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Abstract

Recall that given a n-dimensional Riemannian manifold (M,h) with the curva-
ture tensor R, the Ricci curvature and the one dimensional sectional curvature
are given, respectively, by

ric(X, Y ) = tr(Z −→ R(X,Z)Y ) and A =
1

n− 2
(ric− s

2(n− 1)
h),

where s is the scalar curvature given by s = trhric. In this work, we give a
contribution to the study of the Ricci curvature and the one-dimensional sec-
tional curvature of left-invariant Riemannian metrics on nilpotent Lie groups.
It is a well-known fact that the signature of the Ricci curvature and the one-
dimensional sectional curvature of a left invariant metric on a Lie group are
deeply related to the structure of the Lie group. This leads naturally to the
following problems:

Problem 1. For a connected Lie group G, determine all the signatures of the
Ricci operators for all left-invariant Riemannian metrics on G.

Problem 2. For a connected Lie group G, determine all the signatures of the
one dimensional sectional curvature for all left-invariant Riemannian metrics
on G.

These problems are been studied mainly in the low dimensions. The first
one has been solved, respectively, in the case of 3-dimensional Lie groups and
4-dimensional Lie groups. For Lie groups of dimension 5 there are only partial
results. In this work, we study these problems when G is nilpotent. We show
that, associated to any nilpotent Lie group G, there is a subset Sign(g) of
N3 depending only on the Lie algebra g of G, easy to compute and such that,
for any left invariant Riemannian metric on G, the signature of its Ricci cur-
vature belongs to Sign(g). In the case where dimG ≤ 6, Sign(g) is actually
the set of signatures of the Ricci curvature of all left invariant Riemannian
metrics on G. We give also some general results which support the conjec-
ture that the last result is true in any dimension. On the other hand, by using
Sign(g) as a geometrical-algebraic invariant, we gave a classification of all pos-
sible signatures of the one-dimensional sectional curvatures of all left-invariant
Riemannian metrics on some nilpotent Lie groups.
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Resumé

Rappelons que pour une variété Riemannienne (M,h) de dimension n et de
tenseur de courbure de Riemann R, la courbure de Ricci et la courbure sec-
tionnelle à une dimension sont définies par

ric(X, Y ) = tr(Z −→ R(X,Z)Y ) et A =
1

n− 2
(ric− s

2(n− 1)
h),

avec s la courbure scalaire définie par s = trhric. Dans cette thèse, nous appor-
tons une contribution à l’étude de la courbure de Ricci et la courbure de Ricci et
la courbure sectionnelle à une dimension des métriques Riemanniennes invari-
antes à gauche sur les groupes de Lie nilpotents. Il est établi que les signatures
de la courbure de Ricci et la courbure de Ricci et la courbure sectionnelle à une
dimension des métriques Riemanniennes invariantes à gauche sur un groupe
de Lie dépendent de la structure du group. Il se dégage les problèmes suivants:

Problème 1. Pour un groupe de Lie connexe G, déterminer toutes les signa-
tures possibles de tous les opérateurs de Ricci de toutes les métriques Rieman-
niennes invariantes à gauche sur G.

Problème 2. Pour un groupe de Lie connexe G, déterminer toutes les signa-
tures possibles de tous les opérateurs des courbures sectionnelles à une dimen-
sion de toutes les métriques Riemanniennes invariantes à gauche sur G..

Ces problèmes sont plus étudiés pour les groupes de petite deimension. Le
premier est résolu pour les dimensions 3 et 4, partiellement pour la dimension
5. Dans cette thèse, nous étudions ces problèmes lorsque le groupe de Lie G est
nilpotent. Nous associans à chaque groupe de Lie nilpotentG, un sous-ensemble
Sign(g) de N3 dependant uniquement de la structure de l’algèbre de Lie g de
G, facile à déterminer tel que, pour toute métrique Riemannienne invariante
à gauche sur G, la signature de sa courbure de Ricci curvature appartient à
Sign(g). Dans le cas où dimG ≤ 6, Sign(g) constitue l’esemble de toutes
les signatures de la courbure de Ricci de toutes les métriques Riemanniennes
invariantes à gauche sur G. A travers quelques exemples, nous justifions que
ce résultat peut-être vrai en toute dimension. Par ailleurs en utilisant Sign(g)

comme un invariant geometrico-algebrique , nous donnons une classification de

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. xi
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toutes les signatures possibles de la courbure sectionnelle à une dimension de
toutes les métriques Riemanniennes invariantes à gauche sur certains groupes
de Lie nilpotent.

Mots clés: Groupes de Lie nilpotent , Algèbres de Lie nilpotentes , Con-
nexion de Levi-Civita, Courbure de Ricci ,Algèbres de Lie Euclidiennes , Oper-
ateurs de Ricci, Signatures de Ricci, Bases de Groebner, courbure sectionnelle
à une dimension.
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INTRODUCTION

In what follows, we state the problems tackled in this work, the results obtained
before our’s and our contribution toward a solution of these problems. The
main results of this work constitute the paper [23].

Let (M,h) be a n-dimensional Riemannian manifold. We denote by ∇ its
Levi-Civita connection and by R the curvature tensor given by

R(X, Y )Z = ∇[X,Y ]Z − (∇X∇YZ −∇Y∇XZ) .

The Ricci curvature and the one-dimensional sectional curvature tensor are
the bilinear symmetric tensors field ric and A given, respectively, by

ric(X, Y ) = tr(Z −→ R(X,Z)Y ) and A =
1

n− 2
(ric− s

2(n− 1)
h),

where s is the scalar curvature given by s = trhric. The Ricci operator and the
one-dimensional sectional curvature operator are given by

h(RicX, Y ) = ric(X, Y ) and h(AX, Y ) = A(X, Y ).

Both ric and A have a signature which can be computed by the mean of the
eigenvalues of Ric and A. It is a well established fact that there are deep
relations between the topology and the geometry of M and the signatures of
ric and A. These relations were investigated by many authors when M is an
homogeneous space, in particular, when (M,h) is a Riemannian Lie group1

[6, 5]. This leads to the following problems:

Problem 1. For a connected Lie group G, determine all the signatures of the
Ricci curvatures for all left-invariant Riemannian metrics on G.

Problem 2. For a connected Lie group G, determine all the signatures of the
one-dimensional sectional curvature tensors for all left-invariant Riemannian
metrics on G.

1A Lie Riemannian Lie group is a Lie group endowed with a left invariant Riemannian
metric.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. 1
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These problems has been studied mainly in the low dimensions and, before
enumerating the different results obtained, let say a word on the difficulties
one may face when tackling such problems. The different curvatures of a left
invariant metric on a Lie group g are completely determined at the level of the
Lie algebra g by the restriction 〈 , 〉 of the metric to g and the Lie bracket.
The main difficulty here is to find an orthonormal basis with respect to 〈 , 〉
in which the Lie bracket are expressed with the less amount of parameters
possibles and, if it is possible, the matrix of the the Ricci curvature in this
basis is diagonal. It was Milnor first in [68] who exhibited such bases called
since Milnor’s frame. The existence of Milnor’s frame in high dimension has
been proved by [42]. Having this in mind, let pursue.

In [68] and [55, 56], Problem 1 has been solved, respectively, in the case
of 3-dimensional Lie groups and 4-dimensional Lie groups. For Lie groups of
dimension 5 there are only partial results. In [58], A.G. Kremlev, solved Prob-
lem 1 in the case of five-dimensional nilpotent Lie groups. The method used
in all these cases is based on Milnor’s frame.

Problem 2 is recent problem. It was first studied in 2011 by Voronov,
Gladunova, Rodionov, and Slavskĭı [102, 101, 36]. They used Milnor’s frames
and symbolic computation packages to solve the problem for three-dimensional
connected Lie groups. Then Oskorbin in [79], gave a necessary and sufficient
conditions for three real numbers to be the eigenvalues values of the one-
dimensional curvature operator of a three dimensional connected Riemannian
Lie group. His approach used once more Milnor’s frames to obtain a system
of equation which can be solved under some mild conditions. One the other
hand, Klepikov, Oskerbin, and Rodionov in [52] gave an formula which permits
the computation of the spectrum of the one-dimensional curvature operators
of some four-dimensional Riemannian Lie groups.

In this work, we study Problems 1 and 2 when G is nilpotent by introducing
a new method not based on Milnor’s frames. We show that, associated to any
nilpotent Lie group G, there is a subset Sign(g) of N3 depending only on
the Lie algebra g of G, easy to compute and such that, for any left invariant
Riemannian metric onG, the signature of its Ricci operator belongs to Sign(g).
In the case where dimG ≤ 6, Sign(g) is actually the set of signatures of the
Ricci curvatures of all left invariant Riemannian metrics on G. We give also
some general results which support the conjecture that the last result is true
in any dimension. On the other hand, by using Sign(g) as a geometrical-
algebraic invariant, we gave a classification of all possible signatures of the
one-dimensional curvatures of all left-invariant Riemannian metrics on some
nilpotent Lie groups.

Now, we introduce Sign(g) and state our main results. Throughout this
work, we will use the following convention. The signature of a symmetric oper-

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.
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ator J on an Euclidean vector space V is the sequence (s−, s0, s+) where s+ =∑
λi>0 dim ker(J − λiIV ), s− =

∑
λi<0 dim ker(J − λiIV ) and s0 = dim ker J ,

where λ1, . . . , λr are the eigenvalues of J .
Let g be a nilpotent n-dimensional Lie algebra, Z(g) its center and [g, g]

its derived ideal. Put d = dim[g, g], k = dimZ(g) and ` = dim(Z(g) ∩ [g, g]).
We associate to g the subset of N3

Sign(g) =

(n− d− p+m−, p+m0, `+m+) :


max(k − d, 0) ≤ p ≤ k − `

m− +m0 +m+ = d− `

 .

For instance, if g is 2-step nilpotent then [g, g] ⊂ Z(g) and hence Sign(g) =

{(n− k, k − d, d)} . If g is a filiform nilpotent Lie algebra then Z(g) ⊂ [g, g],
dimZ(g) = 1, dim[g, g] = n− 2 and hence

Sign(g) =
{

(2 +m−,m0, 1 +m+), m− +m0 +m+ = n− 3
}
.

The signature of the Ricci operator of a left invariant Riemannian metric
on Lie group of dimension n belongs to {(n−, n0, n+) : n− + n0 + n+ = n}
whose cardinal is (n+1)(n+2)

2
. Our first main result reduces drastically the set of

possibilities for a nilpotent Lie group.

Theorem 0.0.1. Let (G, h) be a nilpotent Lie group endowed with a left in-
variant Riemannian metric and g its Lie algebra. Then the signature of the
Ricci operator of (G, h) belongs to Sign(g).

As an immediate consequence of this result, if G is 2-step nilpotent then any
left invariant Riemannian metric on G has the signature of its Ricci operator
equal to (dim g−dimZ(g), dimZ(g)−dim[g, g], dim[g, g]). On the other hand,
Theorem 3.2.1 has the following corollary which gives a new proof to a result
proved first in [68].

Corollary 0.0.2. Let (G, h) be a noncommutative nilpotent Lie group endowed
with a left invariant Riemannian metric and g its Lie algebra. Then the Ricci
operator of (G, h) has at least two negative eigenvalues.

Theorem 3.2.1 gives a candidate to be the set of the signatures of the Ricci
operators of all left invariant Riemannian metrics on a nilpotent Lie group.
Indeed, our second main result together with Theorem 3.2.1 solve Problem 1
completely for nilpotent Lie groups up to dimension 6.

Theorem 0.0.3. Let G be a nilpotent Lie group of dimension ≤ 6 and g its
Lie algebra. Then, for any (s−, s0, s+) ∈ Sign(g), there exists a left invariant
Riemannian metric on G for which the Ricci operator has signature (s−, s0, s+).

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. djiadeu ngaha
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Our third main result involves the notion of nice basis. Recall that a basis
(X1, . . . , Xn) of a nilpotent Lie algebra g is called nice if:

1. For any i, j with i 6= j, [Xi, Xj] = 0 or there exists k such that [Xi, Xj] =

Ck
ijXk with Ck

ij 6= 0,

2. If [Xi, Xj] = Ck
ijXk and [Xs, Xr] = Ck

srXk with Ck
ij 6= 0 and Ck

sr 6= 0 then
{i, j} ∩ {s, r} = ∅.

This notion appeared first in [64]. One of the most important property of a nice
basis B is that any Euclidean inner product on g for which B is orthogonal has
its Ricci curvature diagonal in B. The proof of Theorem 3.5.1 is based mainly
on the fact that all the nilpotent Lie algebras of dimension less or equal to 6
have a nice basis except one. It is also known (see [72]) that any filiform Lie
algebra has a nice basis.

Theorem 0.0.4. Let G be a nilpotent Lie group such that its Lie algebra g

admits a nice basis and Z(g) ⊂ [g, g] with dim[g, g]− dimZ(g) = 1. Then, for
any (s−, s0, s+) ∈ Sign(g), there exists a left invariant Riemannian metric on
G for which the Ricci operator has signature (s−, s0, s+).

This theorem together with Theorem 3.2.1 solve Problem 1 for a large class
of nilpotent Lie groups. Indeed, in the list of indecomposable seven-dimensional
nilpotent Lie algebras given in [38] there are more than 35 ones satisfying
the hypothesis of Theorem 3.3.1. On the other hand, we will point out the
difficulty one can face when trying to generalize Theorem 3.3.1 when dim[g, g]−
dimZ(g) ≥ 2. We will also give a method using the inverse function theorem
to overcome this difficulty. Although, wa have not succeeded yet to show that
this method works in the general case, we will use it successfully in the proof
of Theorem 3.5.1. We will refer to this method as inverse function theorem
trick.

The results above, the tools we will use to establish them and the examples
we will give support the following conjecture.

Conjecture 1. Let G be a nilpotent Lie group and g its Lie algebra. Then,
for any (s−, s0, s+) ∈ Sign(g), there exists a left invariant Riemannian metric
on G for which the Ricci operator has signature (s−, s0, s+).

Finally, concerning Problem 2, we tackle it for nilpotent Lie groups in
dimension ≤ 5. We solve it in dimension ≤ 4 for all nilpotent Lie groups
except one. In dimension 5, we give some partial result. Moreover, we use the
method of construction of Milnor’s frames to simplify drastically Nikitenko’list
of five-dimensional Euclidean nilpotent Lie algebras [71] and we solve Problem
2 for some of them.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.
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This thesis is arranged as follows :

In Chapter 1. This chapter state the main properties of left invariant
Riemannian metrics on Lie groups, in particular, nilpotent Lie groups.

InChapter 2.We describe the existing different approaches to obtain Ricci
signatures on Riemannian Lie groups. Namely, we recall Milnor’s results for
unimodular three dimensional Lie groups, Chebarikov’s results for nonunimod-
ular three dimensional Lie groups, Kremlev and Nikonorov’s results for four
dimensional Lie groups, Boucetta’s results for two step nilpotent Lie groups
and Kremlev’s results for five dimensional nilpotent Lie groups.

In Chapter 3. We study Problem 2 when G is nilpotent. Namely, we will
show Theorems 3.2.1, 3.5.1, 3.3.1 and Corollary 3.2.2.

In Chapter 4. In this chapter, we give a description of the method of
construction of Milnor’s frames and we apply it to W.De Graaf’s list of real
nilpotent Lie algebras of dimension ≤ 4 and we use these basis to solve Problem
2 for these Lie algebras except one. Moreover, we use the method of construc-
tion of Milnor’s frames to simplify drastically Nikitenko’list of five-dimensional
Euclidean nilpotent Lie algebras [71] and we solve Problem 2 for some of them.

In this thesis, Notation like [8, 20, 30] means references ([8], [20], [30]).

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. djiadeu ngaha
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Chapter One

Ricci Curvature of Riemannian
Lie Groups

We introduce in this Chapter, notations, definitions, theorems and prelim-
inary facts which are used throughout this thesis. For Riemannian Geometry,
Kobayashi-Nomizu [59, 60], Do Carmo [26], Helgason [44], Chavel [14], Klinger-
berg [53], Kühnel [62], Lee [66] are good references. Bourbaki [12], Jacobson
[48], Vinberg[99, 100], Goze- Khakimdjanov [37], and Humphreys [47] are good
references for algebraic properties of Lie algebras. Chevalley [19], Duistermaat
and Kolk [24], Varadarajan [98], Warner [103], Knapp [54] are good references
for geometric properties of Lie groups.

1.1 Main concepts on Riemannian geometry

We recall some elementary notions of Riemannian Geometry that can be found
in most classical references.

1.1.1 Levi-Civita connection

A Riemannian metric on a n−dimensional smooth manifoldM is a map wchich
associate to any point p ∈ M a scalar product h(p) such that, for any local
coordinates system (x1, ..., xn) on an open set U , the local functions hij : U −→
R given by

hij = h(p)(∂xi , ∂xj)

are smooth for any i, j = 1, ..., n. A smooth manifold with a Riemannian metric
is called a Riemanian manifold. Examples of Riemannian metrics are given in
[49, 32, 26].

Linear connection in one of most important geometric structures on a man-
ifold(see [29]). The following theorem is a fundamental result in Riemannian
geometry which asserts that on every Riemannian manifold there is a uniquely
determined linear connection.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. 7
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Theorem 1.1.1. For any Riemannian manifold (M,h), there exists a unique
linear connection ∇ torsion-free and compatible with the metric. This connec-
tion is called Levi-Civita connection.

In the proof of this theorem, the following key formula is using:

2∇Xh(Y, Z) = X.h(Y, Z)+Y.h(Z,X)−Z.h(X, Y )−h(X, [Y, Z])+h(Y, [Z,X])

+ h(Z, [X, Y ]). (1.1)

which determines the Levi-Civita connection. It is called Koszul formula, first
introduced by J-L. Koszul and developed by K. Nomizu who used this for-
mula to express torsion, curvature, etc.... In a local coordinates, from (1.1)
the coefficients Γkij of this connection called the Christoffel symbols are (see
[82, 32, 96]):

Γkij =
1

2

∑
l

gkl(∂igjl + ∂jgil − ∂lgij).

1.1.2 Curvature of Riemannian metrics

From J.M. Lee [65], the basic local isometry invariant in Riemannian manifold
is the Riemann Curvature tensor, its qualitative geometric meaning is precisely
the obstruction to being locally isometric to Euclidean space.

From [10, 65, 53] it is proved that:

Theorem 1.1.2. Let (M,h) be a Riemannian manifold and ∇ its Levi-Civita
connection. Then the map:

R : X (M)×X (M)×X (M)→ X (M)

given by
R(X, Y )Z := ∇[X,Y ]Z − (∇X∇YZ −∇Y∇XZ),

is the unique tensor field of type (1, 3) satisfying for any parametrized surface
Γ : (s, t) −→ Γ(s, t) ∈M and any vector field Y ∈ X (M):

DtDsY −DsDtY = R

(
∂Γ

∂s
,
∂Γ

∂t

)
.

R is called the Riemann curvature tensor of the metric h.

In a local coordinates, the curvature tensor coefficients Rs
ikj are:

Rs
ikj := ∂kΓ

s
ij − ∂jΓsik +

∑
r

(
ΓrijΓ

s
rk − ΓrikΓ

s
rj

)
.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.



1.1 Main concepts on Riemannian geometry 9

1.1.3 Ricci curvature

The second fundamental form of an hypersurface of Euclidean space played a
key role in understanding its geometric properties (see [65]). In an attempt to
generalise this concept, Ricci-Curbastro extracted a symmetric 2−form field
from the Riemann curvature tensor, nowadays called the Ricci curvature(see
[4]) which turn out as evidenced by numerous works of Mathematicians and
Physicists in [6, 104] an extremely important invariant.

Let (M,h) be a Riemannian manifold and R its Riemann curvature tensor.
The Ricci curvature is the trace of R, we have:

ric(u, v) = tr(x 7−→ R(u, x)v), u, v ∈ TpM.

ric is a symmetric tensor, then can be seing as an endomorphism,
Ricp : TpM −→ TpM via the formula

ric(u, v) = h(Ricp(u), v) = h(u,Ricp(v)) for all u, v ∈ TpM.

From [10], if (e1, e2, ..., en) is an orthonormal basis of TpM(p ∈M), we have

Ricp(u) =
n∑
i=1

R(ei, u)ei.

1.1.4 One-dimensional sectional curvature

Definition 1.1.3. Let (M,h) be a Riemannian manifold with n := dimM ≥ 3.
The one-dimensional sectional curvature is the bilinear tensor fields denote A

with

A :=
1

n− 2

(
ric− sh

2(n− 1)

)
,

where ric is the Ricci tensor and s the scalar curvature.

