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ON RIEMANN-POISSON LIE GROUPS

Brahim Aliounea, Mohamed Boucettab, and Ahmed Sid’Ahmed Lessiadc

Abstract. A Riemann-Poisson Lie group is a Lie group endowed with a left
invariant Riemannian metric and a left invariant Poisson tensor which are
compatible in the sense introduced in [4]. We study these Lie groups and we
give a characterization of their Lie algebras. We give also a way of building
these Lie algebras and we give the list of such Lie algebras up to dimension 5.

1. Introduction

In this paper, we study Lie groups endowed with a left invariant Riemannian
metric and a left invariant Poisson tensor satisfying a compatibility condition to
be defined below. They constitute a subclass of the class of Riemann-Poisson
manifolds introduced and studied by the second author (see [2, 3, 4, 5]).

Let (M,π, 〈 , 〉) be smooth manifold endowed with a Poisson tensor π and a
Riemannian metric 〈 , 〉. We denote by 〈 , 〉∗ the Euclidean product on T ∗M
naturally associated to 〈 , 〉. The Poisson tensor defines a Lie algebroid structure
on T ∗M where the anchor map is the contraction #π : T ∗M −→ TM given by
≺ β,#π(α) �= π(α, β) and the Lie bracket on Ω1(M) is the Koszul bracket given
by
(1) [α, β]π = L#π(α)β − L#π(β)α− dπ(α, β), α, β ∈ Ω1(M) .
This Lie algebroid structure and the metric 〈 , 〉∗ define a contravariant connection
D : Ω1(M)× Ω1(M) −→ Ω1(M) by Koszul formula

2〈Dαβ, γ〉∗ = #π(α).〈β, γ〉∗ + #π(β).〈α, γ〉∗ −#π(γ).〈α, β〉∗
(2)

+ 〈[α, β]π, γ〉∗ + 〈[γ, α]π, β〉∗ + 〈[γ, β]π, α〉∗, α, β, γ ∈ Ω1(M) .
This is the unique torsionless contravariant connection which is metric, i.e., for any
α, β, γ ∈ Ω1(M),

Dαβ −Dβα = [α, β]π and #π(α).〈β, γ〉∗ = 〈Dαβ, γ〉∗ + 〈β,Dαγ〉∗ .
The notion of contravariant connection was introduced by Vaisman in [13] and
studied in more details by Fernandes in the context of Lie algebroids [8]. The
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connection D defined above is called contravariant Levi-Civita connection associated
to the couple (π, 〈 , 〉) and it appeared first in [2].

The triple (M,π, 〈 , 〉) is called a Riemannian-Poisson manifold if Dπ = 0, i.e.,
for any α, β, γ ∈ Ω1(M),
(3) Dπ(α, β, γ) := #π(α).π(β, γ)− π(Dαβ, γ) + π(β,Dαγ) = 0 .
This notion was introduced by the second author in [2]. Riemann-Poisson manifolds
turned out to have interesting geometric properties (see[2, 3, 4, 5]). Let’s mention
some of them.

(1) The condition of compatibility (3) is weaker than the condition ∇π = 0
where ∇ is the Levi-Civita connection of 〈 , 〉. Indeed, the condition (3)
allows the Poisson tensor to have a variable rank. For instance, linear Pois-
son structures which are Riemann-Poisson exist and were characterized in
[5]. Furthermore, let (M, 〈 , 〉) be a Riemannian manifold and (X1, . . . , Xr)
a family of commuting Killing vector fields. Put

π =
∑
i,j

Xi ∧Xj .

Then (M,π, 〈 , 〉) is a Riemann-Poisson manifold. This example illustrates
also the weakness of the condition (3) and, more importantly, it is the
local model of the geometry of noncommutative deformations studied by
Hawkins (see [10, Theorem 6.6]).

(2) Riemann-Poisson manifolds can be thought of as a generalization of Kähler
manifolds. Indeed, let (M,π, 〈 , 〉) be a Poisson manifold endowed with a
Riemannian metric such that π is invertible. Denote by ω the symplectic
form inverse of π. Then (M,π, 〈 , 〉) is Riemann-Poisson manifold if and
only if ∇ω = 0 where ∇ is the Levi-Civita connection of 〈 , 〉. In this case,
if we define A : TM −→ TM by ω(u, v) = 〈Au, v〉 then −A2 is symmetric
definite positive and hence there exists a uniqueQ : TM −→ TM symmetric
definite positive such that Q2 = −A2. It follows that J = AQ−1 satisfies
J2 = −IdTM , skew-symmetric with respect 〈 , 〉 and ∇J = 0. Hence
(M,J, 〈 , 〉) is a Kähler manifold and its Kähler form ωJ (u, v) = 〈Ju, v〉 is
related to ω by the following formula:

(4) ω(u, v) = −ωJ
(√
−A2u, v

)
, u, v ∈ TM .

Having this construction in mind, we will call in this paper a Kähler
manifold a triple (M, 〈 , 〉, ω) where 〈 , 〉 is a Riemannian metric and ω is
a nondegenerate 2-form ω such that ∇ω = 0 where ∇ is the Levi-Civita
connection of 〈 , 〉.

(3) The symplectic foliation of a Riemann-Poisson manifold when π has a
constant rank has an important property namely it is both a Riemannian
foliation and a Kähler foliation.

Recall that a Riemannian foliation is a foliated manifold (M,F) with
a Riemannian metric 〈 , 〉 such that the orthogonal distribution T⊥F is
totally geodesic.
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Kähler foliations are a generalization of Kähler manifolds (see [6]) and, as
for the notion of Kähler manifold, we call in this paper a Kähler foliation a
foliated manifold (M,F) endowed with a leafwise metric 〈 , 〉F ∈ Γ(⊗2T ∗F)
and a nondegenerate leafwise differential 2-form ωF ∈ Γ(⊗2T ∗F) such any
leaf with the restrictions of 〈 , 〉F and ωF is a Kähler manifold.

Theorem 1.1 ([4]). Let (M, 〈 , 〉, π) be a Riemann-Poisson manifold with π of
constant rank. Then its symplectic foliation is both a Riemannian and a Kähler
foliation.

Having in mind these properties particularly Theorem 1.1, it will be interesting
to find large classes of examples of Riemann-Poisson manifolds. This paper will
describe the rich collection of examples which are obtained by providing an arbitrary
Lie group G with a Riemannian metric 〈 , 〉 and a Poisson tensor π invariant under
left translations and such that (G, 〈 , 〉, π) is Riemann-Poisson. We call (G, 〈 , 〉, π)
a Riemann-Poisson Lie group. This class of examples can be enlarged substantially,
with no extra work, as follows. If (G, 〈 , 〉, π) is a Riemann-Poisson Lie group
and Γ is any discrete subgroup of G then Γ\G carries naturally a structure of
Riemann-Poisson manifold.

The paper is organized as follows. In Section 2, we give the material needed in the
paper and we describe the infinitesimal counterpart of Riemann-Poisson Lie groups,
namely, Riemann-Poisson Lie algebras. In Section 3, we prove our main result which
gives an useful description of Riemann-Poisson Lie algebras (see Theorem 3.1). We
use this theorem in Section 4 to derive a method for building Riemann-Poisson
Lie algebras. We explicit this method by giving the list of Riemann-Poisson Lie
algebras up to dimension 5.

2. Riemann-Poisson Lie groups and their infinitesimal
characterization

Let G be a Lie group and (g = TeG, [ , ]) its Lie algebra.
(1) A left invariant Poisson tensor π on G is entirely determined by

π(α, β)(a) = r(L∗aα,L∗aβ) ,
where a ∈ G, α, β ∈ T ∗aG, La is the left multiplication by a and r ∈ ∧2g
satisfies the classical Yang-Baxter equation

(5) [r, r] = 0 ,
where [r, r] ∈ ∧3g is given by

[r, r](α, β, γ) : =≺ α, [r#(β), r#(γ)] � + ≺ β, [r#(γ), r#(α)] �
+ ≺ γ, [r#(α), r#(β)] � , α, β, γ ∈ g∗,(6)

and r# : g∗ −→ g is the contraction associated to r. In this case, the Koszul
bracket (1) when restricted to left invariant differential 1-forms induces a
Lie bracket on g∗ given by

(7) [α, β]r = ad∗r#(α)β − ad∗r#(β)α , α, β ∈ g∗,
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where ≺ ad∗uα, v �= − ≺ α, [u, v] �. Moreover, r# becomes a morphism
of Lie algebras, i.e.,

(8) r#([α, β]r) = [r#(α), r#(β)] , α, β ∈ g∗.

(2) A let invariant Riemannian metric 〈 , 〉 on G is entirely determined by

〈u, v〉(a) = ρ(TaLa−1u, TaLa−1v),

where a ∈ G, u, v ∈ TaG and ρ is a scalar product on g. The Levi-Civita
connection of 〈 , 〉 is left invariant and induces a product A : g× g −→ g
given by

(9) 2%(Auv, w) = %([u, v], w) + %([w, u], v) + %([w, v], u) , u, v, w ∈ g .

