, �� = 1� � = � = � = 0�, or �� = 1� � = 0� � �= 0�.

For any of these eight Lie algebras, we find the corresponding Lie algebra in the list
classifying four-dimensional nonunimodular Lie algebras in [6].

Table 2 gives, up to an isomorphism which preserves both the Lie brackets and
the metrics, all the four-dimensional flat nonunimodular Lorentzian Lie algebras.
In all cases, � = span�ē� e� e1� e2. The notations A3�3 ⊕ A1 etc. are those used in the
classification of four-dimensional nonunimodular Lie algebras given in [6].
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