Then it can be seing as an endomorphism, Ap : TpM −→ TpM via the
formula

Ap(u, v) = h(Ap(u), v) = h(u,Ap(v)) for allu, v ∈ TpM.

The one-dimensional curvature operator denoted A is defined by

Ap =
1

n− 2

(
Ricp −

s(p)In
2(n− 1)

)
. (1.2)

Where Ricp is the Ricci endomorphism(Ricci operator), s(p) the scalar curva-
ture and In the identity endomorphism of TpM .

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. djiadeu ngaha



10

1.2 Left-invariant Riemannian metrics on Lie
Groups

Since a Lie group G is a smooth manifold, we can endow G with Riemannian
metrics. Among all the Riemannian metrics on G, those for which the left
translations are isometries are of particular interest because they take the
group structure of G into account.

Definition 1.2.1. A left-invariant Riemannian metric on a Lie group G is a
Riemannian metric h on G such that for any a ∈ G, the left multiplication La
is an isometry of h. This means that, for any a, b ∈ G and any u, v ∈ TbG,

h(TeLa(u), TeLa(v)) = h(u, v).

We call Riemannian Lie group, a Lie group equiped with a left-invariant
Riemannian metric. From [68], any Riemannian Lie group is complete. As a
consequence of this definition, we have:

Lemma 1.2.2 ([10]). Let h be a Riemannian metric on Lie group G. Then
the following assertions are equivalent:

(i) The metric h is left-invariant.

(ii) For any couple of left invariant fields (X, Y ), h(X, Y ) is a constant func-
tion.

Let G be a Lie group and g its Lie algebra, we denote by Ml(G) the set
of left-invariant Riemannian metrics on G and M the set of definite positive
inner products on g. From lemma above, the map

Ml(G) −→ M

h 7−→ h(e)

is a bijection. In [61, 42], it is showed that M is a noncompact symmetric
space, using the equivalence relation "isometric up to scaling" and a process
to determine the associate quotient space is given and was applied for some
cases.

Moreover, we have,

Lemma 1.2.3 ([10]). Let (G, h) be a Riemannian Lie group. Then the Rie-
mann curvature tensor R of (G, h) is left invariant. Thus for any left invariant
vector field X, Y, Z and for any a ∈ G:

R(X(a), Y (a))Z(a) = TeLa(R(X(e), Y (e))Z(e)).

This result shows that the Riemann curvature tensor is entirely determined
by its value on the neutral element, thus we can talk of curvature of the Eu-
clidean Lie algebra.
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1.3 Curvature of an Euclidean Lie algebra of a Riemannian Lie
group 11

1.3 Curvature of an Euclidean Lie algebra of a
Riemannian Lie group

Let (G, h) be a Riemannian Lie group, (g, [., .]g, 〈 , 〉 = h(e)) its Euclidean
Lie algebra ([10, 11]). For any endomorphism F : g −→ g, we denote by
F ∗ : g −→ g the adjoint of F with respect to 〈 , 〉 given by

〈 F (u), v 〉 = 〈 u, F ∗(v)〉, for all u, v ∈ g

It is well known that the set Kill(h) of Killing vector fields of (G, h) is a
subalgebra of vector fields on G. Since that not all the left invariant vector
fields are Killing vector fields. So we consider this is a subalgebra of g

K(〈 , 〉) = {u ∈ g, ul ∈ Kill(h)}
= {u ∈ g, adu + ad∗u = 0}

Note that Z(g) ⊂ K(〈 , 〉).

Definition 1.3.1. A Riemannian metric on a Lie group is bi-invariant if it is
both left and right invariant.

We have:

Lemma 1.3.2 ([10]). Let (G, h) be a connected Riemannian Lie group. If h is
bi-invariant then:

K(〈 , 〉) = g i.e. for any, u ∈ g, adu + ad∗u = 0.

If G is connected the converse is also true.

1.3.1 Riemann curvature of the Euclidean Lie algebra of
a Riemannian Lie group

The Levi-Civita product on g is the product

L : g× g −→ g

(u, v) 7−→ Luv

given by
Luv := (∇l

uv
l)(e).

Where ∇ is the Levi-Civita connection associated to (G, h). by using Koszul
formula [10, 15], we get for any u, v, w ∈ g,

2〈 Luv, w 〉 = 〈 [u, v]g, w 〉+ 〈 [w, u]g, v 〉+ 〈 [w, v]g, u 〉.
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For any u ∈ g, we denote by Ru, Ju : g −→ g the endomorphisms of g given
by:

Ruv = Lvu and Juv = ad∗vu

It is easy to check that Ju is a skew-symmetric endomorphism and Ju = 0 if
and only if u ∈ [g, g]⊥.

It follows:

Theorem 1.3.3 ([10]). We have:

(i) For any u, v ∈ g, Luv − Lvu = [u, v]g, i.e. Lu −Ru = adu

(ii) For any u, v, w ∈ g, 〈 Luv, w 〉 + 〈 v, Luw 〉 = 0. This means that, for
any u ∈ g, Lu is skew- symmetric i.e. , L∗u = −Lu.

(iii) For any u ∈ g, Lu = 1
2
(adu − ad∗u)− 1

2
Ju

(iv) For any u ∈ g, Ru = −1
2
(adu + ad∗u)− 1

2
Ju

We denote by K : g× g −→ End(g), the curvature of (G, h) at e. We have,
for any u, v ∈ g,

K(u, v) = L[u,v]g − [Lu, Lv]g.

For any u, v, w, z, K satisfies:

1. K(u, v) = −K(v, u)

2. K(u, v)w +K(v, w) +K(w, u)v = 0 (Bianchi’s identity)

3. 〈 K(u, v)w, z 〉 = −〈 K(u, v)z, w 〉

4. 〈 K(u, v)w, z 〉 = −〈 K(w, z)u, v 〉

Then we have:

Proposition 1.3.4. For any u, v ∈ g,

〈 K(u, v)u, v 〉 = −3

4
|aduv|2 +

1

4
|ad∗uv + ad∗vu|2 −

1

2
〈 aduv, ad∗uv − ad∗vu 〉

− 〈 ad∗uu, ad∗vv 〉 (1.3)

1.3.2 Ricci curvature of the Euclidean Lie algebra of a
Riemannian Lie group

Lemma 1.3.5. Let (G, h) be a Riemannian Lie group. Then the Ricci curva-
ture ric of (G, h) is left invariant. Thus for any left invariant vector field X, Y
and for a ∈ G,

ric(X(a), Y (a)) = ric(X(e), Y (e)).
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It follows that the Ricci curvature of a Riemannian Lie group is entirely
determined by its value at the neutral element.

Definition 1.3.6. The Ricci signature of a Riemannian Lie group is the sig-
nature of the Ricci curvature of the associated inner product on its Lie algebra.

Let (G, h) be a Riemannian Lie group and (g, 〈 , 〉) its Euclidean Lie
algebra. The Ricci curvature at e(neutral element of G) is defined by (see [10])

ric(u, v) = tr(w 7−→ K(u,w)v)) , u, v, w ∈ g.

In order to give an useful formula of ric, we introduce the mean curvature
vector H on g, which is the vector given by:

〈 H, u 〉 = tr(adu), for all u ∈ g.

We denote also B : g× g −→ g the Killing form given by:

B(u, v) = tr(adu ◦ adv) for all u, v ∈ g.

It follows:

Lemma 1.3.7. We have:

1. If τ(u, v) : g −→ g is the endomorphism given by τ(u, v) = K(u,w)v,
then

τ(u, v) = −Rv ◦Ru +Ru.v − [Lu, Rv], u.v = Luv,

2.

ric(u, v) = −1

2
B(u, v)− 1

2
tr(adu ◦ ad∗v)−

1

4
tr(Ju ◦ Jv)−

1

2
(〈 adHu, v 〉

+ 〈 adHv, u 〉), for any u, v ∈ g, (1.4)

1.3.3 Unimodular Lie algebras

Definition 1.3.8. A Lie algebra is called unimodular if trace(adX) = 0, for all
X ∈ g.

Proposition 1.3.9 (see [68]). Let G be a Lie group and g the corresponding
Lie algebra. Then G is unimodular if and only if g is unimodular.

Examples of unimodular Lie algebras are given in [68, 59, 37, 11].

Corollary 1.3.10. Let (G, h) be a Riemannian unimodular Lie group. Then
its Ricci curvature at e is given by:

ric(u, v) = −1

2
B(u, v)− 1

2
tr(adu ◦ ad∗v)−

1

4
tr(Ju ◦ Jv), for any u, v ∈ g. (1.5)
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1.3.4 Nilpotent Lie algebras

The lower(descending) central series of g,

g = C0(g) ⊃ C1(g) ⊃ ... ⊃ Ck(g) ⊃ ...,

is defined by the following ideals
C0(g) = g

Ck(g) = [Ck−1(g), g], for all k ≥ 1.

Definition 1.3.11. A Lie algebra g is called nilpotent if there is an interger k
such that Ck(g) = 0. The smallest interger k such that Ck(g) = 0 is called the
nilindex(or the nilpotency index) of g.

The examples of real nilpotent Lie algebras are giving in [22, 69, 37, 81].
The following important properties of nilpotent Lie algebras are proved

using the famous Engel’s theorem.

Theorem 1.3.12 (see [93, 48, 12, 47]). For a given nilpotent Lie algebra g,
we have:

(a) Z(g) 6= {0},

(b) If h is an ideal in g, then h ∩ Z(g) 6= {0},

(c) codim[g, g] ≥ 2,

(d) For all X ∈ g, adX is nilpotent.

From this follows

Proposition 1.3.13 (see [78]). A connected Lie group G is nilpotent if and
only if its Lie algebra is nilpotent.

Corollary 1.3.14. Let (G, h) be a nilpotent Riemannian Lie group. The for-
mula (1.5) becomes in this case quite simple. For any u, v ∈ g :

ric(u, v) = −1

2
tr(adu ◦ ad∗v)−

1

4
tr(Ju ◦ Jv) = −1

2
〈adu, adv〉1 +

1

4
〈Ju, Jv〉1.

Where 〈 , 〉1 is the Euclidean product on End(g) associated to 〈 , 〉. In partic-
ular, if (e1, . . . , en) is an orthonormal basis of g then:

ric(u, v) = −1

2

∑
i,j

〈[u, ei], ej〉〈[v, ei], ej〉+
1

2

∑
i<j

〈[ei, ej], u〉〈[ei, ej], v〉. (1.6)
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1.4 Survey on Ricci curvature on Lie groups 15

1.3.5 Curvatures of bi-invariant Riemannian metrics on
Lie groups

When the Riemannian metric is bi-invariant, much nicer formulae are obtained
in [10].

Theorem 1.3.15 (see [10] ). Let (G, h) be a Lie goup with a bi-invariant
Riemannian metric. Then,

(a) The Levi-Civita product on g is given by

Lu =
1

2
adu, for all u ∈ g,

(b) The curvature of (G, h) at e is given by

K(u, v) =
1

2
ad[u,v], for all u, v ∈ g,

(c) The Ricci curvature of (G, h) at e is given by

ric(u, v) = −1

4
B(u, v), for all u, v ∈ g.

1.4 Survey on Ricci curvature on Lie groups

In the sequel we give some facts about the signs of Ricci curvature of left-
invariant Riemannian metrics on a Lie group, to show how the choice of left-
invariant Riemannian metrics on a Lie group it is not arbitrary at all.

J. Milnor in [68], gave many topogical and algebraic obstructions for a Lie
group to admit a left-invariant Riemannian metric with a prescribe Ricci cur-
vature. For example, there is a topolocal obstruction for a Lie group to admit
a left-invariant metric with positive Ricci curvature. In fact he proved that
such Lie group must be compact with the finite fundamental group. Theses re-
sults were generalized to homogeneous Riemannian manifolds by Berestovskii
in [80] and Bergery in [5]. In [2], D.V. Alekseevsky and B.N. Kimelfeld showed
that the flatness of Ricci curvature of a left-invariant Riemannian metric on a
Lie group is equivalent to the flatness of this metric. Boucetta, in [10] gave an
algebraic obstruction for a Lie group to admit left-invariant Riemannian met-
ric with nonnegative Ricci curvature. In fact he showed that such Lie group
must be unimodular. Dotti in [27], gave an algebraic obstruction for an uni-
modular solvable Lie group to admit a left-invariant Riemannian metric with
nonpositive Ricci curvature.

In [73], Y. Nikolayevsky and Yu.G. Nikonorov gave some topological and
algebraic obstructions(some mild conditions) on a solvable Lie group to admit
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left-invariant Riemannian metric with negative Ricci curvature. We also have
this general result, formulated in [68] and Boucetta in [10] give a another
version of its proof:

Theorem 1.4.1 (Milnor,[68]). Suppose that the Lie algebra of a Lie group G
is nilpotent but not abelian. Then for any left-invariant Riemannian metric on
G, there exists a direction of strictly negative Ricci curvature and a direction
of strictly positive Ricci curvature.

In [27], Dotti showed that for any unimodular solvable Lie group such that
its derived Lie algebra is not abelian, the Ricci curvaure of any left invariant
Riemannian metric has mixed sign. She obtained the set of all possible Ricci
signatures on the set of Riemannian 2−step solvable unimodular Lie group.

In [68, 55, 56, 20], it is established that for any left-invariant Riemannian
metric of a connected nonunimodular Lie group of dimension ≤ 4, the Ricci
operator has at least two negative eigenvalues. Then this conjecture was for-
mulated in [56]:

Conjecture 2. For any left-invariant Riemannian metric on a nonunimodular
solvable Lie group, its Ricci operator has at least two negative eigenvalues.

This conjecture was confirmed for nonunimodular matabelian Lie groups in
[56], for all nonunimodular solvable Lie groups of dimension ≤ 6 in [17], for all
nonunimodular completely solvable Lie groups and for all non abelian nilpotent
Lie groups in [16], for all nonunimodular Lie groups such that the derived Lie
algebra is 2−step nilpotent of dimension ≤ 6 in [1]. The full generality proof
was obtained in [74] for all nonunimodular solvable Lie groups.

1.5 Lists of nilpotent Lie algebras

We give here the lists of all the noncommutative nilpotent Lie algebras, ob-
tained in [22], [38] and [69] used in this thesis.

Nilpotent Lie algebra of dimension 3

L3,2 = span{e1, e2, e3} with
[e1, e2] = e3.

Nilpotent Lie algebras of dimension 4

L4,2 = span{e1, e2, e3, e4} with

[e1, e2] = e3.
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L4,3 = span{e1, e2, e3, e4} with

[e1, e2] = e3, [e1, e3] = e4.

Nilpotent Lie algebras of dimension 5

Lie algebra g Nonzero commutators
L5,2 = L3,2 ⊕ R2 [e1, e2] = e3
L5,3 = L4,3 ⊕ R [e1, e2] = e3, [e1, e3] = e4

L5,4 [e1, e2] = e5, [e3, e4] = e5
L5,5 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
L5,6 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
L5,7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L5,8 [e1, e2] = e4, [e1, e3] = e5
L5,9 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5

Table.1: List of five-dimensional nilpotent Lie algebras.

Nilpotent Lie algebras of dimension 6

Lie algebra g Nonzero commutators
L6,2 = L5,2 ⊕ R [e1, e2] = e3
L6,3 = L5,3 ⊕ R [e1, e2] = e3, [e1, e3] = e4
L6,4 = L5,4 ⊕ R [e1, e2] = e5, [e3, e4] = e5
L6,5 = L5,5 ⊕ R [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5
L6,6 = L5,6 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5
L6,7 = L5,7 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5
L6,8 = L5,8 ⊕ R [e1, e2] = e4, [e1, e3] = e5
L6,9 = L5,9 ⊕ R [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5

L6,10 [e1, e2] = e3, [e1, e3] = e6, [e4, e5] = e6
L6,11 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6,[e2, e5] = e6
L6,12 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6
L6,13 [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5, [e1, e5] = e6, [e3, e4] = e6
L6,14 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5,

[e2, e5] = e6, [e3, e4] = −e6
L6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e4] = e6

[e1, e5] = e6
L6,16 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6
L6,17 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6
L6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6

Table.2 : ε ∈ {−1, 0, 1}: List of six-dimensional nilpotent Lie algebras.
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Lie algebra g Nonzero commutators
L6,19(ε) [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e3, e5] = εe6
L6,20 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6
L6,21(ε) [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = εe6
L6,22(ε) [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = εe6, [e3, e4] = e5
L6,23 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e5
L6,24(ε) [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = εe6, [e2, e3] = e6, [e2, e4] = e5
L6,25 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6
L6,26 [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6

Table.2 : ε ∈ {−1, 0, 1}: List of six-dimensional nilpotent Lie
algebras(continued).

Nilpotent Lie algebra (12457L1)

The 7-dimensional nilpotent Lie algebra labelled (12457L1) in [38] is given by:

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = −e6, [e1, e6] = e7, [e2, e3] = e5, [e2, e5] = −e6,

[e3, e5] = −e7.

Nilpotent Lie algebra m0(n)

The N-graded filiform n-dimensional Lie algebra m0(n) = span{X1, . . . , Xn}
with the non vanishing Lie brackets

[X1, Xi] = Xi+1, i = 2, . . . , n− 1.
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Chapter Two

Ricci signatures: Some
approaches

In this chapter, we enumerate in a detailed way the results obtained by
many authors to determine all possible Ricci signatures on Lie groups of di-
mension 3 and 4 [68, 18, 55, 56], on nilpotent Lie groups of dimension 5 [58] and
on 2-step nilpotent Lie groups [9]. Except the last case, the method used goes
as follows: using a classification list of Lie algebras, for every metric on a picked
Lie algebra, one built an orthonormal basis in which the constants structure
are described by few parameters (three in dimension 3, six in dimension 4 and
seven in dimension 5). Then one computes the matrix of the Ricci curvature in
this basis and determine its possible signatures using a case-by-case analysis.
In the case of 2-step nilpotent Lie algebras the method is different. It was at
the origin of the approach we develop in the next chapter.

2.1 Ricci signatures of 3-dimensional Rieman-
nian Lie groups

Here we give an account of the methods of Milnor in [68] for unimodular Lie
groups and Chebarykov in [18] for non-unimodular Lie groups.

2.1.1 Milnor’s approach

To study the Ricci curvature of left invariant Riemannian metric on 3-dimensional
unimodular Lie groups, Milnor used the Euclidean cross product as the main
tool to build some orthonormal basis known after as Milnor’s frame.

Let G be a connected 3-dimensional unimodular Lie group with a left-
invariant Riemannian metric, choose an orientation of the Lie algebra g such
that the Euclidean cross product(u×v with u, v ∈ g) is definite. The following
lemma is proved in [68].

Lemma 2.1.1 (see [68]). There exists a unique self-adjoint endomorphism
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L : g −→ g such that,

[u, v]g = L(u× v), for all u, v ∈ g. (2.1)

By choosing an orthonormal basis of eigenvectors of L, we get the following
result which asserts the existence of what will be called later Milnor’s frame.

Theorem 2.1.2 (Milnor, [68]). Let g be an unimodular Lie algebra. For any
〈 , 〉 inner product on g, there exists an oriented 〈 , 〉-orthonormal basis
(e1, e2, e3) such that

L(ei) = λiei, with λ1 ≤ λ2 ≤ λ3. Thus,

[e1, e2]g = λ3e3, [e2, e3]g = λ1e1 and [e3, e1]g = λ2e2.

The three eigenvalues λ1, λ2, λ3 are well defined up to order. However, the
construction is based on a choice of orientation, thus if we reverse the orienta-
tion λ1, λ2, λ3 changed the signs. Let us give now a precise description of the
possible Lie groups according to the signs of λ1, λ2, λ3. By changing signs if
necessary, we can assume that at most one of the constants structure λ1, λ2, λ3
is nonpositive. There are six distinct cases tabulated as follows:

Signs of λ1, λ2, λ3 Associated Lie group Lie algebra
+,+,+ SU(2) or SO(3) su(2)−compact, simple
+,+,- SL(2,R) or O(1, 2) sl(2,R)−noncompact, simple
+,+,0 E(2) e(2)−solvable
+,-,0 E(1, 1) e(1,1)−solvable
+,0,0 Heisenberg group h−nilpotent
0,0,0 R3 R⊕ R⊕ R−commutative

Table.3

With Milnor’s frame at hand, we have:

Theorem 2.1.3 (see [68]). Let g be an unimodular 3-dimensional Lie algebra.
Then the possible signatures of the Ricci operators of all inner products on g

are given in the following table.