It is the unique product on g satisfying

Auv −Avu = [u, v] and %(Auv, w) + %(v,Auw) = 0 ,

for any u, v, w ∈ g. We call A the Levi-Civita product associated to
(g, [ , ], ρ).

(3) Let (G, 〈 , 〉,Ω) be a Lie group endowed with a left invariant Riemannian
metric and a nondegenerate left invariant 2-form. Then (G, 〈 , 〉,Ω) is a
Kähler manifold if and only if, for any u, v, w ∈ g,

(10) ω(Auv, w) + ω(u,Auv) = 0 ,

where ω = Ω(e), ρ = 〈 , 〉(e) and A is the Levi-Civita product of (g, [ , ], ρ).
In this case we call (g, [ , ], ρ, ω) a Kähler Lie algebra.

As all the left invariant structures on Lie groups, Riemann-Poison Lie groups
can be characterized at the level of their Lie algebras.

Proposition 2.1. Let (G, π, 〈 , 〉) be a Lie group endowed with a left invariant
bivector field and a left invariant metric and (g, [ , ]) its Lie algebra. Put r = π(e) ∈
∧2g, % = 〈 , 〉e and %∗ the associated Euclidean product on g∗. Then (G, π, 〈 , 〉) is
a Riemann-Poisson Lie group if and only if

(i) [r, r] = 0,
(ii) for any α, β, γ ∈ g∗, r(Aαβ, γ) + r(β,Aαγ) = 0,

where A is the Levi-Civita product associated to (g∗, [ , ]r, %∗).

Proof. For any u ∈ g and α ∈ g∗, we denote by u` and α`, respectively, the left
invariant vector field and the left invariant differential 1-form on G given by

u`(a) = TeLa(u) and α`(a) = T ∗aLa−1(α) , a ∈ G, La(b) = ab .

Since π and 〈 , 〉 are left invariant, one can see easily from (1) and (2) that we
have, for any α, β, γ ∈ g∗,{

[π, π]S(α`, β`, γ`)= [r, r](α, β, γ), #π(α`) = (r#(α))`, L#π(α`)β
`=
(
ad∗r#(α)β

)`
,

[α`, β`]π = ([α, β]r)` , Dα`β` = (Aαβ)` .
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The proposition follows from these formulas, (3) and the fact that (G, π, 〈 , 〉) is a
Riemann-Poisson Lie group if and only if, for any α, β, γ ∈ g∗,

[π, π]S(α`, β`, γ`) = 0 and Dπ(α`, β`, γ`) = 0 . �

Conversely, given a triple (g, r, %) where g is a real Lie algebra, r ∈ ∧2g and %
a Euclidean product on g satisfying the conditions (i) and (ii) in Proposition 2.1
then, for any Lie group G whose Lie algebra is g, if π and 〈 , 〉 are the left invariant
bivector field and the left invariant metric associated to (r, %) then (G, π, 〈 , 〉) is a
Riemann-Poisson Lie group.

Definition 2.1. A Riemann-Poisson Lie algebra is a triple (g, r, %) where g is a
real Lie algebra, r ∈ ∧2g and % a Euclidean product on g satisfying the conditions
(i) and (ii) in Proposition 2.1.

To end this section, we give another characterization of the solutions of the
classical Yang-Baxter equation (5) which will be useful later.

We observe that r ∈ ∧2g is equivalent to the data of a vector subspace S ⊂ g
and a nondegenerate 2-form ωr ∈ ∧2S∗.

Indeed, for r ∈ ∧2g, we put S = Imr# and ωr(u, v) = r(r−1
# (u), r−1

# (v)) where
u, v ∈ S and r−1

# (u) is any antecedent of u by r#.
Conversely, let (S, ω) be a vector subspace of g with a non-degenerate 2-form.

The 2-form ω defines an isomorphism ωb : S −→ S∗ by ωb(u) = ω(u, .), we denote
by #: S∗ −→ S its inverse and we put r# = # ◦ i∗ where i∗ : g∗ −→ S∗ is the dual
of the inclusion i : S ↪→ g.

With this observation in mind, the following proposition gives another description
of the solutions of the Yang-Baxter equation.

Proposition 2.2. Let r ∈ ∧2g and (S, ωr) its associated vector subspace. The
following assertions are equivalent:

(1) [r, r] = 0.
(2) S is a subalgebra of g and

δωr(u, v, w) := ωr(u, [v, w]) + ωr(v, [w, u]) + ωr(w, [u, v]) = 0

for any u, v, w ∈ S.

Proof. The proposition follows from the following formulas:

≺ γ, r#([α, β]r)− [r#(α), r#(β)] �= −[r, r](α, β, γ) , α, β, γ ∈ g∗

and, if S is a subalgebra,

[r, r](α, β, γ) = −δωr(r#(α), r#(β), r#(γ)) . �

This proposition shows that there is a correspondence between the set of solutions
of the Yang-Baxter equation the set of symplectic subalgebras of g. We recall that
a symplectic algebra is a Lie algebra S endowed with a non-degenerate 2-form ω
such that δω = 0.
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3. A characterization of Riemann-Poisson Lie algebras

In this section, we combine Propositions 2.1 and 2.2 to establish a characterization
of Riemann-Poisson Lie algebras which will be used later to build such Lie algebras.
We establish first an intermediary result.

Proposition 3.1. Let (g, r, %) be a Lie algebra endowed with r ∈ ∧2g and a
Euclidean product %. Denote by I = ker r#, I⊥ its orthogonal with respect to
%∗ and A the Levi-Civita product associated to (g∗, [ , ]r, %∗). Then (g, r, %) is a
Riemann-Poisson Lie algebra if and only if:

(c1) [r, r] = 0.
(c2) For all α ∈ I, Aα = 0.
(c3) For all α, β, γ ∈ I⊥, Aαβ ∈ I⊥ and

r(Aαβ, γ) + r(β,Aαγ) = 0 .

Proof. By using the splitting g∗ = I ⊕ I⊥, on can see that the conditions (i) and
(ii) in Proposition 2.1 are equivalent to

(11)



[r, r] = 0 ,
r(Aαβ, γ) = 0 , α ∈ I , β ∈ I , γ ∈ I⊥,
r(Aαβ, γ) + r(β,Aαγ) = 0 , α ∈ I , β ∈ I⊥ , γ ∈ I⊥,
r(Aαβ, γ) = 0 , α ∈ I⊥ , β ∈ I , γ ∈ I⊥,
r(Aαβ, γ) + r(β,Aαγ) = 0 , α ∈ I⊥, β ∈ I⊥, γ ∈ I⊥.

Suppose that the conditions (c1)-(c3) hold. Then for any α ∈ I and β ∈ I⊥,
Aβα = [β, α]r and hence r#(Aβα) = [r#(β), r#(α)] = 0 and hence the equations
in (11) holds.

Conversely, suppose that (11) holds. Then (c1) holds obviously.
For any α, β ∈ I, the second equation in (11) is equivalent to Aαβ ∈ I and we

have from (7) and (9) [α, β]r = 0 and Aαβ ∈ I⊥. Thus Aαβ = 0.
Take now α ∈ I and β ∈ I⊥. For any γ ∈ I, %∗(Aαβ, γ) = −%∗(β,Aαγ) = 0

and hence Aαβ ∈ I⊥. On the other hand,

r#([α, β]r) = r#(Aαβ)− r#(Aβα) (8)= [r#(α), r#(β)] = 0 .

So, for any γ ∈ I⊥,

≺ γ, r#(Aαβ) �=≺ γ, r#(Aβα) �= r(Aβα, γ) (11)= 0 .
This shows that Aαβ ∈ I and hence Aαβ = 0. Finally, (c2) is true. Now, for any
α ∈ I⊥, the fourth equation in (11) implies that Aα leaves invariant I and since
it is skew-symmetric it leaves invariant I⊥ and (c3) follows. This completes the
proof. �

Proposition 3.2. Let (g, %, r) be a Lie algebra endowed with a solution of classical
Yang-Baxter equation and a bi-invariant Euclidean product, i.e.,

%(aduv, w) + %(v, aduw) = 0 , u, v, w ∈ g .
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Then (g, %, r) is Riemann-Poisson Lie algebra if and only if Imr# is an abelian
subalgebra.

Proof. Since % is bi-invariant, one can see easily that for any u ∈ g, ad∗u is
skew-symmetric with respect to %∗ and hence the Levi-Civita product A associated
to (g∗, [ , ]r, %∗) is given by Aαβ = ad∗r#(α)β. So, (g, %, r) is Riemann-Poisson Lie
algebra if and only if, for any α, β, γ ∈ g∗,

0 = r(ad∗r#(α)β, γ) + r(β, ad∗r#(α)γ)
=≺ β, [r#(α), r#(γ)] � − ≺ γ, [r#(α), r#(β)] �
(5)=≺ α, [r#(β), r#(γ)] �

and the result follows. �

Let (g, [ , ]) be a Lie algebra, r ∈ ∧2g and % a Euclidean product on g. Denote
by (S, ωr) the symplectic vector subspace associated to r and by #: g∗ −→ g
the isomorphism given by %. Note that the Euclidean product on g∗ is given by
%∗(α, β) = %(#(α),#(β)). We have

g∗ = I ⊕ I⊥ and g = S ⊕ S⊥ ,
where I = ker r#. Moreover, r# : I⊥ −→ S is an isomorphism, we denote by
τ : S −→ I⊥ its inverse. From the relation

%
(
#(α), r#(β)

)
=≺ α , r#(β) �= r(β, α) ,

we deduce that #: I −→ S⊥ is an isomorphism and hence #: I⊥ −→ S is also an
isomorphism.

Consider the isomorphism J : S −→ S linking ωr to %|S , i.e.,
ωr(u, v) = ρ(Ju, v) , u, v ∈ S .

On can see easily that J = −# ◦ τ .

Theorem 3.1. With the notations above, (g, r, %) is a Riemann-Poisson Lie algebra
if and only if the following conditions hold:

(1) (S, %|S , ωr) is a Kähler Lie subalgebra, i.e., for all s1, s2, s3 ∈ S,
(12) ωr(∇s1s2, s3) + ωr(s2,∇s1s3) = 0 ,

where ∇ is the Levi-Civita product associated to (S, [ , ], %|S).
(2) for all s ∈ S and all u, v ∈ S⊥,

(13) %(φS(s)(u), v) + %(u, φS(s)(v)) = 0 ,
where φS : S −→ End(S⊥), u 7→ prS⊥ ◦ adu and prS⊥ : g −→ S⊥ is the
orthogonal projection.

(3) For all s1, s2 ∈ S and all u ∈ S⊥,
(14) ωr(φS⊥(u)(s1), s2) + ωr(s1, φS⊥(u)(s1)) = 0 ,

where φS⊥ : S⊥ −→ End(S), u 7→ prS ◦ adu and prS : g −→ S is the
orthogonal projection.
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Proof. Suppose first that (g, r, %) is a Riemann-Poisson Lie algebra. According to
Propositions 3.1 and 2.2, this is equivalent to

(15)


(S, ωr) is a symplectic subalgebra,
∀α ∈ I, Aα = 0 ,
∀ α, β, γ ∈ I⊥, Aαβ ∈ I⊥ and r(Aαβ, γ) + r(β,Aαγ) = 0 ,

where A is the Levi-Civita product of (g∗, [ , ]r, %∗).
For α, β ∈ I and γ ∈ I⊥,

2%∗(Aαβ, γ) = %∗([α, β]r, γ) + %∗([γ, β]r, α) + %∗([γ, α]r, β)
= %∗(ad∗r#(γ)β, α) + %∗(ad∗r#(γ)α, β)
= − ≺ β, [r#(γ),#(α)] � − ≺ α, [r#(γ),#(β)] �
= −%(#(β), [r#(γ),#(α)])− %(#(α), [r#(γ),#(β)]) .(16)

Since #: I −→ S⊥ and r# : I⊥ −→ S are isomorphisms, we deduce from (16) that
Aαβ = 0 for any α, β ∈ I is equivalent to (13).

For α ∈ I and β, γ ∈ I⊥,

2%∗(Aαβ,γ) = %∗([α, β]r, γ) + %∗([γ, β]r, α) + %∗([γ, α]r, β)
= −%∗(ad∗r#(β)α, γ)−%∗(ad∗r#(β)γ, α)+%∗(ad∗r#(γ)β, α)+%∗(ad∗r#(γ)α, β)
=≺ α, [r#(β),#(γ)] �+≺ γ, [r#(β),#(α)] �−≺ β, [r#(γ),#(α)] �
− ≺ α, [r#(γ),#(β)] �= %(#(γ), [r#(β),#(α)])
− %(#(β), [r#(γ),#(α)])+≺α, [r#(β),#(γ)]�−≺α, [r#(γ),#(β)] �

= −%(J ◦ r#(γ), [r#(β),#(α)]) + %(J ◦ r#(β), [r#(γ),#(α)])
+ ≺ α, [r#(β),#(γ)] �−≺ α, [r#(γ),#(β)] �

= −ωr(r#(γ),prS([r#(β),#(α)]))− ωr(prS([r#(γ),#(α)]), r#(β))
+ ≺ α, [r#(β),#(γ)] � − ≺ α, [r#(γ),#(β)] � .(17)

Now, #(β),#(γ) ∈ S and r#(β), r#(γ) ∈ S and since S is a subalgebra we deduce
that [r#(β),#(γ)], [r#(γ),#(β)] ∈ S and hence

≺ α, [r#(β),#(γ)] �=≺ α, [r#(γ),#(β)] �= 0 .

We have also #: I −→ S⊥ and r# : I⊥ −→ S are isomorphisms so that, by virtue
of (17), Aαβ = 0 for any α ∈ I and β ∈ I⊥ is equivalent to (14).

On the other hand, for any α, β, γ ∈ I⊥, since # = −J ◦ r#, the relation

2%∗(Aαβ, γ) = %∗([α, β]r, γ) + %∗([γ, β]r, α) + %∗([γ, α]r, β)

can be written

2%
(
J ◦ r#(Aαβ), J ◦ r#(γ)

)
= %
(
J ◦ r#([α, β]r), J ◦ r#(γ)

)
+ %
(
J ◦ r#([γ, β]r), J ◦ r#(α)

)
+ %
(
J ◦ r#([γ, α]r), J ◦ r#(β)

)
.
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But r#([α, β]r) = [r#(α), r#(β)] and hence
2〈r#(Aα, β), r#(γ)〉J = 〈[r#(α), r#(β)], r#(γ)〉J + 〈[r#(g), r#(β)], r#(α)〉J

+ 〈[r#(γ), r#(α)], r#(β)〉J ,

where 〈u, v〉J = %(Ju, Jv). This shows that r#(Aαβ) = ∇r#(α)r#(β) where ∇ is
the Levi-Civita product of (S, [ , ], 〈 , 〉J ) and the third relation in (15) is equivalent
to

ωr(∇uv, w) + ωr(v,∇uw) = 0 , u, v, w ∈ S .
This is equivalent to ∇uJv = J∇uv. Let us show that ∇ is actually the Levi-Civita
product of (S, [ , ], %). Indeed, for any u, v, w ∈ S, ∇uv −∇vu = [u, v] and

%(∇uv, w) + %(∇uw, v) = 〈J−1∇uv, J−1w〉J + 〈J−1∇uw, J−1v〉J
= 〈∇uJ−1v, J−1w〉J + 〈∇uJ−1w, J−1v〉J
= 0 .

So we have shown the direct part of the theorem. The converse can be deduced
easily from the relations we established in the proof of the direct part. �

Example 1. Let G be a compact connected Lie group, g its Lie algebra and T an
even dimensional torus of G. Choose a bi-invariant Riemannian metric 〈 , 〉 on G,
a nondegenerate ω ∈ ∧2S∗ where S is the Lie algebra of T and put % = 〈 , 〉(e).
Let r ∈ ∧2g be the solution of the classical Yang-Baxter associated to (S, ω). By
using either Proposition 3.2 or Theorem 3.1, one can see easily that (g, %, r) is
a Riemann-Poisson Lie algebra and hence (G, 〈 , 〉, π) is a Riemann-Poisson Lie
group where π is the left invariant Poisson tensor associated to r. According to
Theorem 1.1, the orbits of the right action of T on G defines a Riemannian and
Kähler foliation. For instance, G = SO(2n), T = Diagonal(D1, . . . , Dn) where

Di =
(

cos(θi) sin(θi)
− sin(θi) cos(θi)

)
and 〈 , 〉 = −K where K is the Killing form.

4. Construction of Riemann-Poisson Lie algebras

In this section, we give a general method for building Riemann-Poisson Lie
algebras and we use it to give all Riemann-Poisson Lie algebras up to dimension 5.

According to Theorem 3.1, to build Riemann-Poisson Lie algebras one needs to
solve the following problem.

Problem 1. We look for:
(1) A Kähler Lie algebra (h, [ , ]h, %h, ω),
(2) a Euclidean vector space (p, %p),
(3) a bilinear skew-symmetric map [ , ]p : p× p −→ p,
(4) a bilinear skew-symmetric map µ : p× p −→ h,
(5) two linear maps φp : p −→ sp(h, ω) and φh : h −→ so(p) where sp(h, ω) =
{J : h −→ h, Jω + J = 0} and so(p) = {A : p −→ p, A∗ +A = 0}, Jω is the
adjoint with respect to ω and A∗ is the adjoint with respect to %p,
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such that the bracket [ , ] on g = h⊕ p given, for any a, b ∈ p and u, v ∈ h, by
(18) [u, v] = [u, v]h, [a, b] = µ(a, b)+[a, b]p, [a, u] = −[u, a] = φp(a)(u)−φh(u)(a)
is a Lie bracket.