Lie algebra g Realizable Ricci signatures
su(2) (0, 0, 3), (0, 2, 1), (2, 0, 1)

sl(2,R) (2, 0, 1), (1, 2, 0)

e(2) (0, 3, 0), (2, 0, 1)

e(1,1) (2, 0, 1), (1, 2, 0)

h−nilpotent (2, 0, 1)

R⊕ R⊕ R−commutative (0, 3, 0)

Table.4
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Proof. In Milnor’ frame (e1, e2, e3) given in Theorem 2.1.2, the Ricci operator
is diagonal, namely,

(ric(ei, ej)) = 2

 µ2µ3 0 0

0 µ3µ1 0

0 0 µ1µ2


with µi = 1

2
(λ1 + λ2 + λ3) − λi. Then, the result follows from a case-by-case

analysis. For example, in the case g = su(2), depending on the values of µ3,
the only realizable Ricci signatures are (0, 0, 3), (0, 2, 1) and (2, 0, 1).

2.1.2 Chebarykov’s approach

To study the Ricci curvature of left invariant Riemannian metric on 3-dimensional
nonunimodular Lie groups, Chebarykov used the Gram-Schmidt orthogonal-
ization process as the main tool to recover G.M. Mubarakzyanov’s classification
of real nonunimodular 3-dimensional metric Lie algebras.

The following table gives the classification of real nonunimodular 3-dimensional
Lie algebras by G.M. Mubarakzyanov (see [81]).

Lie algebras Nonzero cummutation relations
A2 ⊕ A1 [e1, e2] = e2

A3,2 [e1, e3] = e1, [e2, e3] = e1 + e2
A3,3 [e1, e3] = e1, [e2, e3] = e2

Ap3,5, 0 <| p |< 1 [e1, e3] = e1, [e2, e3] = pe2
Ap3,7, 0 < p [e1, e3] = pe1 − e2, [e2, e3] = e1 + pe2

Table.5

Using the Gram-Schmidt orthogonalization process, we have the following
result:

Theorem 2.1.4 (Chebarykov,[18]). Let g be a nonunimodular 3-dimensional
real Lie algebra. For any inner product 〈 , 〉 on g, there exists an 〈 , 〉-
orthonormal basis {f1, f2, f3} such that the non vanishing constants structure
(cki,j) of g in {f1, f2, f3} are given by

Lie algebras g Nonzero constants structure Conditions
A2 ⊕ A1 c21,2 = α, c31,2 = γ α > 0

A3,2 c11,3 = c22,3 = γ, c12,3 = δ γ > 0, δ > 0

A3,3 c11,3 = c22,3 = γ γ > 0

Ap3,5, 0 <| p |< 1 c11,3 = γ, c22,3 = γp, c12,3 = (1− p)δ γ > 0

Ap3,7, 0 < p c11,3 = γ(p+ β), c21,3 = −γδ, c22,3 = γ(p− β), c12,3 = β2γ
γ

γ, δ > 0

Table.6
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By the mean of this basis, we get the following result.

Theorem 2.1.5 (see [18]). Let g be a nonunimodular 3-dimensional Lie alge-
bra. The possible signatures of the Ricci operators of all inner products on g

are given in the following table.

Lie algebras g Realizable Ricci signatures
A2 ⊕ A1 (2, 1, 0), (2, 0, 1)

A3,2 (3, 0, 0), (2, 1, 0), (2, 0, 1)

A3,3 (3, 0, 0)

Ap3,5, 0 < p < 1 (3, 0, 0), (2, 1, 0), (2, 0, 1)

Ap3,5, −1 < p < 0 (2, 0, 1)

Ap3,7, 0 < p (3, 0, 0), (2, 1, 0), (2, 0, 1)

Table.7

Proof. The method here is a case-by-case analysis. For example, if g = Ap3,5
and 〈 , 〉 be any inner product on g, then from Theorem 2.1.4 and a direct
computation one gets that the matrix of Ric is: 1

2
(p− 1)2δ2 − γ2(1 + p) δγ(p− 1) 0

δγ(p− 1) −1
2
(p− 1)2δ2 − γ2(1 + p)p 0

0 0 −1
2
(1− p)2δ2 − γ2(1 + p2)

 .

The coefficient −1
2
(1 − p)2δ2 − γ2(1 + p2) is always negative, thus Ric has at

least one negative eigenvalue. Let denoted by Ric3 , the 2×2−matrix obtained
by deleting the third row and the third column. We have:

tr(Ric3) = −γ2(1 + p)2,

det(Ric3) =
1

4

(
4(1 + p)2pγ4 − 2(1− p)2(1 + p)2γ2δ2 − (1− p)4γ4

)
.

For p > 0, the only realizable Ricci signatures are (3, 0, 0), (2, 1, 0) and (2, 0, 1).
For p < 0, the only realizable Ricci signature is (2, 0, 1).

2.2 Ricci signatures of 4-dimensional Rieman-
nian Lie groups

We give here the description of Kremlev-Nikonorov’s approach, which use Mil-
nor’s frames and Gram-Schmidt as tools to give the G.M. Mubarakzyanov’s
classification of real 4-dimensional metric Lie algebras in [55] , [56] and [81].

2.2.1 Four dimensional unimodular Lie algebras

The following table gives the classification of real unimodular 4-dimensional
Lie algebras by G.M. Mubarakzyanov (see [55] and [81]).
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Lie algebras Nonzero Lie brackets
4A1

A3,1 ⊕ A1 [e2, e3] = e1
A3,4 ⊕ A1 [e1, e3] = e1, [e2, e3] = −e2
A3,6 ⊕ A1 [e1, e3] = −e2, [e2, e3] = e1
A3,8 ⊕ A1 [e1, e2] = −e3, [e3, e1] = e2, [e2, e3] = e1
A3,9 ⊕ A1 [e1, e2] = e3, [e3, e1] = e2, [e2, e3] = e1

A4,1 [e2, e4] = e1, [e3, e4] = e2
A−24,2, [e1, e4] = −2e1, [e2, e4] = e2, [e3, e4] = e2 + e3

Aα,−1−α4,5 , α ∈ (−1,−1/2] [e1, e4] = e1, [e2, e4] = αe2, [e3, e4] = −(1 + α)e3
A−2β,β4,6 , β ∈ (0,∞) [e1, e4] = −2βe1, [e2, e4] = βe2 − e3, [e3, e4] = e2 + βe3

A4,8 [e2, e3] = e1, [e2, e4] = e2, [e3, e4] = −e2
A4,10 [e2, e3] = e1, [e2, e4] = −e3, [e3, e4] = e2

Table .8

2.2.1.1 Four dimensional decomposable unimodular Lie algebras

Using the Milnor’s frames, we have:

Lemma 2.2.1 (see [55]). For an arbitrary inner product 〈 , 〉 on a 4-dimensional
decomposable real unimodular Lie algebra g, there exists an 〈 , 〉-orthonormal
basis in which the nonzero constants structure of g have the form:

c31,2 = a, c41,2 = −am, c12,3 = b, c42,3 = −bk, c21,3 = −c, c41,3 = cl,

where k, l,m ∈ R are arbitrary, a, b, c ∈ R, and a ≤ b ≤ c.

In dependence on the signs of the numbers a, b and c, one can construct
different Lie algebras. All of them are listed in Table.8 which is based on
Milnor’s results on three-dimensional unimodular Lie algebras.

Lie algebra Sign(a), Sign(b), Sign(c)

4A1 0, 0, 0

A3,1 ⊕ A1 0, 0,+

A3,4 ⊕ A1 −, 0,+
A3,6 ⊕ A1 0,+,+

A3,8 ⊕ A1 −,+,+
A3,9 ⊕ A1 +,+,+

Table .9

Thus follows:

Theorem 2.2.2 (see [59]). Let g be an unimodular 4-dimensional decompos-
able Lie algebra. The possible signatures of the Ricci operators of all inner
products on g are:
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Lie algebras g Realizable Ricci signatures
4A1 (2, 1, 0), (0, 4, 0)

A3,1 ⊕ A1 (2, 1, 1)

A3,4 ⊕ A1 (3, 0, 1), (2, 1, 1), (2, 0, 2), (1, 3, 0)

A3,6 ⊕ A1 (3, 0, 1), (2, 1, 1), (2, 0, 2), (0, 4, 0)

A3,8 ⊕ A1 (3, 0, 1), (2, 1, 1), (2, 0, 2), (1, 3, 0)

A3,9 ⊕ A1 (3, 0, 1), (2, 1, 1), (2, 0, 2),(1, 2, 1),
(1, 1, 2), (1, 0, 3), (0, 3, 1), (0, 1, 3)

Table .10

Proof. Let 〈 , 〉 be any inner product on g, from Lemma 2.2.1 and a direct
computations, we get

Ric =
1

2


A clbk ambk −b2k
clbk B amcl −c2l
ambk amcl C −a2m
−b2k −c2l −a2m D

 ,

where

A = −a2m2 − c2l2 + b2 − (a− c)2, B = −a2m2 − b2k2 + c2 − (a− b)2,
C = −c2l2 − b2k2 + a2 − (b− c)2, D = a2m2 + c2l2 + b2k2.

The result follows from a case-by-case analysis. For example if g = A3,6 ⊕ A1,
here a = 0, b > 0, and c > 0. We give the values of parameters k, l,m, b,and c
for which the Ricci signatures are realized.

Ricci signature (b, c, k, l.m)

(3, 0, 1) (1, 1, 1, 0, 0)

(2, 1, 1) (1,
√

2, 1, 0, 0)

(2, 0, 2) (1, 2, 1, 0, 0)

(0, 4, 0) (1, 1, 0, 0, 0)

Table .11

We prove now that these are the only realizable Ricci signatures. The char-
acteristic polynomial of the Ricci operator matrix is:

P (x) = (x− x1)H(x) = (x− x1)(x3 + B̃x+ C̃),

where x1 = −1
2

((b− c)2 + c2l2 + b2k2),

B̃ = −1

4

(
(b2 − c2 − c2l2 + b2k2)2 + b2c2(k2 + 4k2l2 + l2)

)
≤ 0,

and C̃ is an expression depending on the parameters b, c, k, l, and m.
We conclude that x1 ≤ 0 since b > 0 and c > 0. It is obvious that the only

realizable Ricci signature is (0, 4, 0), when x1 = 0.
For x1 < 0, the sum of roots of the polynomial H(x) = x3 + B̃x + C̃

is zero. It is clear that, the only realizable Ricci signature is (1, 3, 0) when
B̃ = C̃ = 0.
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2.2.1.2 Four dimensional indecomposable unimodular Lie algebras

From Gram-Schmidt orthogonalization process, we have:

Lemma 2.2.3 (see [55]). For an arbitrary inner product 〈 , 〉 on a 4-dimensional
indecomposable real unimodular Lie algebra g, there exists a 〈 , 〉-orthonormal
basis in which the nonzero constants structure of Lie algebra g are given in the
following table:

Lie algebra g Constants structure Restrictions
A4,1 c12,4 = a, c13,4 = b, c23,4 = c a > 0, c > 0

A−24,2, c11,4 = −2a, c12,4 = b, c22,4 = a, a > 0, d > 0

c13,4 = c, c23,4 = d, c33,4 = a.

Aα,−1−α4,5 , α ∈ (−1,−1/2] c11,4 = a, c12,4 = b, c22,4 = c, a > 0, c < 0

c13,4 = d, c23,4 = f , c33,4 = −a− c.

A−2β,β4,6 , β ∈ (0,∞) c11,4 = −2a, c12,4 = b, c22,4 = a+ c, a > 0, d < 0, g > 0

c32,4 = d, c13,4 = f , c23,4 = g, c33,4 = −a− c.

A4,8 c12,3 = a, c12,4 = b, c22,4 = c, a > 0, c > 0

c13,4 = d, c23,4 = f , c33,4 = −c.

A4,10 c12,3 = a, c12,4 = b, c32,4 = c, a > 0, c < 0

c13,4 = d, c23,4 = g.

Table .12

Thus follows:

Theorem 2.2.4 (see [59]). Let g be an unimodular 4-dimensional indecom-
posable Lie algebra. Then the possible signatures of the Ricci operators of all
inner products on g are:

Lie algebras g Realizable Ricci signatures
A4,1 (3, 0, 1), (2, 1, 1), (2, 0, 2)

A−24,2 (3, 0, 1), (2, 1, 1), (2, 0, 2)

Aα,−1−α4,5 , α ∈ (−1,−1/2) (3, 0, 1), (2, 1, 1), (2, 0, 2), (1, 3, 0)

A
− 1

2
,− 1

2
4,5 (2, 1, 1), (1, 3, 0)

A−2β,β4,6 , β ∈ (0,∞) (3, 0, 1), (2, 1, 1), (2, 0, 2), (1, 3, 0)

A4,8 (3, 0, 1), (2, 1, 1), (2, 0, 2)

A4,10 (3, 0, 1), (2, 1, 1), (2, 0, 2)

Table .13
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Proof. The result follows from a case-by-case analysis. For example if g = A4,10,
let 〈 , 〉 be any inner product on g, from Lemma 2.2.3 and a direct computation
the Ricci operator matrix Ric has the form

1

2


a2 + b2 + d2 dg bc 0

dg −a2 − b2 − c2 + g2 −bd ad

bc −bd −a2 − b2 + c2 − g2 −ab
0 ad −ab −(g + c)2 − b2 − d2

 .

We give the values of parameters a, b, c, d,and g for which the Ricci signatures
are realized.

Ricci signature (a, b, c, d, g)

(3, 0, 1) (1, 2,−2, 0, 1)

(2, 1, 1) (1, 0,−1, 0, 1)

(2, 0, 2) (1, 0,−2, 0, 1)

Table .13

We prove now that these are the only realizable Ricci signatures. The op-
erator Ric has at least one positive eigenvalue since a2 + b2 + d2 > 0.

Let |g| = |c|, consider the (3×3)−matrix Ric1 resulting from Ric by deleting
the first row and the first column. The characteristic polynomial of the matrix
Ric1 has the form H(x) = x (x+ (a2 + b2 + d2))

2
. Since a > 0, the matrix Ric1

has one zero and two negative eigenvalues, then the matrix Ric has at least two
negative eigenvalues and one nonpositive eigenvalue (see [45, Theorem 4.3.8]).
Thus, the only realizable Ricci signatures in this case are (3, 0, 1) and (2, 1, 1).

Let |g| < |c|, consider the (2× 2)−matrix Ric1,3 obtained from the matrix
Ric by deleting the rows and columns with the numbers 1 and 3, and have the
form

Ric1,3 =
1

2

(
−a2 − b2 − c2 + g2 ad

ad −(g + c)2 − b2 − d2

)
.

This matrix is negative definite. Then matrix Ric has at least one positive and
two negative eigenvalues(see [45, Theorem 4.3.8]). Thus, in this case there is
not others realizable Ricci signatures a part from those given in table .

Let |g| > |c|, consider the (2× 2)−matrix Ric1,2 obtained from the matrix
Ric by deleting the rows and columns with the numbers 1 and 2, and have the
form

Ric1,2 =
1

2

(
−a2 − b2 + c2 − g2 −ab

−ab −(g + c)2 − b2 − d2

)
This matrix is negative definite. Then matrix Ric has at least one positive and
two negative eigenvalues(see [45, Theorem 4.3.8]). Thus, in this case there is
not others realizable Ricci signatures a part from those given in table.
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2.2.2 Four dimensional nonunimodular Lie algebras

The following table gives the classification of real nonunimodular 4-dimensional
Lie algebras by G.M. Mubarakzyanov(see [56] and [81]).

Lie algebras Nonzero cummutation relations
A2 ⊕ 2A1 [e1, e2] = e2

2A2 [e1, e2] = e2, [e3, e4] = e4
A3,2 ⊕ A1 [e1, e3] = e1, [e2, e3] = e1 + e2
A3,3 ⊕ A1 [e1, e3] = e1, [e2, e3] = e2

Aα3,5 ⊕ A1, 0 < |α| < 1 [e1, e3] = e1, [e2, e3] = αe2
Aα3,7 ⊕ A1, α > 0 [e1, e3] = αe1 − e2, [e2, e3] = e1 + αe2

Aα4,2, α 6= 0, α 6= −2 [e1, e4] = αe1, [e2, e4] = e2, [e3, e4] = e2 + e3

A4,3 [e1, e4] = e1, [e3, e4] = e2
A4,4 [e1, e4] = e1, [e2, e4] = e1 + e2, [e3, e4] = e2 + e3

Aα,β4,5 , αβ 6= 0 [e1, e4] = e1, [e2, e4] = αe2, [e3, e4] = βe3
−1 ≤ α ≤ β ≤ 1, α + β 6= 1

Aα,β4,6 , α 6= 0 [e1, e4] = αe1, [e2, e4] = βe2 − e3, [e3, e4] = e2βe3
β ≥ 0, α 6= −2β

A4,7 [e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e2 + e3

Aβ4,9, −1 < β ≤ 1 [e2, e3] = e1, [e1, e4] = (1 + β)e1, [e2, e4] = e2, [e3, e4] = βe3

Aα4,11, α > 0 [e2, e3] = e1, [e1, e4] = 2αe1, [e2, e4] = αe2 − e3, [e3, e4] = e2 + αe3

A4,12 [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1

Table .15

Kremlev and Nikonorov used the set of representative of matrices or the
Gram-Schmidt orthogonalization method to obtain a convenient parametriza-
tion of all inner products on all nonunimodular Lie algebras.Thus follows:

Lemma 2.2.5 (see [56]). For an arbitrary inner product 〈 , 〉 on a 4-dimensional
real nonunimodular Lie algebra g, there exists an 〈 , 〉-orthonormal basis in
which the nonzero constants structure of the Lie algebra g are:
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Lie algebra g constants structure Restrictions
A2 ⊕ 2A1 c21,2 = a, c31,2 = b a > 0, b ≥ 0

2A2 c21,2 = a, c21,3 = b, c41,3 = c, c21,4 = f(a− d) a, g > 0

c41,4 = d, c23,4 = −fg, c43,4 = g

A3,2 ⊕ A1 c11,3 = c22,3 = a, c41,3 = b, c12,3 = c, a, c > 0

c42,3 = d

A3,3 ⊕ A1 c11,3 = c22,3 = a, c42,3 = b a > 0, b ≥ 0

Aα3,5 ⊕ A1, 0 < |α| < 1 c11,3 = a, c41,3 = b, c12,3 = c, c22,3 = aα, a > 0

c42,3 = d

Aα3,7 ⊕ A1, α > 0 c11,3 = αl, c21,3 = −al, c41,3 = bl, c12,3 = l
a
, a, l > 0

c22,3 = αl,c42,3 = cl

Aα4,2, α 6= 0, α 6= −2 c11,4 = αl, c12,4 = a(α− 1)l, c22,4 = l c, l > 0

c13,4 = (b(α− 1)− ac)l, c23,4 = cl, c33,4 = l

A4,3 c11,4 = l, c12,4 = al, c13,4 = bl, c23,4 = cl c, l > 0

A4,4 c11,4 = c22,4 = c33,4 = l, c12,4 = al, a, c > 0

c13,4 = bl, c23,4 = cl l > 0

Aα,β4,5 , αβ 6= 0 c11,4 = l, c12,4 = a(α− 1)l, c22,4 = αl, c23,4 = βl l > 0

c13,4 = (ac(α− 1) + b(β − 1))l, c23,4 = c(α− β)l.
Aα,β4,6 , α 6= 0 c11,4 = αl, c12,4 = al, c22,4 = c33,4 = βl, c, l > 0

c32,4 = − l
c
, c13,4 = bl, c23,4 = cl

A4,7 c11,4 = 2a, c12,3 = b, c12,4 = c, c22,4 = a, a, b > 0

c13,4 = d, c23,4 = f , c33,4 = a f > 0

Aβ4,9, −1 < β ≤ 1 c11,4 = a(β + 1), c12,3 = b, c12,4 = c, c22,4 = a, a, b > 0

c13,4 = d, c23,4 = f(1− be), c33,4 = αβ

Aα4,11, α > 0 c11,4 = 2aα, c12,3 = b, c12,4 = c, c22,4 = aα, a, b > 0

c32,4 = −ad, c13,4 = f , c23,4 = a
d
, c33,4 = aα d > 0

A4,12 c11,3 = c22,3 = a, c11,4 = c22,4 = b, a, d > 0

c21,4 = c, c12,4 = d, c13,4 = f , c23,4 = g c < 0

Table.16

Thus follows:

Theorem 2.2.6 (see [56]). Let g be an nonunimodular 4-dimensional inde-
composable Lie algebra. Then the possible signatures of the Ricci operators of
all inner products on g are:
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Lie algebras g Realizable Ricci signatures
A2 ⊕ 2A1 (2, 2, 0), (2, 1, 1)

2A2 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A3,2 ⊕ A1 (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A3,3 ⊕ A1 (3, 1, 0), (3, 0, 1)

Aα3,5 ⊕ A1, α ∈ (−1, 0) (3, 0, 1), (2, 1, 1), (2, 0, 2)

Aα3,5 ⊕ A1, α ∈ (0, 1) (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aα3,7 ⊕ A1, α > 0 (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aα4,2, α < 0, α 6= −2 (3, 0, 1), (2, 1, 1), (2, 0, 2)

Aα4,2, α > 0, α 6= 1 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A1
4,2 (0, 4, 0), (3, 1, 0), (3, 0, 1)

A4,3 (3, 0, 1), (2, 1, 1), (2, 0, 2)

A4,4 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aα,α4,5 , α ∈ [−1,−1
2
) (3, 0, 1)

Aα,α4,5 , α ∈ (−1
2
, 0) (2, 0, 2)

Aα,α4,5 , α ∈ [−1, 0) (3, 0, 1)

Aα,α4,5 , α ∈ (0, 1) (0, 4, 0), (3, 1, 0), (3, 0, 1)

Aα,14,5 , α ∈ (0, 1) (0, 4, 0), (3, 1, 0), (3, 0, 1)

A1,1
4,5 (0, 4, 0)

Aα,β4,5 , α ∈ [−1, 0) (3, 0, 1), (2, 1, 1), (2, 0, 2)

Aα,β4,5 , α ∈ (0, 1), α 6= β (3, 0, 1), (2, 1, 1), (2, 0, 2)

Aα,β4,6 , α < 0, β > 0, α 6= −2β (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aα,β4,6 , α > 0, β > 0 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aα,04,6 (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A4,7 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aβ4,9, β ∈ (−1,−1
2
) (3, 0, 1), (2, 1, 1), (2, 0, 2)

A
− 1

2
4,9 (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Aβ4,9, −1 < β ∈ (−1
2
, 1) (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A1
4,9 (0, 4, 0), (3, 1, 0), (3, 0, 1)

Aα4,11 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

A4,12 (0, 4, 0), (3, 1, 0), (3, 0, 1), (2, 2, 0), (2, 1, 1), (2, 0, 2)

Table .17

Proof. The result follows from a case-by-case analysis. For example if g = Aβ4,9,
let 〈 , 〉 be any inner product on g, from Lemma 2.2.5 and a direct computation
the Ricci operator matrix 2Ric has the form

b2 + c2 + d2 − 4a2(1 + β)2 −acβ + df(1− β)− cl −d(a+ l) 0

−acβ + df(1− β)− cl −2al − b2 − c2 + f 2(1− β)2 m bd

−d(a+ l) m k −bc
0 bd −bc −r

 ,
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where l = 2a(1 + β) > 0, k = −4a2β(1 + β)− b2 − d2 − f 2(1− β)2,
m = −cd−af(1−β)2−fl(1−β), r = 4a2(β2+β+1)+c2+d2+f 2(1−β)2.