In this case, (g, [ , ]) endowed with r ∈ ∧2g associated to (h, ω) and the Euclidean
product % = %h ⊕ %p becomes, by virtue of Theorem 3.1, a Riemann-Poisson Lie
algebra.
Proposition 4.1. With the data and notations of Problem 1, the bracket given by
(18) is a Lie bracket if and only if, for any u, v ∈ h and a, b, c ∈ p,
(19)

φp(a)([u, v]h)=[u, φp(a)(v)]h+[φp(a)(u), v]h+φp(φh(v)(a))(u)−φp(φh(u)(a))(v) ,
φh(u)([a, b]p) = [a, φh(u)(b)]p+[φh(u)(a), b]p+φh(φp(b)(u))(a)−φh(φp(a)(u))(b) ,
φh([u, v]h) = [φh(u), φh(v)] ,
φp([a, b]p)(u) = [φp(a), φp(b)](u)+[u, µ(a, b)]h − µ(a, φh(u)(b))−µ(φh(u)(a), b) ,∮

[a, [b, c]p]p =
∮
φh(µ(b, c))(a) ,∮

φp(a)(µ(b, c)) =
∮
µ([b, c]p, a) ,

where
∮

stands for the circular permutation.
Proof. The equations follow from the Jacobi identity applied to (a, u, v), (a, b, u)
and (a, b, c). �

We tackle now the task of determining the list of all Riemann-Poisson Lie algebras
up to dimension 5. For this purpose, we need to solve Problem 1 in the following
four cases: (a) dim p = 1, (b) dim h = 2 and h non abelian, (c) dim h = dim p = 2
and h abelian, (d) dim h = 2, dim p = 3 and h abelian.

It is easy to find the solutions of Problem 1 when dim p = 1 since in this case
so(p) = 0 and the three last equations in (19) hold obviously.
Proposition 4.2. If dim p = 1 then the solutions of Problem 1 are a Kähler Lie
algebra (h, %, ω), φh = 0, [ , ]p = 0, µ = 0 and φp(a) ∈ sp(h, ω) ∩Der(h) where a is
a generator of p and Der(h) the Lie algebra of derivations of h.

Let us solve Problem 1 when h is 2-dimensional non abelian.
Proposition 4.3. Let ((h, ω, %h), (p, [ , ]p, %p), µ, φh, φp) be a solution of Problem 1
with h is 2-dimensional non abelian. Then there exists an orthonormal basis B =
(e1, e2) of h, b0 ∈ p and two constants α 6= 0 and β 6= 0 such that:

(i) [e1, e2]h = αe1, ω = βe∗1 ∧ e∗2,
(ii) (p, [ , ]p, %p) is a Euclidean Lie algebra,
(iii) φh(e1) = 0, φh(e2) ∈ Der(p) ∩ so(p) and, for any a ∈ p, M(φp(a),B) =(

0 %p(a, b0)
0 0

)
,

(iv) for any a, b ∈ p, µ(a, b) = µ0(a, b)e1 with µ0 is a 2-cocycle of (p, [ , ]p)
satisfying

(20) µ0(a, φh(e2)b) + µ0(φh(e2)a, b) = −%p([a, b]p, b0)− αµ0(a, b) .
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Proof. Note first that from the third relation in (19) we get that φh(h) is a
solvable subalgebra of so(p) and hence must be abelian. Since h is 2-dimensional
non abelian then dimφh(h) = 1 and [h, h] ⊂ kerφh. So there exists an orthonormal
basis (e1, e2) of h such that [e1, e2]h = αe1, φh(e1) = 0 and ω = βe∗1 ∧ e∗2. If we
identify the endomorphisms of h with their matrices in the basis (e1, e2), we get
that sp(h, ω) = sl(2,R) and there exists a0, b0, c0 ∈ p such that, for any a ∈ p,

φp(a) =
(
%p(a0, a) %p(b0, a)
%p(c0, a) −%p(a0, a)

)
.

The first equation in (19) is equivalent to
α
(
%p(a0, a)e1 + %p(c0, a)e2

)
= −α%p(a0, a)e1 + α%p(a0, a)e1

+ %p

(
a0, φh(e2)(a)

)
e1 + %p

(
c0, φh(e2)(a)

)
e2 ,

for any a ∈ p. Since φh(e2) is sekw-symmetric, this is equivalent to
φh(e2)(a0) = −αa0 and φh(e2)(c0) = −αc0 .

This implies that a0 = c0 = 0. The second equation in (19) implies that φh(e2) is
a derivation of [ , ]p. If we take u = e1 in the forth equation in (19), we get that
[e1, µ(a, b)] = 0, for any a, b ∈ p and hence µ(a, b) = µ0(a, b)e1. If we take u = e2
in the forth equation in (19) we get (20). The two last equations are equivalent to
[ , ]p is a Lie bracket and µ0 is 2-cocycle of (p, [ , ]p). �

The following proposition gives the solutions of Problem 1 when h is 2-dimensional
abelian and dim p = 2.
Proposition 4.4. Let

(
(h, ω, %h), (p, [ , ]p, %p), µ, φh, φp

)
be a solution of Problem 1

with h is 2-dimensional abelian and dim p = 2. Then one of the following situations
occurs:

(1) φh = 0, (p, [ , ]p, %p) is a 2-dimensional Euclidean Lie algebra, there exists
a0 ∈ p and D ∈ sp(h, ω) such that, for any a ∈ p, φp(a) = %p(a0, a)D and
there is no restriction on µ. Moreover, a0 ∈ [p, p]⊥p if D 6= 0.

(2) φh = 0, (p, [ , ]p, %p) is a 2-dimensional non abelian Euclidean Lie algebra,
φp identifies p to a two dimensional subalgebra of sp(h, ω) and there is no
restriction on µ.

(3) (p, [ , ]p, %p) is a Euclidean abelian Lie algebra and there exists an orthonor-
mal basis B = (e1, e2) of h and b0 ∈ p such that ω = αe∗1 ∧ e∗2, φh(e1) = 0,

φh(e2) 6= 0 and, for any a ∈ p, M(φp(a),B) =
(

0 %p(b0, a)
0 0

)
and there is

no restriction on µ.
Proof. Note first that since dim p = 2 the last two equations in (19) hold obviously
and (p, [ , ]p) is a Lie algebra. We distinguish two cases:

(i) φh = 0. Then (19) is equivalent to φp is a representation of p in sp(h, ω) '
sl(2,R). Since sl(2,R) doesn’t contain any abelian two dimensional sub-
algebra, if p is an abelian Lie algebra then dimφp(p) ≤ 1 and the first
situation occurs. If p is not abelian then the first or the second situation
occurs depending on dimφp(p).
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(ii) φh 6= 0. Since dim so(p) = 1 there exists an orthonormal basis B = (e1, e2)
of h such that φh(e1) = 0 and φh(e2) 6= 0. We have sp(h, ω) = sl(2,R)

and hence, for any a ∈ p, M(φp(a),B) =
(
%p(a0, a) %p(b0, a)
%p(c0, a) −%p(a0, a)

)
. Choose

an orthonormal basis (a1, a2) of p. Then there exists λ 6= 0 such that
φh(e2)(a1) = λa2 and φh(e2)(a2) = −λa1.

The first equation in (19) is equivalent to
φp(φh(e2)(a))(e1) = 0 , a ∈ p .

This is equivalent to
φp(a1)(e1) = φp(a2)(e1) = 0 .

Then a0 = c0 = 0 and hence φp(a) =
(

0 %p(b0, a)
0 0

)
. The second equation

in (19) gives
φh(e2)([a1, a2]p) = [a1, φh(e2)(a2)]p + φh(e2)(a1), a2]p

+ φh(φp(a2)(e2))(a2)− φh(φp(a1)(e2))(a2) ,

and hence φh(e2)([a1, a2]p) = 0. Thus [a1, a2]p = 0. All the other equations
in (19) hold obviously. �

To tackle the last case, we need the determination of 2-dimensional subalgebras
of sl(2,R).

Proposition 4.5. The 2-dimensional subalgebras of sl(2,R) are

g1 =
{(

α β
0 −α

)
, α, β ∈ R

}
, g2 =

{(
α 0
β −α

)
, α, β ∈ R

}
,

gx =
{(

α 2β−α
x

(α+ 2β)x −α

)
, α, β ∈ R

}
where x ∈ R \ {0}. Moreover, gx = gy if and only if x = y.

Proof. Let g be a 2-dimensional subalgebra of sl(2,R). We consider the basis
B = (h, e, f) of sl(2,R) given by

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
and h =

(
1 0
0 −1

)
.

Then
[h, e] = 2e , [h, f ] = −2f and [e, f ] = h .

If h ∈ g then adh leaves g invariant. But adh has three eigenvalues (0, 2,−2) with
the associated eigenvectors (h, e, f) and hence it restriction to g has (0, 2) or (0,−2)
as eigenvalues. Thus g = g1 or g = g2.

Suppose now that h /∈ g. By using the fact that sl(2,R) is unimodular, i.e., for
any w ∈ sl(2,R) tr(adw) = 0, we can choose a basis (u, v) of g such that (u, v, h) is
a basis of sl(2,R) and

[u, v] = u, [h, u] = au+ v and [h, v] = du− av − h .
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If (x1, x2, x3) and (y1, y2, y3) are the coordinates of u and v in B, the brackets
above gives
−2(x1y3 − x3y1)− x1 = 0 ,
2(x2y3 − x3y2)− x2 = 0 ,
x1y2 − x2y1 − x3 = 0 ,


y1 = (2− a)x1 ,

y2 = −(a+ 2)x2 ,

y3 = −ax3 ,

and


dx1 = (a+ 2)y1 ,

dx2 = (a− 2)y2 ,

dx3 = ay3 + 1 .

Note first that if x1 = 0 then (x2, x3) = (0, 0) which impossible so we must have
x1 6= 0 and hence d = 4 − a2. If we replace in the third equation in the second
system and the last equation, we get x3 = 1

4 and y3 = −a4 . The third equation in
the first system gives x2 = − 1

16x1
and hence y1 = (2− a)x1 and y2 = (a+2)

16x1
. Thus

g = span
{( 1

4 − 1
16x1

x1 − 1
4

)
,

(
−a4

(a+2)
16x1

(2− a)x1
a
4

)}
= span

{(
1 − 1

x
x −1

)
,

(
−a (a+2)

x
(2− a)x a

)}
; x = 4x1 .

But (
0 2

x
2x 0

)
= a

(
1 − 1

x
x −1

)
+
(
−a (a+2)

x
(2− a)x a

)
and hence

g = span
{(

1 − 1
x

x −1

)
,

(
0 2

x
2x 0

)}
= gx .

One can check easily that gx = gy if and only if x = y. This completes the proof. �

The following two propositions give the solutions of Problem 1 when h is
2-dimensional abelian and dim p = 3.

Proposition 4.6. Let ((h, ω, %h), (p, [ , ]p, %p), µ, φh, φp) be a solution of Problem 1
with h is 2-dimensional abelian and dim p = 3 and φh = 0. Then one of the following
situations occurs:

(i) (p, [ , ]p, %p) is 3-dimensional Euclidean Lie algebra, φp = 0 and µ is
2-cocycle for the trivial representation.

(ii) φp is an isomorphism of Lie algebras between (p, [ , ]p) and sl(2,R) and
there exists an endomorphism L : p −→ h such that for any a, b ∈ p,

µ(a, b) = φp(a)(L(b))− φp(b)(L(a))− L([a, b]p) .

(iii) There exists a basis Bp = (a1, a2, a3) of p, α 6= 0, β 6= 0, γ, τ ∈ R such
that [ , ]p has one of the two following forms


[a1, a2]p = 0 , [a1, a3]p = βa1 ,

[a2, a3]p = γa1 + αa2 , α 6= 0, β 6= 0
M(%p,Bp) = I3

or



[a1, a2]p = [a1, a3]p = 0 ,
[a2, a3]p = αa2 , α 6= 0 ,

M(%p,Bp) =

1 τ 0
τ 1 0
0 0 1

 .
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In both cases, there exists an orthonormal basis Bh = (e1, e2) of h, x 6= 0,
u 6= 0 and v ∈ R such that φp has one of the following forms

M(φp(a2),Bh) =
(

0 u

0 0

)
,

M(φp(a3),Bh) =
(
−α2 v

0 α
2

)
,

φp(a1) = 0 ,



M(φp(a2),Bh) =
(

0 0
u 0

)
,

M(φp(a3),Bh) =
(
α
2 0
v −α2

)
,

φp(a1) = 0 ,

or



M(φp(a2),Bh) =
(
u −ux
ux −u

)
,

M(φp(a3),Bh) =
(

v − 2v+α
2x

2v−α
2 x −v

)
,

φp(a1) = 0 .

Moreover, µ is a 2-cocycle for (p, [ , ]p, φp).

(iv) There exists an orthonormal basis B = (a1, a2, a3) of p such that φp(a1) =
φp(a2) = 0, φp(a3) is a non zero element of sp(h, ω) and{

[a1, a2]p = 0 , [a1, a3]p = βa1 + ρa2 ,

[a2, a3]p = γa1 + αa2 ,
or

{
[a1, a2]p = αa2 , [a1, a3]p = ρa2 ,

[a2, a3]p = γa2, α 6= 0 .

Moreover, µ is a 2-cocycle for (p, [ , ]p, φp).

Proof. In this case, (19) is equivalent to (p, [ , ]p) is a Lie algebra and φp is a
representation and µ is a 2-cocycle of (p, [ , ]p, φp).

We distinguish four cases:

(1) φp = 0 and the case (i) occurs.

(2) dimφp(p) = 3 and hence p is isomorphic to sp(h, ω) ' sl(2,R) and hence
µ is a coboundary. Thus (ii) occurs.

(3) dimφp(p) = 2 then kerφp is a one dimensional ideal of p. But φp(p) is a
2-dimensional subalgebra of sp(h, ω) ' sl(2,R), therefore it is non abelian
so p/ ker p is non abelian.

If ker p ⊂ [p, p]p then dim[p, p]p = 2 so there exists an orthonormal basis
(a1, a2, a3) of p such that a1 ∈ ker p and

[a1, a2]p = ξa1, [a1, a3]p = βa1 and [a2, a3]p = γa1 + αa2, α 6= 0, β 6= 0

and we must have ξ = 0 in order to have the Jacobi identity.
If ker p 6⊂ [p, p] then ker p ⊂ Z(p) and dim[p, p] = 1. Then there exits a

basis (a1, a2, a3) of p such that a1 ∈ ker p, a2 ∈ [p, p], a3 ∈ {a1, a2}⊥ and

[a2, a3]p = αa2, [a3, a1]p = [a1, a2]p = 0, α 6= 0.
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The matrix of %p in (a1, a2, a3) is given by1 τ 0
τ 1 0
0 0 1

 .

We choose an orthonormal basis (e1, e2) of h and identify sp(h, ω) to
sl(2,R). Now φp(p) = {φp(a2), φp(a3)} is a subalgebra of sl(2,R) and,
according to Proposition 4.5, φp(p) = g1, g2 or gx. But

[g1, g1] = Re, [g2, g2] = Rf and [gx, gx] =
{(

u −ux
ux −u

)}
.

So in order for φp to be a representation we must have

φp(a2) =
(

0 u
0 0

)
, and φp(a3) =

(
−α2 v
0 α

2

)
and φp(a1) = 0 ,

φp(a2) =
(

0 0
u 0

)
, φp(a3) =

(
α
2 0
v −α2

)
and φp(a1) = 0,

or

φp(a2) =
(
u −ux
ux −u

)
, φp(a3) =

(
p − 2p+α

2x2p−α
2 x −p

)
and φp(a1) = 0 .

(4) dimφp(p) = 1 then kerφp is a two dimensional ideal of p. Then there exists
an orthonormal basis (a1, a2, a3) of p such that

[a1, a2]p = αa2, [a3, a1]p = pa1 + qa2 and [a3, a2]p = ra1 + sa2 .

The Jacobi identity gives α = 0 or (p, r) = (0, 0). We take φp(a1) =
φp(a2) = 0 and φp(a3) ∈ sl(2,R). �

Proposition 4.7. Let ((h, ω, %h), (p, [ , ]p, %p), µ, φh, φp) be a solution of Problem
1 with h is 2-dimensional abelian, dim p = 3 and φh 6= 0. Then there exists an
orthonormal basis (e1, e2) of h, an orthonormal basis (a1, a2, a3) of p, λ > 0,
α, p, q, µ1, µ2, µ3 ∈ R such that

φh(e1) = 0, φh(e2)(a1) = λa2, φh(e2)(a2) = −λa1 and φh(e2)(a3) = 0 ,
[a1, a2]p = αa3, [a1, a3]p = pa1 + qa2, [a2, a3]p = −qa1 + pa2 and

φp(ai) =
(

0 µi
0 0

)
, i = 1, 2, 3

and one of the following situations occurs:
(i) p 6= 0, α = 0 and

µ(a1, a2) = 0, µ(a2, a3)=−λ−1(pµ1+qµ2)e1 and µ(a1, a3) = λ−1(−qµ1+pµ2)e1 .

(ii) p = 0, µ3 6= 0, α = 0 and

µ(a1, a2)=ce1, µ(a2, a3)=−λ−1(pµ1+qµ2)e1 and µ(a1, a3)=λ−1(−qµ1+pµ2)e1 .
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(iii) p = 0, µ3 = 0 and
µ(a1, a2) = c1e1 + c2e2, µ(a2, a3) = −λ−1(pµ1 + qµ2)e1 and

µ(a1, a3) = λ−1(−qµ1 + pµ2)e1 .

Proof. Since φh 6= 0 then φh(h) is a non trivial abelian subalgebra of so(p) and
hence it must be one dimensional. Then there exists an orthonormal basis (e1, e2)
of h and an orthonormal basis (a1, a2, a3) of p and λ > 0 such that φh(e1) = 0 and

φh(e2)(a1) = λa2, φh(e2)(a2) = −λa1 and φh(e2)(a3) = 0 .
The first equation in (19) is equivalent to

φp(φh(e2)(a))(e1) = 0 , a ∈ p .

This is equivalent to
φp(a1)(e1) = φp(a2)(e1) = 0 .