From [56, Theorem 3], Ric has at least two negative eigenvalues.
The case β = 1

The matrix of Ricci operator Ric has the form

1

2


b2 + c2 + d2 − 16a2 −5ac −5d 0

−5ac −8a2 − b2 − c2 −cd bd

−5ad −cd −8a2 − b2 − d2 −bc
0 bd −bc −12a2 − c2 − d2

 .

The submatrix Ric1, that produced from Ric by deleting of the first row and
the first column, is negative definite. Therefore, the matrix Ric has at least
three negative eigenvalues (see [45, Theorem 4.3.8]) . We give the values of
parameters a, b, c, and d at which the only Ricci signatures are realized in this
case.

Ricci signature (a, b, c, d)

(4, 0, 0) (1, 1, 0, 0)

(3, 1, 0) (1, 4, 0, 0)

(3, 0, 1) (1, 6, 0, 0)

Table .18

The case β ∈ (−1
2
, 1)

Let p(t) be the characteristic polynomial of the matrix 2Ric with c = d = 0.
If a = 1 and b = 2(1 + β), then

p(t) = t(t+ 4(β2 + β + 1) + f 2(β − 1)2)× (t2 + 12(1 + β)2t− (1− β)4f 4

− (5β2 + 6β + 5)(1− β)2f 2 + 16(2 + β)(1 + 2β)(1 + β)2).

For suitable values of f , the Ricci signatures are (3, 1, 0), (2, 1, 1) and (2, 2, 0).
If a = 1 and b = 3(1 + β), then

p(t) = (t− 5(1 + β)2)(t+ 4(β2 + β + 1) + f 2(1− β)2)× (t2 + 22(1 + β)2t− (1− β)4f 4

− (5β2 + 6β + 5)(1− β)2f 2 + (13 + 9β)(9 + 13β)(1 + β)2).

For suitable values of f , the Ricci signatures are (3, 0, 1) and (2, 0, 2).
If a = b = 1 and f = 0, then

p(t) = (t+ (2β + 3)(2β + 1))(t+ 4(β2 + β + 1)(t+ (2β + 1)2)(t+ 5 + 4β).

For suitable value of f , the Ricci signature is (4, 0, 0).
The case β = −1

2

From [57, lemma 2], it is proved that the Ricci operator Ric is non-positive
defined if the Ricci signature is (2, 2, 0).
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If c = f = 0, the matrix of Ricci operator Ric has the form

1

2


b2 + d2 − 16a2 0 −2ad 0

0 −2a2 − b2 0 bd

−2ad 0 a2 − b2 − d2 0

0 bd 0 −3a2 − d2

 .

Consider two of its submatrices(
b2 + d2 − 16a2 −2ad

−2ad a2 − b2 − d2

)
and

(
−2a2 − b2 bd

bd −3a2 − d2

)
.

The first one has zero trace, hence, it has the signature (0, 0) for b = a and
d = 0 or the signature (−,+) otherwise. The second submatrix is negative
defined. Therefore, Ric may have have only signature (3, 0, 1) and (2, 2, 0).

If c = d = 0 and b = 2a, then

Ric =
1

2
diag

(
3a2,

(
−6a2 + 9

4
f 2 −15

4
af

−15
4
af −3a2 − 9

4
f 2

)
,−3a2 − 9

4
f 2

)
.

For some suitable a and f , the signatures (3, 0, 1) and (2, 2, 0) are realized, since
the trace of the depicted (2× 2)−submatrix is negative. Then for β = −1

2
, the

only realizable Ricci signatures are (3, 0, 1), (2, 2, 0), (2, 1, 1), and (2, 0, 2).

The case β ∈ (−1,−1
2
)

From [57, lemma 2], it is proved that the Ricci operator Ric can not have any
of the signature (4, 0, 0), (3, 1, 0) and (2, 2, 0).

If c = d = 0 and b = 2a, then

Ric =
1

2
diag

(
−4a2β(2 + β), A,−4a2(1 + β + β2)− f 2(1− β)2

)
where

A =

(
−4a2(2 + β) + f 2(1− β)2 −af(3 + β)(1− β)

−af(3 + β)(1− β) −4a2(1 + β + β2)− f 2(1− β)2

)

The trace of tr(A) is negative and det(A) can have any sign for suitable a and
f. Therefore, for β ∈ (−1,−1

2
) the only realizable Ricci signatures are (3, 0, 1),

(2, 1, 1) and (2, 0, 2).

2.3 Ricci signatures of nilpotent Lie groups

We describe the results of Boucetta, which give the Ricci signatures of 2-
step nilpotent Lie groups regardless their dimension in [9] and Kremlev, which
solved the problem for five dimensional nilpotent Lie groups in [57].
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2.3.1 Boucetta’s approach

Recall that a real Lie algebra g is said to be a 2-step nilpotent if its derived
ideal [g, g] is nontrivial and contained in the center Z(g). Let (g, 〈 , 〉) be
an Euclidean 2-step nilpotent Lie algebra of dimension n. Then, we have the
following orthogonal splitting:

g = Z(g) ∩ [g, g]⊕
(
[g, g]⊥ ∩ Z(g)

)
⊕
(

[g, g]⊥ ∩
(
[g, g]⊥ ∩ Z(g)

)⊥) (2.2)

= [g, g]⊕
(
[g, g]⊥ ∩ Z(g)

)
⊕
(

[g, g]⊥ ∩
(
[g, g]⊥ ∩ Z(g)

)⊥) (2.3)

From [68, Lemma 2.1, Lemma 2.3 ], the following result holds:

Theorem 2.3.1 (see [9]). Let (g, 〈 , 〉) be an Euclidean 2-step nilpotent Lie
algebra of dimension n. Set p = dimZ(g) and r = dim[g, g]. Then there ex-
ists an 〈 , 〉-orthonormal basis (e1, ..., er) of [g, g], an 〈 , 〉-orthonormal basis
(hr+1, ..., hp−r) of [g, g]⊥ ∩ Z(g), an 〈 , 〉−orthonormal basis (gp+1, ..., gn) of
[g, g]⊥ ∩

(
[g, g]⊥ ∩ Z(g)

)⊥ and two families of real numbers 0 < µ1 ≤ ... ≤ µr
and 0 < λ1 ≤ ... ≤ λr such that non vanishing entries in the matrix of Ricci
curvature ric in the basis B = (e1, ..., er;hr+1, ..., hp−r; gp+1, ..., gn) are

ric(ei, ei) = µi and ric(gj, gj) = −λj, i = 1, ..., r, j = p+ 1, ..., n.

Then follows

Corollary 2.3.2. For any inner product 〈 , 〉 on a 2-step nilpotent Lie algebra
g of dimension n. Then its associated Ricci signature is (n− p, p− r, r). Thus,
the Ricci signature is independent of the choice of the inner product.

2.3.2 Kremlev’s approach

The following table give the classification of real nonunimodular 5-dimensional
nilpotent Lie algebras by G.M. Mubarakzyanov (see [81]).

Lie algebras Nonzero cummuation relations
5A1

A3,1 ⊕ 2A1 [e2, e3] = e1
A4,1 ⊕ A1 [e2, e4] = e1, [e3, e4] = e2

A5,1 [e3, e5] = e1, [e4, e5] = e2 Table.19

Aα5,2 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3
Aα5,3 [e3, e4] = e2, [e3, e5] = e1, [e4, e5] = e3
Aα5,4 [e2, e4] = e1, [e3, e5] = e1
Aα5,5 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2
Aα5,6 [e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3
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From [71], we have:

Lemma 2.3.3 (see [71]). The following list contains all (up to isomorphism)
noncommutative nilpotent Lie algebras of dimension 5, with the nonzero con-
stants structure in a canonical orthonormal basis for each.

Lie algebra Structure constants Restrictions
N 5

1 (ε, σ) c51,2 = ε, c53,4 = σ ε ≥ σ > 0

N 5
1 (ε, σ, υ, γ, ρ) c31,2 = ε, c21,3 = b, c51,2 = υ, c51,4 = σ ε > 0, σ > 0, ρ > 0

c52,3 = ρ υ ≥ 0, γ ≥ 0

N 5
1 (ε, δ, τ, σ, υ, γ) c31,2 = ε, c41,2 = τ , c51,2 = υ ε > 0, δ > 0, σ > 0

c41,3 = δ, c51,3 = γ, c51,4 = σ τ ≥ 0(τ = 0⇒ γ ≥ 0)

N 5
1 (ε, δ, τ, σ, υ, γ, ρ) c31,2 = ε, c41,2 = τ , c51,2 = υ ε > 0, δ > 0, σ > 0, ρ > 0

c41,3 = δ, c51,3 = γ, c51,4 = σ, c52,3 = ρ τ ≥ 0(τ = 0⇒ γ ≥ 0)

N 5
2 (δ, σ) c41,2 = δ, c51,3 = σ δ ≥ σ > 0

N 5
2 (ε, τ, υ, γ) c31,2 = ε, c41,2 = τ , c51,2 = υ, ε > 0, γ > 0,

c41,3 = γ τ ≥ 0, υ ≥ 0

N 5
2 (ε, τ, γ) c31,2 = ε, c41,2 = τ , c41,3 = γ, ε > 0, γ > 0,

c52,3 = γ τ ≥ 0

N 5
2 (ε, τ, υ, γ, ρ) c31,2 = ε, c41,2 = τ , c51,2 = υ, ε > 0, γ > ρ > 0,

c41,3 = γ, c52,3 = ρ τ ≥ 0, υ ≥ 0

N 5
3 (ε) c31,2 = ε ε > 0

Table .20

Thus follows

Theorem 2.3.4. Let g be a 5-dimensional noncommutative nilpotent Lie al-
gebra. Then the possible signatures of the Ricci operators of all inner products
on g are:
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Lie algebras g Realizable Ricci signatures
A3,1 ⊕ 2A1 (2, 2, 1)

A4,1 ⊕ A1 (3, 1, 1), (3, 0, 2), (2, 2, 1), (2, 1, 2)

A5,1 (3, 0, 2)

A5,2 (4, 0, 1), (3, 1, 1), (3, 0, 2), (2, 2, 1), (2, 1, 2), (2, 0, 3)

A5,3 (3, 0, 2), (2, 1, 2), (2, 0, 3)

A5,4 (4, 0, 1)

A5,5 (4, 0, 1), (3, 1, 1), (3, 0, 2)

A5,6 (4, 0, 1), (3, 1, 1), (3, 0, 2), (2, 2, 1), (2, 1, 2), (2, 0, 3)

Table .21

Proof. The result follows from a case-by-case analysis. For example if g =

A4,1 ⊕ A1, let 〈 , 〉 be any inner product on g, from Lemma 2.3.3 and a direct
computation the Ricci operator matrix Ric has the form

1

2


−(ε2 + τ 2 + υ2 + γ2) 0 0 0 0

0 −(ε2 + τ 2 + υ2) −τγ 0 0

0 −τγ ε2 − γ2 ετ ευ

0 0 ετ τ 2 + γ2 τυ

0 0 ευ τυ υ2

 .

We give the values of parameters ε, τ, υ,and γ for which the Ricci signatures
are realized.

Ricci signature (ε, τ, υ, γ)

(3, 1, 1) (1, 0, 0, 2)

(3, 0, 2) (1, 0, 1, 1)

(2, 2, 1) (1, 0, 0, 1)

(2, 1, 2) (2, 0, 0, 1)

Table .22

We prove now that these are the only realizable Ricci signatures. The (2×
2)−matrix Ric3,4,5 obtained from the matrix Ric by deleting the rows and
columns with the same numbers 3 , 4 and 5 have the form

Ric3,4,5 = −1

2

(
ε2 + τ 2 + υ2 + γ2 0

0 ε2 + τ 2 + υ2

)

with ε > 0, γ > 0, τ ≥ 0, υ ≥ 0. This matrix is negative definite. Then matrix
Ric has at least two negative eigenvalues(see [45, Theorem 4.3.8]). The (2 ×
2)−matrix Ric1,2,3 obtained from the matrix Ric by deleting the rows and
columns with the same numbers 1 , 2 and 3 have the form

Ric1,2,3 =
1

2

(
τ 2 + γ2 τυ

τυ υ2

)
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with γ > 0, τ ≥ 0, υ ≥ 0. For υ > 0,this matrix is positive definite, then Ric

has at least two positive eigenvalues(see [45, Theorem 4.3.8]).
For υ = 0, the matrix (2×2)−matrix Ric1,2,3 has the signature (0,+), then

Ric has at least one positive eigenvalue and it is also clear that Ric has at least
one null eigenvalue.

At last, consider the (4 × 4−)matrix Ric1 obtained from the matrix Ric

by deleting the row and column with the same number 1. Let p(t) be the
characteristic polynomial of the matrix Ric1, then

p(t) = t4 + B̃t2 + C̃t+ D̃.

with D̃ = υ4γ4 + ε2γ4υ2 ≥ 0.

Thus, the signatures of the table are the only realizable Ricci signatures on
g = A4,1 ⊕ A1.

Remark 2.3.5. For every left-invariant Riemannian metrics on three-dimensional
unimodular Lie groups, Milnor([68]) constructed certain orthonormal bases of
the corresponding metric Lie algebras in which the constants structure are de-
scribed by at most three parameters and investigate Ricci signatures. He was
able to identify amount 10 potential signatures candidates, the realizable ones.
Such bases are nowadays called the Milnor’s frames are powerful tools. Some
generalizations have been known: Chebarykov([18]) studied three-dimensional
non-unimodular Lie groups, the constants structure are described by at most
three parameters and investigate Ricci signatures. He was able to identify
amount 10 potential signatures candidates, the realizable ones. Kremlev and
Nikonorov([55, 56]), studied four-dimensional Lie groups, the constants struc-
ture are described by at most six parameters and investigate Ricci signatures.
He was able to identify amount 15 potential signatures candidates, the realizable
ones. Nikitenko([71]), studied five-dimensional nilpotent Lie groups, the con-
stants structure are described by at most seven parameters and Kremlev([58])
investigated Ricci signatures and was able to identify amount 21 potential sig-
natures candidates, the realizable ones. In [42], a general procedure to construct
Milnor’s frames theoretically on any Lie group is given, but in most cases the
number of parameters that describe the constants structure is too large then
investigating Ricci signatures is almost impossible.
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Chapter Three

The signature of the Ricci
curvature of left-invariant

Riemannian metrics on
nilpotent Lie groups

Let (G, h) be a nilpotent Lie group endowed with a left invariant Rieman-
nian metric, g its Euclidean Lie algebra and Z(g) the center of g. By using an
orthonormal basis adapted to the splitting g = (Z(g) ∩ [g, g])⊕O+ ⊕ (Z(g) ∩
[g, g]⊥) ⊕ O−, where O+ (resp. O−) is the orthogonal of Z(g) ∩ [g, g] in [g, g]

(resp. is the orthogonal of Z(g)∩ [g, g]⊥ in [g, g]⊥), we show that the signature
of the Ricci operator of (G, h) is determined by the dimensions of the vector
spaces Z(g) ∩ [g, g], Z(g) ∩ [g, g]⊥ and the signature of a symmetric matrix of
order dim[g, g] − dim(Z(g) ∩ [g, g]). This permits to associate to G a subset
Sign(g) of N3 depending only on the Lie algebra structure, easy to compute
and such that, for any left invariant Riemannian metric on G, the signature of
its Ricci operator belongs to Sign(g). We show also that for any nilpotent Lie
group of dimension less or equal to 6, Sign(g) is actually the set of signatures
of the Ricci operators of all left invariant Riemannian metrics on G. We give
also some general results which support the conjecture that the last result is
true in any dimension. All these results are obtained in [23].

3.1 Reduction of the Ricci operator of a Rie-
mannian Lie group and Ricci signature un-
derestimate

In this section, Throughout this chapter, we will use the following conven-
tion. The signature of a symmetric operator A on an Euclidean vector space
V is the sequence (s−, s0, s+) where s+ =

∑
λi>0 dim ker(J − λiIV ), s− =
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∑
λi<0 dim ker(J −λiIV ) and s0 = dim ker J , where λ1, . . . , λr are the eigenval-

ues of J and IV the identity operator of V .
Let g be a nilpotent n-dimensional Lie algebra, Z(g) its center and [g, g]

its derived ideal. Note first that, another formulation of Corollary 2.3.2, which
first appeared in [9] and which solves Problem 1 for 2-step nilpotent Lie groups
is:

Corollary 3.1.1. Let G be a 2-step nilpotent Lie group. Then, for any left-
invariant Riemannian metric on G, the signature of its Ricci curvature is given
by

(s−, s0, s+) = (dim g− dimZ(g), dimZ(g)− dim[g, g], dim[g, g]).

Now, we introduce Sign(g). Let us put d = dim[g, g], k = dimZ(g) and
` = dim(Z(g) ∩ [g, g]). We associate to g the subset of N3

Sign(g) =

(n− d− p+m−, p+m0, `+m+) :


max(k − d, 0) ≤ p ≤ k − `

m− +m0 +m+ = d− `


(3.1)

For instance, if g is 2-step nilpotent then [g, g] ⊂ Z(g) and hence

Sign(g) = {(n− k, k − d, d)} .

If g is a filiform nilpotent Lie algebra then Z(g) ⊂ [g, g], dimZ(g) = 1,
dim[g, g] = n− 2 and hence

Sign(g) =
{

(2 +m−,m0, 1 +m+), m− +m0 +m+ = n− 3
}
.

The signature of the Ricci operator of a left invariant Riemannian metric
on Lie group of dimension n belongs to {(n−, n0, n+) : n− + n0 + n+ = n}
whose cardinal is (n+1)(n+2)

2
.

We now consider the Lie subalgebra of left invariant Killing vector fields
on G given by

K(〈 , 〉) = {u ∈ g, adu + ad∗u = 0} .