Thus φp(ai) =
(

0 µi
0 0

)
for i = 1, 2 and φp(a3) =

(
u v
w −u

)
. Consider now the

second equation in (19)
φh(u)([a, b]p) = [a, φh(u)(b)]p + [φh(u)(a), b]p +φh(φp(b)(u))(a)−φh(φp(a)(u))(b) .
This equation is obviously true when u = e1 and (a, b) = (a1, a2). For u = e1 and
(a, b) = (a1, a3), we get

φh(φp(a3)(e1))(a1) = 0
and hence w = 0.

For u = e2 and (a, b) = (a1, a2), we get φh(e2)([a1, a2]p) = 0 and hence [a1, a2]p =
αa3.

For u = e2 and (a, b) = (a1, a3) or (a, b) = (a2, a3) , we get
φh(e2)([a1, a3]p) = λ[a2, a3]p−λua2 and φh(e2)([a2, a3]p) = −λ[a1, a3]p +λua1.

This implies that [a1, a3]p, [a2, a3]p ∈ span{a1, a2} and hence
[a1, a3]p = pa1 + qa2 and [a2, a3]p = ra1 + sa2.

So {
λ(pa2 − qa1) = λ(ra1 + sa2 − ua2) ,
λ(ra2 − sa1) = −λ(pa1 + qa2 − ua1) .

This is equivalent to
u = 0, p = s and r = −q .

To summarize, we get
[a1, a2]p = αa3, [a1, a3]p = pa1 + qa2, [a2, a3]p = −qa1 + pa2 and

φp(ai) =
(

0 µi
0 0

)
.

Let consider now the fourth equation in (19)
φp([a, b]p)(u) = [φp(a), φp(b)](u) + [u, µ(a, b)]h − µ(a, φh(u)(b))− µ(φh(u)(a), b).

This equation is obviously true for u = e1.



ON RIEMANN-POISSON LIE GROUPS 241

For u = e2 and (a, b) = (a1, a2), (a, b) = (a1, a3) or (a, b) = (a2, a3), we get
αµ3 = 0,
(pµ1 + qµ2)e1 = −λµ(a2, a3) ,
(−qµ1 + pµ2)e1 = λµ(a1, a3) .

The last two equations are equivalent to
φp(a3)(µ(a1, a2)) = −2pµ(a1, a2) and p[a1, a2]p = 0 .

• p 6= 0 then
α = 0, µ(a1, a2) = 0, µ(a2, a3) = −λ−1(pµ1 + qµ2)e1 and

µ(a1, a3) = λ−1(−qµ1 + pµ2)e1 .

• p = 0 and µ3 6= 0 then α = 0 and
µ(a1, a2) = ce1, µ(a2, a3) = −λ−1(pµ1 + qµ2)e1 and
µ(a1, a3) = λ−1(−qµ1 + pµ2)e1 .

• p = 0 and µ3 = 0 then
µ(a1, a2) = c1e1 + c2e2, µ(a2, a3) = −λ−1(pµ1 + qµ2)e1 and
µ(a1, a3) = λ−1(−qµ1 + pµ2)e1 .

�

By using Propositions 4.2–4.7, we can give all the Riemann-Poisson Lie algebras
of dimension 3, 4 or 5.

Let (g, [ , ], %, r) be a Riemann-Poisson Lie algebra of dimension less or equal to
5. According to what above then g = h⊕ p and the Lie bracket on g is given by
(18) and ((h, ω, %h), (p, [ , ]p, %p), µ, φh, φp) are solutions of Problem 1.
• dim g = 3. In this case dim h = 2 and dim p = 1 and, by applying Proposition

4.2, the Lie bracket of g, % and r are given in Table 1, where e12 = e1 ∧ e2.

Non vanishing Lie brackets Bivector r Matrix of % Conditions
[e1, e2] = ae1, [e3, e2] = be1 αe12 I3 a 6= 0, α 6= 0
[e3, e1] = −be1 + ce2, [e3, e2] = de1 + be2 αe12 I3 α 6= 0

Tab. 1. Three dimensional Riemann-Poisson Lie algebras

• dim g = 4. We have three cases:
(c41) dim h = 2, dim p = 2 and h is non abelian and we can apply Proposition

4.3 to get the Lie brackets on g, % and r. They are described in rows 1 and
2 in Table 2.

(c42) dim h = 2, dim p = 2 and h is abelian and we can apply Propositions 4.4
and 4.5 to get the Lie brackets on g, % and r. They are described in rows 3
and 8 in Table 2.

(c43) dim h = 4. In this case g is a Kähler Lie algebra. We have used [12] to
derive all four dimensional Kähler Lie algebra together with their symplectic
derivations. The results are given in Table 3. The notation Ders(h) stands
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for the vector spaces of derivations which are skew-symmetric with respect
the symplectic form. The vector space Ders(h) is described by a family of
generators and Eij is the matrix with 1 in the i row and j column and 0
elsewhere.

Non vanishing Lie brackets Bivector r Matrix of % Conditions
[e1, e2] = ae1, [e3, e2] = be1 + ce4, αe12 I4 a 6= 0, α 6= 0
[e4, e2] = de1 − ce3
[e1, e2] = ae1, [e3, e2] = be1, αe12 I4 αac 6= 0,
[e4, e2] = de1, [e3, e4] = ce3 − a−1cbe1
[e3, e4] = ae1 + be2 αe12 I4 α 6= 0
[e3, e4] = ae1 + be2 + ce3, [e4, e1] = xe1 + ye2, αe12 I4 α 6= 0
[e4, e2] = ze1 − xe2

[e3, e4] = ae1 + be2 + 2e4, [e3, e1] = e1, αe12 Diag
(

1, 1,
(
µ ν
ν ρ

))
α 6= 0, µ, ρ > 0

[e3, e2] = −e2, [e4, e2] = e1 µρ > ν2

[e3, e4] = ae1 + be2 − 2e4, [e3, e1] = e1, αe12 Diag
(

1, 1,
(
µ ν
ν ρ

))
α 6= 0, µ, ρ > 0

[e3, e2] = −e2, [e4, e1] = e2 µρ > ν2

[e3, e4] = ae1 + be2 − 2e3, [e3, e1] = e1 + xe2, αe12 Diag
(

1, 1,
(
µ ν
ν ρ

))
α 6= 0, µ, ρ > 0

[e3, e2] = − 1
x
e1 − e2, [e4, e1] = xe2, [e4, e2] = 1

x
e1 µρ > ν2, x 6= 0

[e3, e4] = ae1 + be2, [e3, e2] = xe1 + ye4, αe12 I4 αy 6= 0
[e4, e2] = ze1 − ye3

Tab. 2. Four dimensional Riemann-Poisson Lie algebras of rank 2

Non vanishing Lie brackets Bivector r Matrix of % Ders(h)
[e1, e2] = e2, αe12 + βe34 Diag(a, b, c, d) {E21, E33 − E44, E43, E34}
[e1, e2] = −e3, [e1, e3] = e2, αe14 + βe23 Diag(a, b, b, c) {E23 − E32, E41}
[e1, e2] = e2, [e3, e4] = e4, αe12 + βe34 Diag(a, b, c, d) {E21, E43}
[e4, e1] = e1, [e4, e2] = −δe3, αe14 + βe23 Diag(a, b, b, c) {E14, E23 − E32}
[e4, e3] = δe2
[e1, e2] = e3, [e4, e3] = e3, α(e12 − e34) Diag(a, µb, µa, b) {E34, E22 − E11, E12 + E21}
[e4, e1] = 1

2 e1, [e4, e2] = 1
2 e2, ,

[e1, e2] = e3, [e4, e3] = e3, α(e23 + e14) Diag(a, a, 2a, 2a) {2E14 − E32}
[e4, e1] = 2e1, [e4, e2] = −e2,

[e1, e2] = e3, [e4, e3] = e3, α(e12 − e34) Diag(a, a, a, a) {E34, E12 − E21}
[e4, e1] = 1

2 e1 − e2,
[e4, e2] = e1 + 1

2 e2,

Tab. 3. Four-dimensional Kähler Lie algebras and their symplectic
derivations, a, b, c, d > 0,αβ 6= 0

• dim g = 5. We have:
(c51) dim h = 4 and h abelian and hence a symplectic vector space. We can apply

Proposition 4.2 and g is semi-direct product.
(c52) dim h = 4 and h non abelian. We can apply Proposition 4.2 and Table 3 to

get the Lie brackets on g, % and r. The result is summarized in Table 4.
(c53) dim h = 2 and h non abelian. We apply Proposition 4.3. In this case

(p, [ , ]p, %p) is a 3-dimensional Euclidean Lie algebra and one must compute
Der(p) ∩ so(p) and solve (20). Three dimensional Euclidean Lie algebras
were classified in [9]. For each of them we have computed Der(p) ∩ so(p)
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and solved (20) by using Maple. The result is summarized in Table 5 when
p is unimodular and Table 6 when p is nonunimodular.

(c54) dim h = 2 and h abelian and φh = 0. We apply Proposition 4.6 and
we perform all the needed computations. We use the classification of
3-dimensional Euclidean Lie algebras given in [9]. The results are given in
Tables 7-8.

(c55) dim h = 2 and h abelian and φh 6= 0. We apply Proposition 4.7 and we
perform all the needed computations. The results are given in Table 9.

Non vanishing Lie brackets Bivector r Matrix of % Conditions
[e1, e2] = e2, [e5, e1] = xe2, αe12 + βe34 Diag(a, b, c, d, e) αβ 6= 0
[e5, e3] = ye3 + te4, [e5, e4] = ze3 − ye4 a, b, c, d, e > 0
[e1, e2] = −e3, [e1, e3] = e2, αe14 + βe23 Diag(a, b, b, c, d) αβ 6= 0
[e5, e1] = ye4, [e5, e2] = −xe3, [e5, e3] = xe2 a, b, c, d > 0
[e1, e2] = e2, [e3, e4] = e4, αe12 + βe34 Diag(a, b, c, d, e) αβ 6= 0
[e5, e1] = xe2, [e5, e3] = ye4 a, b, c, d, e > 0
[e4, e1] = e1, [e4, e2] = −δe3, [e4, e3] = δe2 αe14 + βe23 Diag(a, b, b, c, d) αβ 6= 0, δ > 0
[e5, e2] = −ye3, [e5, e3] = ye2, [e5, e4] = xe1 a, b, c, d > 0
[e1, e2] = e3, [e4, e3] = e3, [e4, e1] = 1

2 e1 α(e12 − e34) Diag(a, µb, µa, b, c) α 6= 0
[e4, e2] = 1

2 e2, [e5, e1] = xe1 + ye2, a, b, c, µ > 0
[e5, e2] = ye1 − xe2, [e5, e4] = ze3
[e1, e2] = e3, [e4, e3] = e3, [e4, e1] = 2e1 α(e23 + e14) Diag(a, a, 2a, 2a, b) α 6= 0
[e4, e2] = −e2, [e5, e2] = xe3, [e5, e4] = −2xe1 a, b > 0
[e1, e2] = e3, [e4, e3] = e3, [e4, e1] = 1

2 e1 − e2 α(e12 − e34) Diag(a, a, a, a, b) α 6= 0
[e4, e2] = e1 + 1

2 e2, [e5, e1] = −xe2, [e5, e2] = xe1 a, b > 0
[e5, e4] = ye3

Tab. 4. Five-dimensional Riemann-Poisson Lie algebras of rank 4

Non vanishing Lie brackets r Matrix of % Conditions
[e1, e2] = e1, [e3, e2] = bµe1 − ce4, [e4, e2] = dµe1 + ce3 αe12 Diag(1, ρ, µ, µ, 1) cα 6= 0
[e5, e2] = fe1, [e3, e4] = −fe1 + e5 µ, ρ > 0
[e1, e2] = e1, [e3, e2] = be1, [e4, e2] = ce1 αe12 Diag(1, ρ, 1, 1, µ) α 6= 0
[e5, e2] = dµe1, [e3, e5] = be1 − e3, [e4, e5] = −ce1 + e4 µ, ρ > 0

[e1, e2] = e1, [e3, e2] = (b + c)e1, [e4, e2] = (cx + b)e1 αe12 Diag(1, ρ,
(

1 1
1 x

)
, µ) α 6= 0

[e5, e2] = dµe1, [e3, e5] = (b + c)e1 − e3, µ, ρ > 0
[e4, e5] = −(xc + b)e1 + e4
[e1, e2] = e1, [e3, e2] = be1, [e4, e2] = cµe1 αe12 Diag(1, ρ, 1, µ, ν) α 6= 0
[e5, e2] = dνe1, [e3, e5] = −µce1 + e4, [e4, e5] = be1 − e3 µ, ν, ρ > 0
[e1, e2] = e1, [e3, e2] = bµe1, [e4, e2] = cνe1 αe12 Diag(1, ξ, µ, ν, ρ) α 6= 0, ν 6= ρ
[e5, e2] = dρe1, [e3, e4] = −2ρde1 + 2e5, µ, ν, ρ, ξ > 0
[e3, e5] = 2νce1 − 2e4, [e4, e5] = 2µbe1 − 2e3 µ 6= ν, µ 6= ρ

[e1, e2] = e1, [e3, e2] = bµe1, [e4, e2] = cνe1 − λe5 αe12 Diag(1, ρ, µ, ν, ν) λα 6= 0
[e5, e2] = dνe1 + λe4, [e3, e4] = − 2ν(λc+d)

1+λ2 e1 + 2e5, µ, ν, ρ > 0

[e3, e5] = 2ν(c−λd)
1+λ2 e1 − 2e4, [e4, e5] = 2µbe1 − 2e3

[e1, e2] = e1, [e3, e2] = bµe1, [e4, e2] = cνe1 αe12 Diag(1, ξ, µ, ν, ρ) α 6= 0, ν 6= ρ
[e5, e2] = dρe1, [e3, e4] = −ρde1 + e5, µ, ν, ρ, ξ > 0
[e3, e5] = νce1 − e4, [e4, e5] = −µbe1 + e3 µ 6= ν, µ 6= ρ

[e1, e2] = e1, [e3, e2] = bµe1, [e4, e2] = cνe1 − λe5 αe12 Diag(1, ρ, µ, ν, ν) λα 6= 0
[e5, e2] = dνe1 + λe4, [e3, e4] = − ν(λc+d)

1+λ2 e1 + e5, µ, ν, ρ > 0

[e3, e5] = ν(c−λd)
1+λ2 e1 − e4, [e4, e5] = −µbe1 + e3

[e1, e2] = e1, [e3, e2] = bµe1 − ue4 − ve5, αe12 Diag(1, ρ, µ, µ, µ) α 6= 0
[e4, e2] = cµe1 + ue3 − we5, [e5, e2] = dµe1 + ve3 + we4, µ, ρ > 0
[e3, e4] = xe1 + e5, [e3, e5] = ye1 − e4, [e4, e5] = ze1 + e3

x = −µ(buw−cuv+du2+bv+cw+d)
1+u2+v2+w2

y = µ(−bvw+cv2−duw+bu−dw+c)
1+u2+v2+w2

z = −µ(bw2−cvw+duw−cu−dv+b)
1+u2+v2+w2

Tab. 5. Five-dimensional Riemann-Poisson Lie algebras of rank 2
with non abelian Kähler subalgebra and unimodular complement
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Non vanishing Lie brackets r Matrix of %
[e1, e2] = e1, [e3, e2] = (f + cλ+ fλ2)e1 − λe4, λ 6= 0, αe12 Diag(1, ρ, 1, 1, µ)
[e4, e2] = ce1 + λe3, [e5, e2] = dµe1, µ, ρ > 0
[e3, e5] = fe1 − e3, [e4, e5] = (λf + c)e1 − e4,

[e1, e2] = e1, [e3, e2] = be1, [e4, e2] = cµe1, αe12 Diag(1, ρ, 1, µ, ν)
[e5, e2] = dνe1, [e3, e5] = µce1 − e4, 0 < µ < |f |, ρ > 0
[e4, e5] = (−fb+ 2µc)e1 + fe3 − 2e4, f = 1 or f ≤ 0

[e1, e2] = e1, [e3, e2] = (b+ cµ)e1, [e4, e2] = (c+ bµ)e1, αe12 Diag(1, ρ,
(

1 µ
µ 1

)
, ν)

[e5, e2] = dνe1, [e3, e5] = (µb+ c)e1 − e4, µ, ν, ρ > 0
[e4, e5] = ((2− µ)c+ (2µ− 1)b)e1 + e3 − 2e4

[e1, e2] = e1, [e3, e2] = (b+ c)e1, [e4, e2] = (b+ cµ)e1, αe12 Diag(1, ρ,
(

1 1
1 µ

)
, ν)

[e5, e2] = dνe1, [e3, e5] = (b+ cµ)e1 − e4, ν, ρ > 0, c > µ > 1
[e4, e5] = ((2− f)b+ (2µ− f)c)e1 + fe3 − 2e4

[e1, e2] = e1, [e3, e2] = (b+ 1
2 c)e1, [e4, e2] = (c+ 1

2 b)e1, αe12 Diag(1, ρ,
(

1 1
21

2 1

)
, ν)

[e5, e2] = dνe1, [e3, e5] = (c+ 1
2 b)e1 − e4, ρ, ν > 0

[e4, e5] = (b+ 2c)e1 − 2e4
[e1, e2] = e1, [e3, e2] = xe1, [e4, e2] = ye1, αe12 AtBA

[e5, e2] = dνe1, [e3, e5] = ze1 − e4, A =

( 1+s
−2fs − 1

2s 0
1−s
2fs

1
2s

0 0 1

)
[e4, e5] = te1 + fe3 − 2e4, 0 < f < 1, B = Diag(1, ρ,

(
1 µ

µ 1

)
, ν)

x = ((µ+1)b+(µ−1)c)f−2b
2f2(f−1) , y = z = (µ−1)(cf+b)

2f(f−1) ν, ρ > 0

t = (1−µ)cf+((f−2)µ+f)b
2f(1−f) s =

√
1− f , 0 ≤ µ < 1

Tab. 6. Five-dimensional Riemann-Poisson Lie algebras of rank
2 with non abelian Kähler subalgebra and non unimodular com-
plement. (α 6= 0)