It contains obviously the center Z(g) of g. Put K+(〈 , 〉) = K(〈 , 〉) ∩ [g, g]

and K−(〈 , 〉) = K(〈 , 〉) ∩ [g, g]⊥. Denote by O+ (resp. O−) the orthogonal
of K+(〈 , 〉) in [g, g] (resp. the orthogonal of K−(〈 , 〉) in [g, g]⊥). Then

g = K+(〈 , 〉)⊕O+ ⊕K−(〈 , 〉)⊕O−. (3.2)

We call this splitting characteristic splitting of (g, 〈 , 〉) and any basis of g of
the form B1 ∪ B2 ∪ B3 ∪ B4 (where B1, B2, B3 and B4 are, respectively, bases
of K+(〈 , 〉), O+, K−(〈 , 〉), O− ) is called characteristic basis.

We now prove a key lemma that will play a crucial role in the proofs of our
main results.
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Lemma 3.1.2. With the hypothesis and the notations above, we have:

(i) K−(〈 , 〉) ⊂ ker(ric) and if K+(〈 , 〉) 6= {0} then the restriction of ric to
K+(〈 , 〉) is positive definite.

(ii) If O− 6= {0}, then the restriction of ric to O− is negative definite and
ric(K+(〈 , 〉), O−) = 0.

(iii) For any characteristic basis B of g, the matrix of the Ricci tensor in B
is given by

Mat(ric,B) =
1

2


Z V 0 0

V t X 0 W

0 0 0 0

0 W t 0 Y

 ,
and the Ricci signature of (g, 〈 , 〉) is given by

(s−, s0, s+) = (dim[g, g]⊥−dimK−(〈 , 〉)+m−, dimK−(〈 , 〉)+m0, dimK+(〈 , 〉)+m+),

(3.3)
where (m−,m0,m+) is the signature of the symmetric matrix

R(ric,B) = X − V tZ−1V −WY −1W t. (3.4)

Proof. First remark that, for any u ∈ g, Ju is skew-symmetric and Ju = 0

iff u ∈ [g, g]⊥. With this remark in mind, by using (1.4), we get for any u ∈
K+(〈 , 〉), ric(u, u) = −1

4
tr(J2

u) ≥ 0 and ric(u, u) = 0 if and only if Ju = 0. This
shows that the restriction of ric to K+(〈 , 〉) is definite positive. On the other
hand, for any u ∈ O−, by using (1.4) we get ric(u, u) = −1

4
tr((adu+ad∗u)

2) ≤ 0

and ric(u, u) = 0 iff u ∈ K(〈 , 〉). This shows that the restriction of ric to
O− is negative definite. We have also, for any u ∈ K−(〈 , 〉) and any v ∈ g,
ric(u, v) = 0. Finally, for any u ∈ K+(〈 , 〉) and any v ∈ O−, ric(u, v) = 0 this
completes the proof of (i)− (ii).

In any characteristic basis B of g, according to the results shown in (i)−(ii),
the matrix R(ric,B) has the desired form. Put

Q =


In1 −Z−1V 0 0

0 In2 0 0

0 0 In3 0

0 −Y −1W t 0 In4

 .
We can check easily that

Qt Mat(ric,B) Q =
1

2


Z 0 0 0

0 R(ric,B) 0 0

0 0 0 0

0 0 0 Y

 .
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This formula combined with the results in (i) − (ii) give the desired formula
for the signature of ric.

Definition 3.1.3. Let (G, h) be a Riemannian Lie group and (g, 〈 , 〉) its
associated Euclidean Lie algebra.

• We call (r−, r0, r+) = (dim[g, g]⊥−dimK−(〈 , 〉), dimK−(〈 , 〉), dimK+(〈 , 〉))
the Ricci signature underestimate of (g, 〈 , 〉).

• For any characteristic basis B of g, we call R(ric,B) defined by (3.4)
reduced matrix of the Ricci curvature in B. It is a symmetric (s × s)-
matrix with s = dim[g, g]− dimK+(〈 , 〉).

Note that the order of R(ric,B) is zero iff [g, g] ⊂ K(〈 , 〉). In this case
K(〈 , 〉) = [g, g]⊕K−(〈 , 〉) and we get:

Corollary 3.1.4. Let (G, h) be a Riemannian Lie group such that [g, g] ⊂
K(〈 , 〉). Then the signature of the Ricci curvature of h is given by

(s−, s0, s+) = (dimg− dimK(〈 , 〉), dimK(〈 , 〉)− dim[g, g], dim[g, g]).

Remark 3.1.5. The case where the Riemannian metric is bi-invariant (g =

K(〈 , 〉)) is a particular case of the situation in Corollary 3.1.4 and in this
case Z(g) = [g, g]⊥ and hence the signature is given by

(s−, s0, s+) = (0, dimZ(g), dim[g, g]).

Moreover, since a skew-symmetric nilpotent endomorphism must vanishes
then K(〈 , 〉) = Z(g). This simple fact combined with the result of Lemma
3.1.2 will have surprising consequences.

3.2 Main result 1

Theorem 3.2.1. Let (G, h) be a nilpotent Lie group endowed with a left in-
variant Riemannian metric and g its Lie algebra. Then the signature of the
Ricci operator of (G, h) belongs to Sign(g).

Proof. Let (G, h) be a nilpotent Riemannian Lie group. We distinguish two
cases.

• Z(g) ⊂ [g, g]. In this case, it is obvious that the Ricci signature underes-
timate of (g, 〈 , 〉) is given by

(r−, r0, r+) = (dimg− dim[g, g], 0, dimZ(g)).
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On the other hand, by using (3.1), one can see easily that

Sign(g) =
{

(r− +m−, r0 +m0, r+ +m+), m− +m0 +m+ = dim[g, g]− dimZ(g)
}
.

According to Lemma 3.1.2, the Ricci signature of h belongs to Sign(g)

and we obtain the result in this case. Corollary 3.2.2 follows from the fact
that r− = dimg − dim[g, g] ≥ 2. In a nilpotent Lie algebra the derived
ideal is always of codimension greater than 2.

• Z(g) * [g, g]. Choose a complement I of Z(g) ∩ [g, g] in Z(g) and a
complement U of [g, g] ⊕ I in g. Thus g = g1 ⊕ I where g1 = [g, g] ⊕ U
is an ideal of g and I is a central ideal. Moreover, Z(g1) = Z(g) ∩ [g, g]

and [g, g] = [g1, g1]. By using the same notations as in (3.1), we get that
the Ricci signature underestimate of (g, 〈 , 〉) is given by

(r−, r0, r+) = (n− d− p, p, `), p = dim(Z(g) ∩ [g, g]⊥).

We have obviously p ≤ dimI = dimZ(g)− dim(Z(g) ∩ [g, g]) and

p = dimZ(g)+dimg−dim[g, g]−dim(Z(g)+[g, g]⊥) ≥ dimZ(g)−dim[g, g].

According to Lemma 3.1.2, the Ricci signature of h belongs to Sign(g)

and we obtain the result in this case. Corollary 3.2.2 follows from the
fact that

r− = dimg− dim[g, g]− dim(Z(g) ∩ [g, g]⊥)

= dimg1 − dim[g1, g1] + dimI − dim(Z(g) ∩ [g, g]⊥)

= dimg1 − dim[g1, g1] + dimZ(g)− dim(Z(g) ∩ [g, g])− dim(Z(g) ∩ [g, g]⊥)

≥ dimg1 − dim[g1, g1] ≥ 2.

As an immediate consequence of this result, if G is 2-step nilpotent then any
left invariant Riemannian metric on G has the signature of its Ricci operator
equal to (dim g− dimZ(g), dimZ(g)− dim[g, g], dim[g, g]). On the other hand,
Theorem 3.2.1 has the following corollary which gives a new proof in in [10] to
a result proved first in [68].

Corollary 3.2.2. Let (G, h) be a noncommutative nilpotent Lie group endowed
with a left invariant Riemannian metric and g its Lie algebra. Then the Ricci
operator of (G, h) has at least two negative eigenvalues.
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3.3 Main result 2

Recall that a basis (X1, . . . , Xn) of a nilpotent Lie algebra g is called nice if:

1. For any i, j with i 6= j, [Xi, Xj] = 0 or there exists k such that [Xi, Xj] =

Ck
ijXk with Ck

ij 6= 0,

2. If [Xi, Xj] = Ck
ijXk and [Xs, Xr] = Ck

srXk with Ck
ij 6= 0 and Ck

sr 6= 0 then
{i, j} ∩ {s, r} = ∅.

This notion appeared first in [64]. One of the most important property of a nice
basis B is that any Euclidean inner product on g for which B is orthogonal has
its Ricci curvature diagonal in B. The proof of Theorem 3.5.1 is based mainly
on the fact that all the nilpotent Lie algebras of dimension less or equal to
6 have a nice basis except one. It is also known (see [72]) that any filiform
N-graded Lie algebra(see [69]) has a nice basis.

Theorem 3.3.1. Let G be a nilpotent Lie group such that its Lie algebra g

admits a nice basis and Z(g) ⊂ [g, g] with dim[g, g] − dimZ(g) = 1. Then for
any (s−, s0, s+) ∈ Sign(g) there exists a left invariant Riemannian metric on
G for which the Ricci operator has signature (s−, s0, s+).

Proof. We have obviously Sign(g) = {(n−d+m−,m0, d−1+m+) : m−+m0+

m+ = 1}, where d = dim[g, g] and n = dimg. Note first that we can choose a
nice basis B = (Xi)

n
i=1 where Z(g) = span{Xi}d−1i=1 and [g, g] = span{Xi}di=1. In-

deed, suppose that B = (Xi)
n
i=1 with [g, g] = span{Xi}di=1. Let z =

∑d
i=1 aiXi ∈

Z(g). Suppose that there exists ai 6= 0 and Xi /∈ Z(g). Then there exists
` ∈ {1, . . . , n} such that [X`, Xi] 6= 0. So we get

∑d
j=1 aj[X`, Xj] = 0. From the

properties of a nice basis we deduce that {[X`, Xj], j = 1, . . . , d, [X`, Xj] 6= 0}
is a linearly independent family and hence ai = 0. This shows that {Xi, Xi ∈
Z(g)} is basis of Z(g).

We consider the Euclidean product 〈 , 〉 on g for which B is orthogonal
and ai = 〈Xi, Xi〉. It is obvious that B is a characteristic basis of (g, 〈 , 〉)
and it is also nice of g so R(ric,B) is diagonal and hence R(ric,B) is also
nice. According to Lemma 3.1.2, the reduced matrix has order 1 and is given
by R(ric,B) = (2ric(Xd, Xd)). Moreover, the Ricci signature of (g, 〈 , 〉) is
given by (n− d+m−,m0, d− 1 +m+) where (m−,m0,m+) is the signature of
R(ric,B). To complete the proof, we will show that we can choose suitable ai
so that ric(Xd, Xd) can be either zero, positive or negative.

Denote by Ck
ij the constants structure of the Lie bracket in B. The basis

(ei)
n
i=1 = ( 1√

ai
Xi)

n
i=1 is an orthonormal basis of g and from (1.6)

2ric(Xd, Xd) =
∑
i<j

(Cd
ij)

2a2d
aiaj

−
∑
i,j

(Cj
id)

2aj
ai

. (3.5)
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Note that for any (i, j), such that [Xi, Xj] = Cd
ijXd with Cd

ij 6= 0, i 6= d

and j 6= d. Indeed, if i = d, we have [Xd, Xj] = Cd
djXd and hence Xd is an

eigenvector of adXj
with the real non zero eigenvalue −Cd

di which is impossible
since adXj

is nilpotent. We have also that if [Xd, Xi] = Cj
diXj with Cj

di 6= 0

then i 6= d and j 6= d. So

ric(Xd, Xd) = αa2d − β.

Now since Xd ∈ [g, g] \ Z(g), α > 0, β > 0 and both α and β depend only on
ai with i 6= d. So we can choose ad such that ric(Xd, Xd) = 0, > 0 or < 0. This
completes the proof.

This Theorem 3.3.1 together with Theorem 3.2.1 solve Problem 1 for a
large class of nilpotent Lie groups. Indeed, in the list of indecomposable seven-
dimensional nilpotent Lie algebras given in [38] there are more than 35 ones
satisfying the hypothesis of Theorem 3.3.1. On the other hand, we will point
out the difficulty one can face when trying to generalize Theorem 3.3.1 when
dim[g, g] − dimZ(g) ≥ 2. We will also give a method using the inverse func-
tion theorem to overcome this difficulty. Although, we have not yet succeeded
to show that this method works in the general case, we will use it success-
fully in the proof of Theorem 3.5.1. We refer to this method as inverse func-
tion theorem trick. One can ask naturally if this theorem is still true when
dim[g, g] − dimZ(g) ≥ 2. By looking to the proof given here, one can con-
jecture that the answer is true, it suffices to solve some systems of polyno-
mial equations. This can be very difficult. To be precise, we will point out
the difficulty one can face when trying to generalize Theorem 3.3.1 when
dim[g, g] − dimZ(g) ≥ 2. We will also give a method to overcome this dif-
ficulty.

3.4 Inverse function theorem trick

Suppose that g is a nilpotent Lie algebra having a nice basis B and satisfying
Z(g) ⊂ [g, g]. Write B = (Xi)

n
i=1 where (Xi)

`
i=1 is a basis of Z(g) and (Xi)

d
i=1

is a basis of [g, g]. We have obviously

Sign(g) =
{

(n− d+m−,m0, `+m+) : m− +m0 +m+ = d− `
}
.

We consider the Euclidean product 〈 , 〉 on g for which B is orthogonal
and ai = 〈Xi, Xi〉. It is clear that B is a characteristic basis of (g, 〈 , 〉) and
it is also nice so R(ric,B) is diagonal. According to Lemma 3.1.2, the reduced
matrix has order d− ` and is given by

R(ric,B) = diag(2ric(X`+1, X`+1), . . . , 2ric(Xd, Xd)).
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Moreover, the signature is given by (n−d+m−,m0, `+m+) where (m−,m0,m+)

is the signature of R(ric,B). According to (3.5), for any i = ` + 1, . . . , d, we
can write in a unique way

2ric(Xi, Xi) =
Fi−`(a1, . . . , an)

an1 . . . ani

,

where Fi−` is a homogeneous polynomial on (a1, . . . , an). So to generalize The-
orem 3.3.1 when d − ` ≥ 2, it suffices to find suitable values of (a1, . . . , an)

such that (Fi(a1, . . . , an))d−`i=1 have all the possible signs. It is very difficult in
the general case. We give now a situation where we can conclude.

Suppose that there exists (α1, . . . , αn) such that Fj(α1, . . . , αn) = 0 for
j = 1, . . . , d− ` and define

F : {(x1, . . . , xd−`) ∈ Rd−`, xi > 0} −→ Rd−` by :

F (x1, . . . , xd−`) = (Fj(α1, . . . , α`, x1, . . . , xd−`, αd+1, . . . , αn), j = 1, . . . d− `.

We have F (α`+1, . . . , αd) = 0 and if the differential DF (α`+1, . . . , αd) is in-
vertible we can apply the inverse function theorem and hence F realizes a
diffeomorphism from an open set centred at (α`+1, . . . , αd) into an open ball
centred in (0, , . . . , 0). So, for a suitable choice of ai, R(ric,B) can have all the
possible signatures.

So far we have shown that Theorem 3.3.1 is true when dim[g, g]−dimZ(g) ≥
2 if there exists (α1, . . . , αn) with α1 > 0, . . . , αn > 0 satisfying Fj(α1, . . . , αn) =

0 for j = 1, . . . , d− ` and detDF (α`+1, . . . , αd) 6= 0.

Definition 3.4.1. We call nice a nilpotent Lie algebra g with Z(g) ⊂ [g, g] and
having a nice basis for which there exists (α1, . . . , αn) with α1 > 0, . . . , αn > 0

satisfying Fj(α1, . . . , αn) = 0 for j = 1, . . . , d−` and detDF (α`+1, . . . , αd) 6= 0.

So, according to our study above, we have the following result.

Theorem 3.4.2. Let G be a nilpotent Lie group such that its Lie algebra
g is nice. Then for any (s−, s0, s+) ∈ Sign(g) there exists a left invariant
Riemannian metric on G such that its Ricci signature is (s−, s0, s+).

Remark 3.4.3. It seems reasonable to conjecture that any nilpotent Lie algebra
g with Z(g) ⊂ [g, g] and having a nice basis is actually nice.

We give now two examples of nice nilpotent Lie algebras.

Example 3.4.4. 1. We consider the 7-dimensional nilpotent Lie algebra
labelled (12457L1) in [38] given by

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = −e6, [e1, e6] = e7, [e2, e3] = e5, [e2, e5] = −e6,

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.



3.4 Inverse function theorem trick 45

[e3, e5] = −e7.

We have Z(g) = {e7} ⊂ [g, g] = span{e3, e4, e5, e6, e7} and B = (e7, e3, e4, e5, e6, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, . . . , 6 for the metric for
which B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23
a1a2

− a4
a1
− a5
a2
− a7
a5

=
a23a5 − a2a4a5 − a1a25 − a1a2a7

a1a2a5
=
F1(a1, . . . , a7)

a1a2a5
,

2ric(e4, e4) =
a24
a1a3

− a6
a1

=
a24 − a3a6
a1a3

=
F2(a1, . . . , a7)

a1a3
,

2ric(e5, e5) =
a25
a2a3

− a6
a2
− a7
a3

=
a25 − a3a6 − a2a7

a2a3
=
F3(a1, . . . , a7)

a2a3
,

2ric(e6, e6) =
a26
a2a5

+
a26
a1a4

− a7
a1

=
(a1a4 + a2a5)a

2
6 − a2a4a5a7

a1a2a4a5
=
F4(a1, . . . , a7)

a1a2a4a5
.

We consider a polynomial ring Q[a1, a2, a3, ..., a7] and the ideal I gener-
ated by {F1, F2, F3, F4}. We take a lexicographic order > with a1 > a2 >

...a6 > a7 of monomial order. Then by the aid of computer, we see that
a Gröbner basis for the ideal I contains the polynomial h(a1, . . . , a7) =

−a24+a3a6. Thus, for a3 = a4 = a6 = 1, the sequence
(

7
240
, 1127
1200

, 1, 1, 7
5
, 1, 1152

1127

)
is a solution of the equations Fi(α1, . . . , α7) = 0 for i = 1, . . . , 4 and sat-
isfies detDF (α3, α4, α5, α6) 6= 0 and hence this Lie algebra is nice.

2. We consider the N-graded filiform n-dimensional Lie algebra m0(n) =

span{X1, . . . , Xn} with the non vanishing Lie brackets [X1, Xi] = Xi+1,
i = 2, . . . , n− 1. We have

Sign(m0(n)) =
{

(2 +m−,m0, 1 +m+), m− +m0 +m+ = n− 3
}
.

Let 〈 , 〉 be the Euclidean inner product on m0(n) for which (Xi)
n
i=1 is an

orthogonal basis with 〈Xi, Xi〉 = ai. The basis B = (Xn, X3, . . . , Xn−1, X1, X2)

is a characteristic basis of 〈 , 〉 and R(ric,B) = diag(2ric(Xi, Xi))
n−1
i=3 .

By using (3.5), we get for any i = 3, . . . , n− 1

2ric(Xi, Xi) =
a2i

a1ai−1
− ai+1

a1
=
a2i − ai−1ai+1

a1ai−1
=
Fi−2(a1, . . . , an)

a1ai−1
.

It is obvious that Fi(1, . . . , 1) = 0 and detDF (1, . . . , 1) 6= 0 and hence
m0(n) is nice.

The results above, the tools we will use to establish them and the examples
we will give support the following conjecture.

Conjecture 1. Let G be a nilpotent Lie group and g = TeG its Lie algebra.
Then, for any (s−, s0, s+) ∈ Sign(g), there exists a left invariant Riemannian
metric on G for which the Ricci operator has signature (s−, s0, s+).
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Theorem 3.2.1 gives a candidate to be the set of all the signatures of the Ricci
operators of all left invariant Riemannian metrics on a nilpotent Lie group.
Indeed, our second main result together with Theorem 3.2.1 solve Problem 1
completely for nilpotent Lie groups up to dimension 6.

Theorem 3.5.1. Let G be a nilpotent Lie group of dimension ≤ 6 and g its
Lie algebra. Then, for any (s−, s0, s+) ∈ Sign(g), there exists a left invariant
Riemannian metric on G for which the Ricci operator has signature (s−, s0, s+).

According to Theorems 3.2.1 and 3.5.1, it reduces to computing Sign(g)

for any nilpotent Lie algebra of dimension less or equal to 6. We will use the
classification of 5-dimensional and 6-dimensional nilpotent Lie algebras given
by Willem A. de Graaf in [22].

Proof. The proof goes as follows. There are, up to an isomorphism, 44 non
abelian nilpotent Lie algebras of dimension less or equal to 6: 1 of dimension
3, 2 of dimension 4, 8 of dimension 5 and 33 of dimension 6 (see Tables 1
and 2). Among these Lie algebras, 12 are 2-step nilpotent and we can apply
Corollary 3.1.1, 10 satisfy the hypothesis of Theorem 3.3.1 and 15 are nice in
the sense of Definition 3.4.1 and we can apply Theorem 3.4.2. At the end, we
are left with 7 Lie algebras needing each of them a special treatment.

The Lie algebras L3,2, L4,2, L5,2, L5,4, L5,8, L6,2, L6,4 L6,8, L6,22(ε), L6,26 are
obviously 2-step nilpotent and we can apply Corollary 3.1.1.

The Lie algebras L4,3, L5,5, L5,9, L6,10, L6,19(0), L6,23, L6,24(ε) and L6,25

satisfy clearly the hypothesis of Theorem 3.3.1.
We will show now that the Lie algebras L5,6, L5,7, L6,12, L6,13, L6,14, L6,15,

L6,16, L6,17, L6,18, L6,19(ε 6= 0), L6,20, L6,21(0) and L6,21(ε 6= 0) are nice in the
sense of Definition 3.4.1 so that we can apply Theorem 3.3.1.

• The Lie algebra L5,6 .

We have L5,6 = span{e1, . . . , e5} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5

We have Z(g) = {e5} ⊂ [g, g] = span{e3, e4, e5} and B = (e5, e3, e4, e1, e2) is
a nice basis. Let compute 2ric(ei, ei) for i = 3, 4 for the metric for which B is
orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4 − a1a5

a1a2
=
F1(a1, . . . , a5)

a1a2
,

2ric(e4, e4) =
a24 − a3a5
a1a3

=
F2(a1, . . . , a5)

a1a3
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We consider a polynomial ring Q[a1, . . . , a5] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a5 of monomial
order. Then by the aid of computer, we see that a Gröbner basis for the ideal I
contains the polynomial h1(a3, a4, a5) = −a24+a3a5. Thus, for a3 = a4 = a5 = 1,
the sequence

(
1
2
, 1
2
, 1, 1, 1

)
is a solution of the equations Fi(α1, . . . , α5) = 0 for

i = 1, 2 and satisfies detDF (α3, α4) 6= 0 and hence this Lie algebra is nice.

• The Lie algebra L5,7 .

We have L5,7 = span{e1, . . . , e5} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5

We have Z(g) = {e5} ⊂ [g, g] = span{e3, e4, e5} and B = (e5, e3, e4, e1, e2) is
a nice basis. Let compute 2ric(ei, ei) for i = 3, 4 for the metric for which B is
orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4
a1a2

=
F1(a1, . . . , a5)

a1a2
,

2ric(e4, e4) =
a24 − a3a5
a1a3

=
F2(a1, . . . , a5)

a1a3

We consider a polynomial ring Q[a1, . . . , a5] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a5 of monomial
order. Then by the aid of computer, we see that a Gröbner basis for the ideal I
contains the polynomial h2(a3, a4, a5) = −a24+a3a5. Thus, for a3 = a4 = a5 = 1,
the sequence (1, 1, 1, 1, 1) is a solution of the equations Fi(α1, . . . , α5) = 0 for
i = 1, 2 and satisfies detDF (α3, α4) 6= 0 and hence this Lie algebra is nice.

• The Lie algebra L6,12 .

We have L6,12 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e5] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e6} and B = (e6, e3, e4, e1, e2, e5)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4 for the metric for which B
is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4
a1a2

=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a24 − a3a6
a1a3

=
F2(a1, . . . , a6)

a1a3

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a6 of monomial
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order. Then by the aid of computer, we see that a Gröbner basis for the ideal I
contains the polynomial h3(a3, a4, a6) = −a24+a3a6. Thus, for a3 = a4 = a6 = 1,
the sequence (1, 1, 1, 1, 1) is a solution of the equations Fi(α1, . . . , α6) = 0 for
i = 1, 2 and satisfies detDF (α3, α4) 6= 0 and hence this Lie algebra is nice.

• The Lie algebra L6,13 .

We have L6,13 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5, [e1, e5] = e6, [e3, e4] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e5, e6} and B = (e6, e3, e5, e1, e2, e4)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 5 for the metric for which B
is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) = (
a4a

2
3 − a2a4a5 − a1a2a6

a1a2a4
=
F1(a1, . . . , a6)

a1a2a4
,

2ric(e4, e4) =
(a2a4 + a1a3)a

2
5 − a2a3a4a6

a1a2a3a4
=
F2(a1, . . . , a6)

a1a2a3a4

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a6 of monomial
order. Then by the aid of computer, we see that a Gröbner basis for the ideal
I contains the polynomial h4(a1, . . . , a6) = −a4a23 + a2a4a5 + a1a2a6. Thus,
for a1 = a3 = a4 = a5 = 1, the sequence (1, 2, 2, 1, 1, 1) is a solution of the
equations Fi(α1, . . . , α6) = 0 for i = 1, 2 and satisfies detDF (α3, α5) 6= 0 and
hence this Lie algebra is nice.

• The Lie algebra L6,14 .

We have L6,14 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e5] = e6, [e3, e4] = −e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) = (
a4a

2
3 − a2a24 − a1a4a5 − a1a2a6

a1a2a4
=
F1(a1, . . . , a6)

a1a2a4
,

2ric(e4, e4) =
a24 − a3a5 − a1a6

a1a3
=
F2(a1, . . . , a6)

a1a3

2ric(e5, e5) =
(a2a3 + a1a4)a

2
5 − a1a3a4a6

a1a2a3a4
=
F2(a1, . . . , a6)

a1a2a3a4
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We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of mono-
mial order. Then by the aid of computer, we see that a Gröbner basis for the
ideal I contains the polynomial h5(a1, a3, a4, a5, a6) = −a24 +a3a5 +a1a6. Thus,
for a3 = 1, a4 = 3, a5 = 5, the sequence

(
27
200
, 3
40
, 1, 3, 5, 800

27

)
is a solution of the

equations Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0

and hence this Lie algebra is nice.

• The Lie algebra L6,15 .

We have L6,15 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e4] = e6 [e1, e5] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4 − a1a5

a1a2
=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a2a

2
4 − a2a3a5 − a1a3a6

a1a2a3
=
F2(a1, . . . , a6)

a1a2a3

2ric(e5, e5) =
(a2a3 + a1a4)a

2
5 − a2a3a4a6

a1a2a3a4
=
F2(a1, . . . , a6)

a1a2a3a4

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of
monomial order. Then by the aid of computer, we see that a Gröbner basis for
the ideal I contains the polynomial h6(a3, . . . , a6) = −a23a4a5 + a33a6. Thus, for
a4 = 2, a5 = a6 = 1, the sequence

(
4
3
, 4
3
, 2, 2, 1, 1

)
is a solution of the equations

Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0 and hence
this Lie algebra is nice.

• The Lie algebra L6,16 .

We have L6,16 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
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B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a4a

2
3 − a2a24 − a1a2a6

a1a2a4
=
F1(a1, . . . , a6)

a1a2a4
,

2ric(e4, e4) =
a24 − a3a5 − a1a6

a1a2a3
=
F2(a1, . . . , a6)

a1a2a3

2ric(e5, e5) =
a2a

2
5 − a1a4a6
a1a2a4

=
F3(a1, . . . , a6)

a1a2a4

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of
monomial order. Then by the aid of computer, we see that a Gröbner basis for
the ideal I contains the polynomial h7(a1, a3, a4, a5, a6) = −a24 + a3a5 + a1a6.
Thus, for a4 = a5 = a6 = 1, the sequence

(
1
3
, 1
3
, 2
3
, 1, 1, 1

)
is a solution of the

equations Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0

and hence this Lie algebra is nice.

• The Lie algebra L6,17 .

We have L6,17 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4 − a1a6

a1a2
=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a24 − a3a5
a1a3

=
F2(a1, . . . , a6)

a1a3

2ric(e5, e5) =
a25 − a4a6
a1a4

=
F2(a1, . . . , a6)

a1a4

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of
monomial order. Then by the aid of computer, we see that a Gröbner basis
for the ideal I contains the polynomial h8(a3, a4, a5) = −a24 + a3a5 . Thus, for
a3 = a4 = a5 = 1, the sequence

(
1
2
, 1
2
, 1, 1, 1, 1

)
is a solution of the equations

Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0 and hence
this Lie algebra is nice.

• The Lie algebra L6,18 .
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We have L6,18 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4
a1a2

=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a24 − a3a5
a1a3

=
F2(a1, . . . , a6)

a1a3

2ric(e5, e5) =
a25 − a4a6
a1a4

=
F2(a1, . . . , a6)

a1a4

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of
monomial order. Then by the aid of computer, we see that a Gröbner basis
for the ideal I contains the polynomial h9(a4, a5, a6) = −a25 + a4a6. Thus, for
a4 = a5 = a6 = 1, the sequence (1, 1, 1, 1, 1, 1) is a solution of the equations
Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0 and hence
this Lie algebra is nice.

• The Lie algebra L6,19(ε 6= 0) .

We have L6,19(ε 6= 0) = span{e1, . . . , e6} with the non vanishing Lie brack-
ets

[e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e3, e5] = εe6

We have Z(g) = {e6} ⊂ [g, g] = span{e4, e5, e6} and B = (e6, e4, e5, e1, e2, e3)

is a nice basis. Let compute 2ric(ei, ei) for i = 4, 5 for the metric for which B
is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e4, e4) =
a24 − a1a6
a1a2

=
F1(a1, . . . , a6)

a1a2
,

2ric(e5, e5) =
a25 − a1a6
a1a3

=
F2(a1, . . . , a6)

a1a3

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2, F3}. We take a lexicographic order > with a1 > a2 > ... > a6 of mono-
mial order. Then by the aid of computer, we see that a Gröbner basis for the
ideal I contains the polynomial h10(a4, a5) = −a25 + a24. Thus, for a4 = a5 = 1,
the sequence (1, 1, 1, 1, 1, 1) is a solution of the equations Fi(α1, . . . , α6) = 0

for i = 1, 2, 3 and satisfies detDF (α3, α4, α5) 6= 0 and hence this Lie algebra
is nice.
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• The Lie algebra L6,20 .

We have L6,20 = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6

We have Z(g) = {e6} ⊂ [g, g] = span{e4, e5, e6} and B = (e6, e4, e5, e1, e2, e3)

is a nice basis. Let compute 2ric(ei, ei) for i = 4, 5 for the metric for which B
is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e4, e4) =
a24 − a1a6
a1a2

=
F1(a1, . . . , a6)

a1a2
,

2ric(e5, e5) =
a25 − a3a6
a1a3

=
F2(a1, . . . , a6)

a1a3

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a6 of mono-
mial order. Then by the aid of computer, we see that a Gröbner basis for
the ideal I contains the polynomial h11(a3, a5, a6) = −a25 + a3a6. Thus, for
a3 = a5 = a6 = 1, the sequence (1, 1, 1, 1, 1, 1) is a solution of the equations
Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α4, α5) 6= 0 and hence
this Lie algebra is nice.

• The Lie algebra L6,21(0) .

We have L6,21(0) = span{e1, . . . , e6} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6

We have Z(g) = {e5, e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e5, e6, e3, e4, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4 for the metric for which B
is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a2a4 − a1a5

a1a2
=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a24 − a3a6
a1a3

=
F2(a1, . . . , a6)

a1a3

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a6 of mono-
mial order. Then by the aid of computer, we see that a Gröbner basis for
the ideal I contains the polynomial h11(a3, a4, a6) = −a24 + a3a6. Thus, for
a3 = 2, a5 = a6 = 1, the sequence

(
2,
√

2, 2,
√

2, 1, 1
)
is a solution of the equa-

tions Fi(α1, . . . , α6) = 0 for i = 1, 2, 3 and satisfies detDF (α4, α5) 6= 0 and
hence this Lie algebra is nice.
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• The Lie algebra L6,21(ε 6= 0) .

We have L6,21(ε 6= 0) = span{e1, . . . , e6} with the non vanishing Lie brack-
ets

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = εe6

We have Z(g) = {e6} ⊂ [g, g] = span{e3, e4, e5, e6} and B = (e6, e3, e4, e5, e1, e2)

is a nice basis. Let compute 2ric(ei, ei) for i = 3, 4, 5 for the metric for which
B is orthogonal with 〈ei, ei〉 = ai. By applying (3.5), we get

2ric(e3, e3) =
a23 − a1a4 − a2a5

a1a2
=
F1(a1, . . . , a6)

a1a2
,

2ric(e4, e4) =
a24 − a3a6
a1a3

=
F1(a1, . . . , a6)

a1a3
,

2ric(e5, e5) =
a25 − a3a6
a2a3

=
F2(a1, . . . , a6)

a2a3

We consider a polynomial ring Q[a1, . . . , a6] and the ideal I generated by
{F1, F2}. We take a lexicographic order > with a1 > a2 > ... > a6 of monomial
order. Then by the aid of computer, we see that a Gröbner basis for the ideal
I contains the polynomial h12(a4, a5) = a24 − a25. Thus, for a3 = a4 = a5 = 1,
the sequence

(
1
2
, 1
2
, 1, 1, 1, 1

)
is a solution of the equations Fi(α1, . . . , α6) = 0

for i = 1, 2, 3 and satisfies detDF (α4, α5) 6= 0 and hence this Lie algebra is
nice.

To complete the proof, we treat now the seven remaining Lie algebras using
a case by case approach.

• The Lie algebra L6,11 .

This is the only Lie algebra in the list which has no nice basis. Its center is
contained in its derived ideal. We have L6,11 = span{e1, . . . , e6} with the non
vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e6, [e2, e5] = e6

and Sign(g) = {(3 +m−,m0, 1 +m+),m− +m0 +m+ = 2}. We consider the
Euclidean inner product 〈 , 〉 on L6,11 such that B = (e6, e3, e4, e1, e2, e5) is
orthogonal with ai = 〈ei, ei〉. It is obvious that B is an orthogonal characteristic
basis and, according to Lemma 3.1.2, the signature of 〈 , 〉 is (3 +m−,m0, 1 +

m+) where (m−,m0,m+) is the signature of the characteristic matrix R(ric,B).
Now a direct computation using (1.6) and (3.4) gives

R(ric,B) =

(
a23−a2a4
a1a2

0

0
a24−a3a6
a1a3

)
.
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If we take a1 = a2 = a3 = a4 = a5 = a6 = 1 we get R(ric,B) = 0 and
we can use the inverse function theorem trick. So, for a suitable choice of ai,
R(ric,B) can have all the possible signatures which prove the theorem for L6,11.

• The Lie algebra L5,3.

We have L5,3 = span{e1, . . . , e5} with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4,

and Sign(g) = {(2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)}. In this case, the
parameter p in (3.1) has two values p = 0 or 1, so to realize the signatures in
Sign(g), we will consider two types of Euclidean inner products on L5,3. The
first ones are those satisfying dim(Z(g) ∩ [g, g]⊥) = 1 and the second ones are
those satisfying dim(Z(g) ∩ [g, g]⊥) = 0.

For the first type, consider the Euclidean inner product 〈 , 〉 on L5,3 for
which B = (e4, e3, e5, e1, e2) is orthogonal with ai = 〈ei, ei〉. Then B is a char-
acteristic basis for 〈 , 〉 and it is also nice. Then according to Lemma 3.1.2 the
Ricci signature of 〈 , 〉 is (2 +m−, 1 +m0, 1 +m+) where (m−,m0,m+) is the
signature of R(ric,B). Now a direct computation using (3.5) gives R(ric,B) =

(2iric(e3, e3)) =
(
a23−a2a4
a1a2

)
and, for suitable values of the ai, the Ricci signa-

tures of 〈 , 〉 are (2, 1, 2), (2, 2, 1) or (3, 1, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5) = (e4, e3, e5+

e3 + e1, e1, e2). The non vanishing Lie brackets in this basis are

[f2, f3] = −f1, [f2, f4] = −f1, [f3, f4] = −f1, [f3, f5] = f2, [f4, f5] = f2.

Consider the Euclidean inner product 〈 , 〉 on L5,3 for which B is orthogonal
and ai = 〈fi, fi〉. We have chosen B and 〈 , 〉 such that Z(g) ∩ [g, g]⊥ = {0}.
Then B is a characteristic basis for 〈 , 〉. Then according to Lemma 3.1.2
the Ricci signature of 〈 , 〉 is (3 +m−,m0, 1 +m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the first case
because B is not a nice basis and the computation of R(ric,B), which is by the
way a (1×1)-matrix, is complicated according to formula (3.4). We don’t need
to give the general expression of R(ric,B), its value when a1 = a4 = a5 = 1

and a3 = 2 will suffice to our purpose. We get

R(ric,B) =

(
12a42 + 6a32 + 9a22 − a2 − 3

4(2a22 + a2 + 2)

)
.

It is clear that we can choose a2 such that the signature of 〈 , 〉 is (3, 0, 2) or
(4, 0, 1). This completes the proof for L5,3.
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• The Lie algebra L6,3.

The treatment is similar to L5,3 with a slight difference, the parameter
p takes 1 or 2. We have L6,3 = span{e1, . . . , e6} with the non vanishing Lie
brackets

[e1, e2] = e3, [e1, e3] = e4,

and Sign(g) = {(2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)}.
For the first type, consider the Euclidean inner product 〈 , 〉 on L6,3 for

which B = (e4, e3, e5, e6, e1, e2) is orthogonal with ai = 〈ei, ei〉 and dim(Z(g) ∩
[g, g]⊥) = 2. Then B is a characteristic basis for 〈 , 〉 and it is also nice. Then
according to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (2+m−, 2+m0, 1+m+)

where (m−,m0,m+) is the signature of R(ric,B). Now a direct computation
using (3.5) gives R(ric,B) = (2ric(e3, e3)) =

(
a23−a2a4
a1a2

)
and, for suitable values

of the ai, the Ricci signatures of 〈 , 〉 are (2, 2, 2), (2, 3, 1) or (3, 2, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) =

(e4, e3, e5, e1, e2, e6 + e3 + e1). The non vanishing Lie brackets in this basis are

[f2, f4] = −f1, [f2, f6] = −f1, [f4, f5] = f2, [f4, f6] = f1, [f5, f6] = −f2.

Consider the Euclidean inner product 〈 , 〉 on L6,3 for which B is orthogonal
and ai = 〈fi, fi〉. We have chosen B and 〈 , 〉 such that dim(Z(g)∩ [g, g]⊥) = 1.
Then B is a characteristic basis for 〈 , 〉. Then according to Lemma 3.1.2 the
Ricci signature of 〈 , 〉 is (3 +m−, 1 +m0, 1 +m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the first
case because B is not a nice basis and the computation of R(ric,B), which is
by the way a (1 × 1)-matrix, is complicated according to formula (3.4). We
don’t need to give the general expression of R(ric,B), its value when a1 = a3 =

a4 = a5 = a6 = 1 will suffice to our purpose. We get

R(ric,B) =

(
−4a52 + 2a32 + 3a2 − 2

1− a2 − 2a32

)
.

It is clear that we can choose a2 such that the signature of 〈 , 〉 is (3, 1, 2) or
(4, 1, 1). This completes the proof for L6,3.

• The Lie algebra L6,5.

The treatment is similar to L5,3. We have L6,5 = span{e1, . . . , e6} with the
non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5

and Sign(g) = {(3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)}.
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For the first type, consider the Euclidean inner product 〈 , 〉 on L6,5 for
which B = (e5, e3, e6, e1, e2, e4) is orthogonal with ai = 〈ei, ei〉 and dim(Z(g) ∩
[g, g]⊥) = 1. Then B is a characteristic basis for 〈 , 〉 and it is also nice. Then
according to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (3+m−, 1+m0, 1+m+)

where (m−,m0,m+) is the signature of R(ric,B). Now a direct computation
using (3.5) gives R(ric,B) = (2ric(e3, e3)) =

(
a23−a2a5
a1a2

)
and, for suitable values

of the ai, the Ricci signatures of 〈 , 〉 are (3, 1, 2), (3, 2, 1) or (4, 1, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) =

(e5, e3, e1, e2, e4, e6 + e3 + e1). The non vanishing Lie brackets in this basis are

[f2, f3] = −f1, [f2, f6] = −f1, [f3, f4] = f2, [f3, f6] = f1, [f4, f5] = f1, [f4, f6] = −f2.