Non vanishing Lie brackets Bivector r Matrix of % Conditions
[e3, e4] = ae1 + be2 + e5, [e3, e5] = ce1 + de2 αe12 Diag(1, 1, µ, µ, 1) α 6= 0
[e4, e5] = fe1 + ge2 µ > 0
[e3, e4] = ae1 + be2, [e3, e5] = ce1 + de2 − e3 αe12 Diag(1, 1, 1, 1, µ) α 6= 0

[e4, e5] = fe1 + ge2 + e4 Diag(1, 1,
(

1 1
1 x

)
, µ) µ > 0

[e3, e4] = ae1 + be2, [e3, e5] = ce1 + de2 + e4 αe12 Diag(1, 1, 1, µ, ν) α 6= 0
[e4, e5] = fe1 + ge2 − e3 µ, ν > 0
[e3, e4] = ae1 + be2 + 2e5, [e3, e5] = ce1 + de2 − 2e4 αe12 Diag(1, 1, µ, ν, ρ) α 6= 0
[e4, e5] = fe1 + ge2 − 2e3 µ, ν, ρ > 0
[e3, e4] = ae1 + be2 + e5, [e3, e5] = ce1 + de2 − e4 αe12 Diag(1, 1, µ, ν, ρ) α 6= 0
[e4, e5] = fe1 + ge2 + e3 µ, ν, ρ > 0
[e3, e5] = ce1 + de2 − e3 αe12 Diag(1, 1, 1, 1, µ) α 6= 0
[e4, e5] = fe1 + ge2 − e4 µ > 0
[e3, e5] = ce1 + de2 − e4 αe12 There are many cases α 6= 0
[e4, e5] = fe1 + ge2 + xe3 − 2e4 See [9]

Tab. 7. Five-dimensional Riemann-Poisson Lie algebras of rank
2 with abelian Kähler subalgebra
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Non vanishing Lie brackets r Matrix of %
[e3, e1] = −e2, [e3, e2] = e1, [e4, e1] = e2, [e4, e2] = e1 αe12 Diag(1, 1, µ, ν, ρ)
[e5, e1] = e1, [e5, e2] = −e2, µ, ν, ρ > 0
[e3, e4] = 2e5 + (l22 − l21 − 2l13)e1 − (l12 + l11 + 2l23)e2
[e3, e5] = −2e4 + (l23 − l11 + 2l12)e1 − (l13 − l21 − 2l22)e2,
[e4, e5] = −2e3 + (l23 − l12 + 2l11)e1 + (l13 + l22 + 2l21)e2
[e4, e2] = ue1, [e5, e1] = −a2 e1, [e5, e2] = ve1 + a

2 e2, αe12 Diag(1, 1, 1, 1, 1)
[e3, e4] = xe1 + ye2, [e3, e5] = be3 + ze1 + te2,
[e4, e5] = ce3 + ae4 + re1 + se2,
(a+ 2b)x− 2tu+ 2yv = 0,a 6= 0, b 6= 0, (3a+ 2b)y = 0

[e4, e2] = ue1, [e5, e1] = −a2 e1, [e5, e2] = ve1 + a
2 e2, αe12 Diag(1, 1,

(
1 µ
µ 1

)
, 1)

[e3, e4] = xe1, [e3, e5] = ze1 + te2,
[e4, e5] = ae4 + re1 + se2, a 6= 0,
ax− 2tu = 0
[e4, e1] = ue2, [e5, e1] = a

2 e1 + ve2, [e5, e2] = −a2 e2, αe12 Diag(1, 1, 1, 1, 1)
[e3, e4] = xe1 + ye2, [e3, e5] = be3 + ze1 + te2,
[e4, e5] = ce3 + ae4 + re1 + se2,
(3a+ 2b)x = 0, a 6= 0, b 6= 0
(a+ 2b)y − 2zu+ 2xv = 0

[e4, e1] = ue2, [e5, e1] = a
2 e1 + ve2, [e5, e2] = −a2 e2, αe12 Diag(1, 1,

(
1 µ

µ 1

)
, 1)

[e3, e4] = ye2, [e3, e5] = ze1 + te2,
[e4, e5] = ae4 + re1 + se2, a 6= 0, ay − 2zu = 0
[e4, e1] = ue1 + upe2, [e4, e2] = −u

p
e1 − ue2, , αe12 Diag(1, 1, 1, 1, 1)

[e5, e1] = ve1 + (2v−a)p
2 e2, [e5, e2] = − (2v+a)

2p e1 − ve2
[e3, e4] = xe1 + ye2, [e3, e5] = be3 + ze1 + te2, a 6= 0, b 6= 0
[e4, e5] = ce3 + ae4 + re1 + se2,
((2a+ 2b+ 2v)x− 2zu)p− ay + 2tu− 2yv = 0
(2xv − ax− 2zu)p+ (2a+ 2b− 2v)y + 2tu = 0

[e4, e1] = ue1 + upe2, [e4, e2] = −u
p
e1 − ue2, , αe12 Diag(1, 1,

(
1 µ

µ 1

)
, 1)

[e5, e1] = ve1 + (2v−a)p
2 e2, [e5, e2] = − (2v+a)

2p e1 − ve2
[e3, e4] = xe1 + ye2, [e3, e5] = ze1 + te2,
[e4, e5] = ae4 + re1 + se2, a 6= 0, b 6= 0
((2a+ 2v)x− 2zu)p− ay + 2tu− 2yv = 0
(2xv − ax− 2zu)p+ (2a− 2v)y + 2tu = 0
[e5, e1] = ue1 + ve2, [e5, e2] = we1 − ue2, αe12 Diag(1, 1, 1, 1, 1)
[e3, e4] = xe1 + ye2, [e3, e5] = ae3 + be4 + ze1 + te2,
[e4, e5] = ce3 + de4 + re1 + se2,
(a+ d+ u)x+ yw = 0, xv + (a+ d− u)y = 0
[e5, e1] = ue1 + ve2, [e5, e2] = we1 − ue2, αe12 Diag(1, 1, 1, 1, 1)
[e3, e4] = xe1 + ye2 + ae4, [e3, e5] = be4 + ze1 + te2,
[e4, e5] = ce4 + re1 + se2, a 6= 0
(c+ u)x− ar + yw = 0
(c− u)y − as+ xv = 0

Tab. 8. Five-dimensional Riemann-Poisson Lie algebras of rank
2 with abelian Kähler subalgebra (α 6= 0) (Continued)
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Non vanishing Lie brackets Bivector r Matrix of % Conditions
[e3, e2] = xe1 − ae4, [e4, e2] = ye1 + ae3, [e5, e2] = ze1 αe12 Diag(1, 1, 1, 1, 1) α 6= 0
[e3, e5] = pe3 + qe4 + a−1(−qx + py)e1, a 6= 0
[e3, e5] = −qe3 + pe4 − a−1(px + qy)e1
[e3, e2] = xe1 − ae4, [e4, e2] = ye1 + ae3, [e5, e2] = ze1 αe12 Diag(1, 1, 1, 1, 1) α 6= 0
[e3, e4] = be1
[e3, e5] = qe4 − a−1qxe1, a 6= 0, z 6= 0
[e3, e5] = −qe3 − a−1qye1
[e3, e2] = xe1 − ae4, [e4, e2] = ye1 + ae3, αe12 Diag(1, 1, 1, 1, 1) α 6= 0
[e3, e4] = be1 + ce2
[e3, e5] = qe4 − a−1qxe1, a 6= 0
[e3, e5] = −qe3 − a−1qye1

Tab. 9. Five-dimensional Riemann-Poisson Lie algebras of rank
2 with abelian Kähler subalgebra (Continued)

This theorem unknown to our knowledge can be used to build examples of
Riemann-Poisson Lie algebras.

Theorem 4.1. Let (G, 〈 , 〉) be an even dimensional flat Riemannian Lie group.
Then there exists a left invariant differential Ω on G such that (G, 〈 , 〉,Ω) is a
Kähler Lie group.

Proof. Let g be the Lie algebra of G and % = 〈 , 〉(e). According to Milnor’s
Theorem [11, Theorem 1.5] and its improved version [1, Theorem 3.1] the flatness
of the metric on G is equivalent to [g, g] is even dimensional abelian, [g, g]⊥ =
{u ∈ g, adu + ad∗u = 0} is also even dimensional abelian and g = [g, g] ⊕ [g, g]⊥.
Moreover, the Levi-Civita product is given by

(21) La =
{

ada if a ∈ [g, g]⊥ ,
0 if a ∈ [g, g]

and there exists a basis (e1, f1, . . . , er, fr) of [g, g] and λ1, . . . , λr ∈ [g, g]⊥ \ {0}
such that for any a ∈ [g, g]⊥,

[a, ei] = λi(a)fi and [a, fi] = −λi(a)ei .

We consider a nondegenerate skew-symmetric 2-form ω0 on [g, g]⊥ and ω1 the
nondegenerate skew-symmetric 2-form on [g, g]⊥ given by ω1 =

∑r
i=1 e

∗
i ∧ f∗i . One

can sees easily that ω = ω0 ⊕ ω1 is a Kähler form on g. �
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