Consider the Euclidean inner product 〈 , 〉 on L6,5 for which B is orthogonal
and ai = 〈fi, fi〉. We have chosen B and 〈 , 〉 such that Z(g) ∩ [g, g]⊥ = {0}.
Then B is a characteristic basis for 〈 , 〉. Then according to Lemma 3.1.2 the
Ricci signature of 〈 , 〉 is (4 + m−,m0, 1 + m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the first
case because B is not a nice basis and the computation of R(ric,B), which is
by the way a (1 × 1)-matrix, is complicated according to formula (3.4). We
don’t need to give the general expression of R(ric,B), its value when a1 = a3 =

a4 = a5 = a6 = 1 will suffice to our purpose. We get

R(ric,B) =

(
4a62 + 6a52 + 6a42 − a32 − 3a22 − 3a2 − 1

a2(2a32 + 3a32 + 2a2 + 1)

)
.

It is clear that we can choose a2 such that the signature of 〈 , 〉 is (4, 0, 2) or
(5, 0, 1). This completes the proof for L6,5.

• The Lie algebra L6,9.

The treatment is similar to L5,3 and L6,5. We have L6,9 = span{e1, . . . , e6}
with the non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

and Sign(g) = {(2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)}.
For the first type, consider the Euclidean inner product 〈 , 〉 on L6,9 for

which B = (e5, e4, e3, e6, e1, e2) is orthogonal with ai = 〈ei, ei〉 and dim(Z(g) ∩
[g, g]⊥) = 1. Then B is a characteristic basis for 〈 , 〉 and it is also nice. Then
according to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (2+m−, 1+m0, 2+m+)

where (m−,m0,m+) is the signature of R(ric,B). Now a direct computation
using (3.5) gives R(ric,B) = (2ric(e3, e3)) =

(
a23−a2(a4+a5)

a1a2

)
and, for suitable

values of the ai, the Ricci signatures of 〈 , 〉 are (2, 1, 3), (2, 2, 2) or (3, 1, 2).
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For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) =

(e5, e4, e3, e1, e2, e6 + e3 + e1). The non vanishing Lie brackets in this basis are

[f3, f4] = −f2, [f3, f5] = −f1, [f3, f6] = −f2, [f4, f5] = f3, [f4, f6] = f2,

[f5, f6] = f1 − f3.

Consider the Euclidean inner product 〈 , 〉 on L6,9 for which B is orthogonal
and ai = 〈fi, fi〉. We have chosen B and 〈 , 〉 such that Z(g) ∩ [g, g]⊥ = {0}.
Then B is a characteristic basis for 〈 , 〉. Then according to Lemma 3.1.2 the
Ricci signature of 〈 , 〉 is (3 + m−,m0, 2 + m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the first
case because B is not a nice basis and the computation of R(ric,B), which is
by the way a (1 × 1)-matrix, is complicated according to formula (3.4). We
don’t need to give the general expression of R(ric,B), its value when a1 = a2 =

a3 = a5 = a6 = 1 will suffice to our purpose. We get

R(ric,B) =

(
12− a4 − 35a24
2(8a4 + 3)a4

)
.

It is clear that we can choose a4 such that the signature of 〈 , 〉 is (3, 0, 3) or
(4, 0, 2). This completes the proof for L6,9.

• The Lie algebra L6,6.

The situation here is different from the precedent cases. We still have two
types of Euclidean products(p ∈ {0, 1}) but the order of the reduced matrix of
the Ricci curvature is 2. We have g = span{e1, . . . , e6} with the non vanishing
Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5

Sign(g) = {(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)} .
For the first type, consider the Euclidean inner product 〈 , 〉 on L6,6 for

which B = (e5, e3, e4, e6, e1, e2) is orthogonal with ai = 〈ei, ei〉 and dim(Z(g) ∩
[g, g]⊥) = 1. Then B is a characteristic basis for 〈 , 〉 and it is also nice. Then
according to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (2+m−, 1+m0, 1+m+)

where (m−,m0,m+) is the signature of R(ric,B) = diag(2ric(e3, e3), 2ric(e4, e4)).
Now a direct computation using (1.6) gives

2ric(e3, e3) =
a23 − a2a4 − a1a5

a1a2
and 2ric(e4, e4) =

a24 − a3a5
a1a3

.

If we take a1 = 6, a2 = 5, a3 = 4, a4 = 2, a5 = a6 = 1, we get R(ric,B) = 0 and
we can apply the inversion theorem trick to get that for a suitable choice of
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the ai the Ricci signature of 〈 , 〉 is (2, 1, 3), (2, 2, 2) ,(2, 3, 1), (3, 1, 2), (3, 2, 1)

or (4, 1, 1).
For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) and the

Euclidean inner product 〈 , 〉 on L6,6 for which B is orthogonal and ai = 〈fi, fi〉.
We choose B and 〈 , 〉 such that Z(g) ∩ [g, g]⊥ = {0}.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3). The non vanishing
Lie brackets in this basis are

[f2, f4] = −f3, [f2, f5] = −f1, [f3, f4] = −f1, [f4, f5] = f2, [f4, f6] = f3, [f5, f6] = f1.

Then B is a characteristic basis for 〈 , 〉 and is not nice. Then, according
to Lemma 3.1.2, the Ricci signature of 〈 , 〉 is (3+m−,m0, 1+m+) where
(m−,m0,m+) is the signature of R(ric,B). Now, a direct computation
using (1.6) and (3.4) gives

R(ric,B) = diag

(
a22
a4a5

,
−a1a2a6 + a23 (a2 + a6)

a2a4a6

)
.

Thus, for suitable values of ai, the signatures (3, 0, 3) and (4, 0, 2) are
realizable as the Ricci signature of 〈 , 〉.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3 + e1). The non van-
ishing Lie brackets are

[f2, f4] = −f3, [f2, f5] = −f1, [f2, f6] = −f3, [f3, f4] = −f1, [f3, f6] = −f1, [f4, f5] = f2,

[f4, f6] = f3, [f5, f6] = −f2 + f1.

Then B is a characteristic for 〈 , 〉. According to Lemma 3.1.2, the Ricci
signature of 〈 , 〉 is (3 + m−,m0, 1 + m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the
first case because B is not a nice basis and the computation of R(ric,B),
which is by the way a (2×2)-matrix, is complicated according to formula
(3.4). We don’t need to give the general expression of R(ric,B) , its value
when a1 = 3, a2 = a4 = a5 = 2 = a6 = 1 will suffice to our purpose. We
get

R(ric,B) = diag

(
−18 + 66a3 + 121a23 + 120a33 + 73a43 + 24a53

18 + 36a3 + 34a23 + 22a33 + 6a43
,
−57 + 8a23

8

)
It is clear that for suitable values of a3, the signature (5, 0, 1) is realizable
as the Ricci signature of 〈 , 〉. This completes the proof for L6,6
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• The Lie algebra L6,7.

The treatment is similar to L6,6. We have g = span{e1, . . . , e5} with the
non vanishing Lie brackets

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5

Sign(g) = {(2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)}.
For the first type, consider the Euclidean inner product 〈 , 〉 on L6,7 for

which B = (e5, e3, e4, e6, e1, e2) is orthogonal with ai = 〈ei, ei〉 and dim(Z(g) ∩
[g, g]⊥) = 1. Then B is a characteristic basis for 〈 , 〉 and it is also nice. Then
according to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (2+m−, 1+m0, 1+m+)

where (m−,m0,m+) is the signature of R(ric,B) = diag(2ric(e3, e3), 2ric(e4, e4)).
Now a direct computation using (1.6) gives

2ric(e3, e3) =
a23 − a2a4
a1a2

and 2ric(e4, e4) =
a24 − a3a5
a1a3

.

If we take a1 = a2 = a3 = a4 = a5 = a6 = 1 we get R(ric,B) = 0 and we can
apply the inversion theorem trick to get that for a suitable choice of the ai the
Ricci signature of 〈 , 〉 is (2, 1, 3), (2, 2, 2) ,(2, 3, 1), (3, 1, 2), (3, 2, 1) or (4, 1, 1).

For the second type, we consider the basis B = (f1, f2, f3, f4, f5, f6) and the
Euclidean inner product 〈 , 〉 on L6,7 for which B is orthogonal and ai = 〈fi, fi〉.
We choose B and 〈 , 〉 such that Z(g) ∩ [g, g]⊥ = {0}.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3). The non vanishing
Lie brackets in this basis are

[f2, f4] = −f3, [f3, f4] = −f1, [f4, f5] = f2, [f4, f6] = f3.

Then B is a characteristic basis for 〈 , 〉 and is not nice. Then according
to Lemma 3.1.2 the Ricci signature of 〈 , 〉 is (3+m−,m0, 1+m+) where
(m−,m0,m+) is the signature of R(ric,B). Now a direct computation
using (1.6) and (3.4) gives

R(ric,B) = diag

(
a22
a4a5

,
a2a

2
3 + (−a1a2 + a23) a6

a2a4a6

)
.

Thus for suitable values of ai, the signatures (3, 0, 3) and (4, 0, 2) are
realizable as the Ricci signature of 〈 , 〉.

• B = (f1, f2, f3, f4, f5, f6) = (e5, e3, e4, e1, e2, e6 + e3 + e1). The non van-
ishing brackets are

[f2, f4] = −f3, [f2, f6] = −f3, [f3, f4] = −f1, [f3, f6] = −f1, [f4, f5] = f2,
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[f4, f6] = f3, [f5, f6] = −f2.

Then B is a characteristic for 〈 , 〉. Then according to Lemma 3.1.2 the
Ricci signature of 〈 , 〉 is (3+m−,m0, 1+m+) where (m−,m0,m+) is the
signature of R(ric,B). Here the situation is more complicated than the
first case because B is not a nice basis and the computation of R(ric,B),
which is by the way a (2×2)-matrix, is complicated according to formula
(3.4). We don’t need to give the general expression of R(ric,B), its value
when a1 = 2, a2 = a3 = a4 = a6 = 1 will suffice to our purpose. We get

R(ric,B) = diag

(
8 + 17a5 − 12a25

4(1 + 3a5)a5
,−2

)
It is clear that we can choose a5 such that the signature of 〈 , 〉 is (5, 0, 1).
This completes the proof for L6,7.
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We end this work by giving all the realizable Ricci signatures on nilpotent
Lie groups up to dimension 6.

Lie algebra g Realizable Ricci signatures
L3,2 (2, 0, 1)

L4,2 (2, 1, 1)

L4,3 (2, 1, 1), (2, 0, 2), (3, 0, 1)

L5,2 (2, 2, 1)

L5,3 (2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)

L5,4 (4, 0, 1)

L5,5 (3, 0, 2), (3, 1, 1), (4, 0, 1)

L5,6, L5,7 (2, 0, 3), (2, 1, 2), (2, 2, 1), (3, 0, 2), (3, 1, 1), (4, 0, 1)

L5,8 (3, 0, 2)

L5,9 (2, 0, 3), (2, 1, 2), (3, 0, 2)

L6,2 (2, 3, 1)

L6,3 (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (4, 1, 1)

L6,4 (4, 1, 1)

L6,5 (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,6, L6,7 (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3), (3, 1, 2),
(3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,8 (3, 1, 2)

L6,9 (2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)

L6,10 (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,11, L6,12, L6,13, L6,20, (3, 0, 3), (3, 1, 2), (3, 2, 1),

L6,19(ε), ε ∈ {−1, 1} (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,14, L6,15, L6,16, L6,17, (2, 0, 4), (2, 1, 3), (2, 2, 2), (2, 3, 1), (3, 0, 3),
L6,18, L6,21(ε), ε ∈ {−1, 1} (3, 1, 2), (3, 2, 1), (4, 0, 2), (4, 1, 1), (5, 0, 1)

L6,19(0), L6,23, L6,25, (3, 0, 3), (3, 1, 2), (4, 0, 2)

L6,24(ε), ε ∈ {−1, 0, 1}

L6,21(0) (2, 0, 4), (2, 1, 3), (2, 2, 2), (3, 0, 3), (3, 1, 2), (4, 0, 2)

L6,22(ε), ε ∈ {−1, 0, 1} (4, 0, 2)

L6,26 (3, 0, 3)

Table.23: Realizable Ricci signatures on nilpotent Lie groups of dimension
≤ 6.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. djiadeu ngaha



62

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.



Chapter Four

One-dimensional sectional
curvature signatures of

nilpotent Lie groups

4.1 Introduction

In this chapter, we give a description of the method of construction of
Milnor’s frames and we apply it to W.De Graaf’s list of real nilpotent Lie al-
gebras of dimension ≤ 4 and we use these bases to solve Problem 2 for these
Lie algebras except one. Moreover, we use the method of construction of Mil-
nor’s frames to simplify drastically Nikitenko’list of five-dimensional Euclidean
nilpotent Lie algebras [71] and we solve Problem 2 for some of them.

4.2 Milnor-type theorems

In this section, we describe a procedure to obtain a Milnor-type theorem
(see[42]) for an arbitrary Lie algebra g which can be obtained from the moduli
space BM of left-invariant Riemannian metrics. The space BM has been
introduced and studied in [61, 42].

Let G be a Lie group, and g be the Lie algebra of G. The set Ml of all
left-invariant Riemannian metrics on G, is naturally identified with

M := {〈 , 〉 | an inner product on g}. (4.1)

Let n := dimg, and identify g ∼= Rn as vector spaces. For 〈 , 〉 ∈ M and
g ∈ GLn(R), we define

g.〈 , 〉 := 〈g−1(.), g−1(.)〉. (4.2)

This induces a transitive action of GLn(R) on M. Thus, we have the iden-
tification

M ∼= GLn(R)/O(n). (4.3)
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Note that M is a noncompact Riemannian symmetric space, by equipping with
a certain GLn(R)−invariant metric(see [61]). Let us consider the automorphism
group and the scalar group:

Aut(g) := {ϕ ∈ GLn(R) | ϕ[., .] = [ϕ(.), ϕ(.)]}, (4.4)

R× := {c.id : g −→ g | c ∈ R, c 6= 0}. (4.5)

The group R×Aut(g) naturally acts on M. The action of R× gives rise to a
scaling, and the action of Aut(g) induces an isometry of the corresponding
left-invariant Riemannian metrics.

Definition 4.2.1 (see [61]). The orbit space of the action of R×Aut(g) on M

is called the moduli space of left-invariant Riemannian metrics, and denoted

BM := R×Aut(g)\M. (4.6)

Note that the action of R×Aut(g) onM is isometric with respect to GLn(R)−invariant
metrics.

Let 〈 , 〉0 be the canonical inner product on g ∼= Rn. For simplicity, the
orbit of R×Aut(g) through 〈 , 〉 is denoted by

[〈 , 〉] := R×Aut(g).〈 , 〉 := {ϕ.〈 , 〉 | ϕ ∈ R×Aut(g)}. (4.7)

Definition 4.2.2 (see [42]). A subset U ⊂ GLn(R) is called a set of represen-
tatives of BM if it satisfies

BM = {[h.〈 , 〉0] | h ∈ U}. (4.8)

A set of representatives do not mean it is a complete set of representatives,
it is expected that U is chosen to be as small as possible. We give a criteria for U
to be a set of representatives. Let [[g]] denote the double coset of g ∈ GLn(R),
defined by

[[g]] := R×Aut(g)gO(n) := {ϕgk | ϕ ∈ R×Aut(g), k ∈ O(n)}. (4.9)

Lemma 4.2.3 (see [42]). Let U ⊂ GLn(R). Then the following are mutually
equivalent:

(1) U is a set of representatives of BM.

(2) For every g ∈ GLn(R), there exists h ∈ U such that [h.〈 , 〉0] = [g.〈 , 〉].

(3) For every g ∈ GLn(R), there exists h ∈ U such that h ∈ [[g]].

Recall that 〈 , 〉0 is the canonical inner product on g ∼= Rn. Denote by
{e1, . . . , en} the canonical orthonormal basis.
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Theorem 4.2.4 (Milnor-type theorem,[42]). Let U be a set of representatives
of BM. Then, for every inner product 〈 , 〉 on g, there exist h ∈ U , ϕ ∈ Aut(g),
and k > 0 such that {x1 = ϕhe1, . . . , xn = ϕhen} is an orthonormal basis of g
with respect to k〈 , 〉.

Remark 4.2.5. If U contains l parameters, then the constants structure of g
in the basis {x1, . . . , xn} depend of l parameters.

4.3 One-dimensional sectional curvature tensor

Definition 4.3.1. Let (G, h) be a Riemannian Lie group and g the associated
real Lie algebra with n := dimg ≥ 3. The one-dimensional sectional curvature
tensor A is

A :=
1

n− 2

(
ric− sh

2(n− 1)

)
(4.10)

where ric is the Ricci tensor and s the scalar curvature.

It is known (see [6]) that

R = W + A� h (4.11)

W is the Weyl tensor and for X, Y, Z, V ∈ g,

(A� h)(X, Y, Z, V ) := A(X,Z)h(Y, V ) + A(Y, V )h(X,Z)−A(X, V )h(Y, Z)

− A(Y, Z)h(X, V ) (4.12)

is the Kulkarni-Nomizu product.
The one-dimensional sectional curvature operator denoted by A is defined

by

A =
1

n− 2

(
Ric− sIn

2(n− 1)

)
, (4.13)

where Ric is the Ricci endomorphism(Ricci operator), s the scalar curvature
and In the identity endomorphism of g. The spectrum of one-dimensional cur-
vature operator of Riemannian Lie groups is studied in [79, 52, 85, 51, 84, 101,
102, 80] ,and the signatures of one-dimensional curvature operator of Rieman-
nian Lie groups are studied in [102, 101, 52, 85, 84, 79].

Let start now the construction of Milnor’s frame for the nilpotent Lie al-
gebras in Graff’s list.

4.4 Lie algebra L3,2

L3,2 = span{e1, e2, e3} with
[e1, e2] = e3.
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In the basis B = (e1, e2, e3), all the derivations of L3,2 are:

Der(L3,2) =


 a11 a12 0

a21 a22 0

a31 a32 a11 + a22

 , aij ∈ R

 (4.14)

Thus

(Aut(L3,2))
0 ⊃


 a11 0 0

a21 a22 0

a31 a32 a11a22

 , a11 > 0, a22 > 0

 (4.15)

We have the following Milnor-Type theorem:

Theorem 4.4.1. Let g = L3,2. Then, for any inner product 〈 , 〉 on g, there
exist k > 0, λ > 0, and an orthonormal basis {x1, x2, x3} with respect to k〈 , 〉
such that the bracket relation is given by

[x1, x2] = λx3. (4.16)

Proof. Take any g ∈ GL3(R), from linear algebra (see [30]) there exists k ∈
O(3) such that

gk =

 b11 0 0

b21 b22 0

b31 b32 b33

 , b11 > 0, b22 > 0, b33 > 0. (4.17)

It follows from (4.15) that

ϕ1 :=

 a11 0 0

a21 a22 0

a31 a32 a11a22

 ∈ R×Aut(g) (4.18)

With

a11 =
1

b11
, a21 = − b21

b11b22
, a22 =

1

b22
, a31 =

−b22b31 + b21b32
b211b

2
22

, a32 = − b32
b11b222

.

This gives

ϕ1gk =

 1 0 0

0 1 0

0 0 b33
b11b22

 .
Set λ := b11b22

b33
, then the set of representatives of BM is

U =

gλ :=

 1 0 0

0 1 0

0 0 1
λ

 , λ > 0

 .
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Take any inner product on g. By Theorem 4.4.1 , there exists gλ ∈ U , k > 0, and
ϕ ∈ Aut(g) such that {x1 = ϕgλe1, x2 = ϕgλe2, x3 = ϕgλe3} is orthonormal
with respect to k〈 , 〉. Hence, we have only to check the bracket relations
among them. Note that

gλe1 = e1, gλe2 = e2, gλe3 =
1

λ
e3.

We thus obtain

[gλe1, gλe2] = [e1, e2] = e3 = λgλe3,

[gλe1, gλe3] = [e1, λ
−1e3] = 0,

[gλe2, gλe3] = [e2, λ
−1e3] = 0.

Since ϕ ∈ Aut(g), we obtain

[x1, x2] = [ϕgλe1, ϕgλe2] = ϕ[e1, e2] = ϕe3 = λϕgλe3 = λx3.

Given any inner product 〈 , 〉 on L3,2, following Theorem 4.4.1 and direct
computation from (1.6), the one- dimensional operator is

A(〈 , 〉) =
1

2
diag

(
−3

4
λ2,−3

4
λ2,

5

4
λ2
)
.

Then for any product 〈 , 〉 on L3,2, the signature of A is (2, 0, 1).

4.5 Lie algebra L4,2

L4,2 = span{e1, e2, e3, e4} with

[e1, e2] = e3.

In the basis B = (e1, e2, e4, e3), all the derivations of L4,2 are:

Der(L4,2) =



a11 a12 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a11 + a22

 , aij ∈ R

 .

Thus

(Aut(L4,2))
0 ⊃



a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a11a22

 , a11 > 0, a22 > 0

 .

We have the following Milnor-Type theorem:
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Theorem 4.5.1. Let g = L4,2. Then, for any inner product 〈 , 〉 on g, there
exist k > 0, λ > 0, and an orthonormal basis {x1, x2, x3, x4} with respect to
k〈 , 〉 such that the bracket relation is given by

[x1, x2] = λx3.

Proof. Take any g ∈ GL4(R), from linear algebra (see [30]) there exists k ∈
O(4) such that

gk =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 0

b41 b42 b43 b44

 , b11 > 0, b22 > 0, b33 > 0, b44 > 0.

It follows from (4.5) that

ϕ2 :=


a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a11a22

 ∈ R×Aut(g).

With

a11 =
1

b11
, a21 = − b21

b11b22
,

a22 =
1

b22
, a31 =

−b22b31 + b21b32
b11b22b33

,

a32 = − b32
b22b33

, a33 =
1

b33
,

a41 =
−b22b33b41 + b21b33b42 + b22b31b43 − b21b32b43

b211b
2
22b33

, a42 =
−b33b42 + b32b43

b11b222b33
,

a43 = − b43
b11b22b33

.

This gives

ϕ2gk =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 b44
b11b22

 (4.19)

Set λ := b11b22
b44

, then the set of representatives of BM is

U =

gλ :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
λ

 , λ > 0

 (4.20)
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Take any inner product on g. By Theorem 4.5.1, there exists gλ ∈ U , k > 0,
and ϕ ∈ Aut(g) such that {x1 = ϕgλe1, x2 = ϕgλe2, x3 = ϕgλe3, x4 = ϕgλe4} is
orthonormal with respect to k〈 , 〉. Hence, we have only to check the bracket
relations among them. Note that

gλe1 = e1, gλe2 = e2, gλe3 =
1

λ
e3, gλe4 = e4

We thus obtain

[gλe1, gλe2] = [e1, e2] = e3 = λgλe3,

[gλe1, gλe3] = [e1, λ
−1e3] = 0,

[gλe1, gλe4] = [e1, e4] = 0,

[gλe2, gλe3] = [e2, λ
−1e3] = 0,

[gλe2, gλe4] = [e2, e4] = 0.

Since ϕ ∈ Aut(g), we obtain

[x1, x2] = [ϕgλe1, ϕgλe2] = ϕ[e1, e2] = ϕe3 = λϕgλe3 = λx3.

Given any inner product 〈 , 〉 on L4,2, following Theorem 4.5.1 and direct
computation from (1.6), the one dimensional operator is

A(〈 , 〉) =
1

4
diag

(
−5

6
λ2,−5

6
λ2,

7

6
λ2,

1

6
λ2
)
.

Then for any product 〈 , 〉 on L4,2, the signature of A is (2, 0, 2).

4.6 Lie algebra L4,3

L4,3 = span{e1, e2, e3, e4} with

[e1, e2] = e3, [e1, e3] = e4.

In the basis B = (e1, e2, e3, e4), all the derivations of L4,3 are:

Der(L4,3) =



a11 0 0 0

a21 a22 0 0

a31 a32 a11 + a22 0

a41 a42 a43 2a11 + a22

 , aij ∈ R

 .

Thus

(Aut(L4,3))
0 ⊃



a11 0 0 0

a21 a22 0 0

a31 a32 a11a22 0

a41 a42 a43 a211a22

 , a11 > 0, a22 > 0

 .

We have the following Milnor-Type theorem:
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Theorem 4.6.1. Let g = L4,3. Then, for any inner product 〈 , 〉 on g, there
exists k > 0, λ1 > 0, λ2, and an orthonormal basis {x1, x2, x3, x4} with respect
to k〈 , 〉 such that the bracket relation is given by

[x1, x2] = λ1x3 − λ1λ2x4, [x1, x3] = x4.

Proof. Take any g ∈ GL4(R), from linear algebra (see [30]) there exists k ∈
O(4) such that

gk =


b11 0 0 0

b21 b22 0 0

b31 b32 b33 0

b41 b42 b43 b44

 , b11 > 0, b22 > 0, b33 > 0, b44 > 0.

It follows from (4.6) that

ϕ3 := α


a11 0 0 0

a21 a22 0 0

a31 a32 a11a22 0

a41 a42 a43 a211a22

 ∈ R×Aut(g).

With

a11 =
b33
b44
, a21 = −b21

b33
,

a22 =
b11
b33
, a31 =

−b22b31 + b21b32
b22b44

,

a42 =
−b11b22b33b42 + b11b

2
32b44

b222b
2
44

, a43 = −b11b32
b22b44

,

α =
b44
b11b33

, a41 =
−b222b33b41 + b21b22b33b42 + b22b31b32b44 − b21b232b44

b222b
2
44

.

This gives

ϕ3gk =


1 0 0 0

0 λ1 0 0

0 0 1 0

0 0 λ2 1


with λ1 := b22b44

b233
and λ2 := b11b33(b22b43−b32b44)

b22b244
then the set of representatives of

BM is

U =

gλ :=


1 0 0 0

0 λ1 0 0

0 0 1 0

0 0 λ2 1

 , λ = (λ1, λ2), λ1 > 0

 .

Take any inner product on g. By Theorem 4.6.1 , there exists gλ ∈ U , k > 0,
and ϕ ∈ Aut(g) such that {x1 = ϕgλe1, x2 = ϕgλe2, x3 = ϕgλe3, x4 = ϕgλe4} is

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.



4.7 Lie algebra L5,2 71

orthonormal with respect to k〈 , 〉. Hence, we have only to check the bracket
relations among them. Note that

gλe1 = e1, gλe2 = λ1e2, gλe3 = e3 + λ2e4, gλe4 = e4.

We thus obtain

[gλe1, gλe2] = λ1[e1, e2] = λ1e3 = λ1gλe3 − λ1λ2gλe4,
[gλe1, gλe3] = [e1, e3 + λ2e4] = e4 = gλe4,

[gλe1, gλe4] = [e1, e4] = 0,

[gλe2, gλe3] = [e2, e3 + λ2e4] = 0,

[gλe2, gλe4] = λ1[e2, e4] = 0

[gλe3, gλe4] = [e3 + λ2e4, e4] = 0.

Since ϕ ∈ Aut(g), we obtain

[x1, x2] = [ϕgλe1, ϕgλe2] = λ1ϕgλe3−λ1λ2ϕgλe4 = λ1x3−λ1λ2x4, [x1, x3] = x4.

Given any inner product 〈 , 〉 on L4,3, following Theorem 4.6.1 and direct
computation from (1.6), the one-dimensional operator is

A =
1

4


−5

6
(a2 + b2 + 1) 0 0 0

0 1−5(a2+b2)
6

−b 0

0 −b 7a2+b2−5
6

ab

0 0 ab a2+7b2+7
3

witha = λ1, b = −λ1λ2.

(4.21)

4.7 Lie algebra L5,2

L5,2 = span{e1, e2, e3, e4, e5} with

[e1, e2] = e3.

In the basis B = (e1, e2, e4, e5, e3), all the derivations of L5,2 are:

Der(L5,2) =




a11 a12 0 0 0

a21 a22 0 0 0

a31 a32 a33 a34 0

a41 a42 a43 a44 0

a51 a52 a53 a54 a11 + a22

 , aij ∈ R


.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. djiadeu ngaha



72

Thus

(Aut(L5,2))
0 ⊃




a11 0 0 0

a21 a22 0 0

a31 a32 a11a22 0

a41 a42 a43 a44 0

a51 a52 a53 a54 a211a22

 , a11 > 0, a22 > 0, a44 > 0.


.

We have the following Milnor-Type theorem:

Theorem 4.7.1. Let g = L5,2. Then, for any inner product 〈 , 〉 on g, there
exist k > 0, λ > 0, and an orthonormal basis {x1, x2, x3, x4, x5} with respect to
k〈 , 〉 such that the bracket relation is given by

[x1, x2] = λx3.

Proof. Take any g ∈ GL5(R), from linear algebra (see [30]) there exists k ∈
O(5) such that

gk =


b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 0

b51 b52 b53 b54 b55

 , b11 > 0, b22 > 0, b33 > 0, b44 > 0, b55 > 0.

It follows from (4.7) that

ϕ4 :=


a11 0 0 0

a21 a22 0 0

a31 a32 a11a22 0

a41 a42 a43 a44 0

a51 a52 a53 a54 a211a22

 ∈ R×Aut(g),

with

a11 =
1

b11
, a21 = − b21

b11b22
,

a22 =
1

b22
, a31 =

−b22b31 + b21b32
b11b22b33

,

a32 = − b32
b22b33

, a33 =
1

b33
,

a41 =
−b22b33b41 + b21b33b42 + b22b31b43 − b21b32b43

b11b22b33b44
, a44 =

1

b44
,

a42 =
−b33b42 + b32b43

b22b33b44
, a43 = − b43

b33b44
,

a52 =
−b33b44b52 + b32b44b53 + b33b42b54 − b32b43b54

b11b222b33b44
, a53 =

−b44b53 + b43b54
b11b22b33b44

,

a54 = − b54
b11b22b44

,
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a51 =
−b22b33b44b51 + b21b33b44b52 + b22b31b44b53 − b21b32b44b53 + b22b33b41b54 − b21b33b42b54

b211b
2
22b33b44

− b22b31b43b54 + b21b32b43b54
b211b

2
22b33b44

This gives

ϕ4gk =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
λ


with λ := b11b22

b55
, then the set of representatives of BM is

U =


gλ :=


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
λ

 , λ > 0


Take any inner product on g. By Theorem 4.7.1 , there exists gλ ∈ U , k > 0, and
ϕ ∈ Aut(g) such that {x1 = ϕgλe1, x2 = ϕgλe2, x3 = ϕgλe3, x4 = ϕgλe4, x5 =

ϕgλe5} is orthonormal with respect to k〈 , 〉. Hence, we have only to check the
bracket relations among them. Note that

gλe1 = e1, gλe2 = λ1e2, gλe3 =
1

λ
e3, gλe4 = e4, gλe5 = e5.

We thus obtain

[gλe1, gλe2] = [e1, e2] = e3 = λgλe3,

[gλe1, gλe3] = [e1,
1

λ
e] = 0,

[gλe1, gλe4] = [e1, e4] = 0,

[gλe1, gλe5] = [e1, e5] = 0,

[gλe2, gλe3] = [e2,
1

λ
e3] = 0,

[gλe2, gλe4] = [e2, e4] = 0

[gλe2, gλe5] = [e2, e5] = 0,

[gλe3, gλe4] = [
1

λ
e3, e4] = 0,

[gλe3, gλe5] = [
1

λ
e3, e5] = 0,

[gλe4, gλe5] = [e4, e5] = 0.

Since ϕ ∈ Aut(g), we obtain

[x1, x2] = [ϕgλe1, ϕgλe2] = λϕgλe3 = λx3.
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Given any inner product 〈 , 〉 on L5,2, following Theorem 4.7.1 and direct
computation from (1.6), the one-dimensional operator is

A(〈 , 〉) =
1

6
diag

(
−7

8
λ2,−7

8
λ2,

9

8
λ2,

1

8
λ2,

1

8
λ2
)
.

Then for any product 〈 , 〉 on L5,2, the signature of A is (2, 0, 3).

4.8 Lie algebra L5,4

L5,4 = span{e1, e2, e3, e4, e5} with

[e1, e2] = e5, [e3, e4] = e5.

We note that Sign(L5,4) = Sign(A5,4), thus L5,4 and A5,4 are isomorphic.
According to Nikitenko in [71], for any inner product 〈 , 〉 on L5,4, there exist
ε > 0,σ > 0 such that (L5,4, 〈 , 〉) ∼= N 5

1 (ε, σ). Given any inner product 〈 , 〉
on L5,4, direct computation from (1.6) , the one-dimensional operator is

A(〈 , 〉) =
1

6
diag

(
σ2 − 7ε2

8
,
σ2 − 7ε2

8
,
σ2 − 7ε2

8
,
ε2 − 7σ2

8
,
9(ε2 + σ2)

8

)
(4.22)

Then for any product 〈 , 〉 on L5,4, the signature of A is (2, 0, 3) or (2, 2, 1).

4.9 Lie algebra L5,5

L5,5 = span{e1, e2, e3, e4, e5} with

[e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5.

We note that Sign(L5,5) = Sign(A5,5), thus L5,5 and A5,5 are isomorphic.
According to Nikitenko in [71], for any inner product 〈 , 〉 on L5,5, there exist
ε > 0,σ > 0,υ ≥ 0, γ ≥ 0, ρ > 0 such that (L5,5, 〈 , 〉) ∼= N 5

1 (ε, σ, υ, γ, ρ). That
is the constants structure depend on 5 parameters. We have:

Theorem 4.9.1. For any inner product 〈 , 〉 on L5,5, there exist an 〈 , 〉−orthonormal
basis in which the constants structure depend of at most 4 parameters.

Proof. In the basis B = (e1, e2, e4, e3, e5), all the derivations of L5,5 are:

Der(L5,5) =




a11 0 0 0 0

a21 a22 0 0 0

a31 a41 + a53 2a11 0 0

a41 a42 −a21 a11 + a22 0

a51 a52 a53 a54 2a11 + a22

 , aij ∈ R


(4.23)
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Thus

(Aut(L5,5))
0 ⊃




a11 0 0 0

a21 a22 0 0

a31 a41 + a53 a211 0

a41 a42 −a21 a11a22 0

a51 a52 a53 a54 a211a22

 , a11 > 0, a22 > 0


(4.24)

Take any g ∈ GL5(R), from linear algebra(see [30]) there exists k ∈ O(5) such
that

gk =


b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 0

b51 b52 b53 b54 b55

 , b11 > 0, b22 > 0, b33 > 0, b44 > 0, b55 > 0.

(4.25)
It follows from (4.24) that

ϕ5 := α


a11 0 0 0

a21 a22 0 0

a31 a41 + a53 a211 0

a41 a42 −a21 a11a22 0

a51 a52 a53 a54 a211a22

 ∈ R×Aut(g) (4.26)

With

a11 =
b44
b55
, a42 = −(b33b42 − b32b43) b44

b22b255
, a22 =

b33
b55
, a54 = −b33b44b54

b355
,

a31 = − b44
b211b22b

3
55

(−b11b21b33b44b52 + b11b21b32b44b53 + b11b21b33b42b54 − b11b21b32b43b54)

− b44
b211b22b

3
55

(
−b21b22b33b41b55 + b221b33b42b55 + b21b22b31b43b55 − b221b32b43b55 + b11b22b31b44b55

)
,

a41 = −(b22b33b41 − b21b33b42 − b22b31b43 + b21b32b43) b44
b11b22b255

, a21 =
b43b44
b255

, α =
b255
b33b244

,

a51 = −b44 (b22b33b44b51 − b21b33b44b52 − b22b31b44b53 + b21b32b44b53 − b22b33b41b54)
b11b22b355

+
b44 (b21b33b42b54 + b22b31b43b54 − b21b32b43b54)

b11b22b355
,

a52 = −b44 (b33b44b52 − b32b44b53 − b33b42b54 + b32b43b54)

b22b355
, a53 = −b44 (b44b53 − b43b54)

b355
.
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This gives

ϕ5gk =


λ1 0 0 0 0

λ2 λ3 0 0 0

0 λ4 1 0 0

0 0 0 1 0

0 0 0 0 1

 (4.27)

with λi depend on some bij , then the set of representatives of BM is

U =


gλ :=


λ1 0 0 0 0

λ2 λ3 0 0 0

0 λ4 1 0 0

0 0 0 1 0

0 0 0 0 1

 , λ = (λ1, λ2, λ3, λ4), λ1 > 0, λ3 > 0


(4.28)

Then U depend on at most 4 parameters. Following Theorem 4.2.4, there exist
an 〈 , 〉−orthonormal basis in which the constants structure depend also on 4

parameters.

4.10 Lie algebra L5,7

L5,7 = span{e1, e2, e3, e4, e5} with

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5.

We note that Sign(L5,7) = Sign(A5,2) = Sign(A5,6), thus L5,7 is isomorphic
A5,2) or A5,6) . According to Nikitenko in [71], for any inner product 〈 , 〉
on L5,7, there exist ε > 0, δ > 0, τ ≥ 0,σ > 0,τ = 0 ⇒ γ ≥ 0 such that
(L5,7, 〈 , 〉) ∼= N 5

1 (ε, δ, τ, σ, υ, γ) or there exist ε > 0, δ > 0, τ ≥ 0, σ > 0,
τ = 0 ⇒ γ ≥ 0 such that (L5,7, 〈 , 〉) ∼= N 5

1 (ε, δ, τ, σ, υ, γ, ρ) . That is , the
constants structure depend on 7 parameters at most. We have

Theorem 4.10.1. For any inner product 〈 , 〉 on L5,7, there exist an 〈 , 〉-
orthonormal basis in which the constants structure depend of at most 5 param-
eters.

Proof. In the basis B = (e1, e2, e3, e4, e5), all the derivations of L5,7 are:

Der(L5,7) =




a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11 + a22 0 0

a41 a42 a32 2a11 + a22 0

a51 a52 a42 a32 3a11 + a22

 , aij ∈ R


.
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Thus

(Aut(L5,7))
0 ⊃




a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11a22 0 0

a41 a42 a32 a211a22 0

a51 a52 a42 a32 a311a22

 , a11 > 0, a22 > 0


.

Take any g ∈ GL5(R), from linear algebra(see [30]) there exists k ∈ O(5) such
that

gk =


b11 0 0 0 0

b21 b22 0 0 0

b31 b32 b33 0 0

b41 b42 b43 b44 0

b51 b52 b53 b54 b55

 , b11 > 0, b22 > 0, b33 > 0, b44 > 0, b55 > 0.

It follows from (4.10) that

ϕ6 := α


a11 0 0 0 0

a21 a22 0 0 0

a31 a32 a11a22 0 0

a41 a42 a32 a211a22 0

a51 a52 a42 a32 a311a22

 ∈ R×Aut(g)

With

a11 =
b33
b44
, a22 =

b11
b33
, a32 = −b11b

2
33b54
b444

, a42 = −b11b33 (b44b53 − b43b54)
b444

,

a52 = −b11b33 (b33b44b52 − b32b44b53 − b33b42b54 + b32b43b54)

b22b444
, a21 = −b21

b33
, α =

b44
b11b33

,

a31 =
−b31b344 + b21b

2
33b54

b444
, a41 =

b33 (−b41b244 + b21b44b53 + b31b33b54 − b21b43b54)
b444

,

a51 = −b33 (b22b33b44b51 − b21b33b44b52 − b22b31b44b53 + b21b32b44b53 − b22b33b41b54)
b22b444

+
b33 (b21b33b42b54 + b22b31b43b54 − b21b32b43b54)

b22b444
.

This gives

ϕ6gk =


1 0 0 0 0

0 λ1 0 0 0

0 λ2 1 0 0

0 λ3 0 1 0

0 0 0 0 λ5
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with λi depend on some bij, then the set of representatives of BM is

U =


gλ :=


1 0 0 0 0

0 λ1 0 0 0

0 λ2 1 0 0

0 λ3 0 1 0

0 0 0 0 λ5

 , λ = (λ1, λ2, λ3, λ4, λ5), λ1 > 0, λ5 > 0


.

Then U depend on at most 5 parameters. Following Theorem 4.2.4, there exists
an 〈 , 〉-orthonormal basis in which the constants structure depend also on 5

parameters.

4.11 Lie algebra L5,8

L5,4 = span{e1, e2, e3, e4, e5} with

[e1, e2] = e4, [e1, e3] = e5

We note that Sign(L5,8) = Sign(A5,1), thus L5,8 and A5,1 are isomorphic.
According to Nikitenko in [71], for any inner product 〈 , 〉 on L5,8, there exist
δ > 0, σ > 0 such that (L5,8, 〈 , 〉) ∼= N 5

2 (δ, σ). Given any inner product 〈 , 〉
on L5,8, direct computation from (1.6) , the one-dimensional operator is

A(〈 , 〉) =
1

6
diag

(
−σ

2 + δ2

8
,
σ2 − 7δ2

8
,
δ2 − 7σ2

8
,
σ2 + 9δ2

8
,
δ2 + 9σ2)

8

)
.

Then for any product 〈 , 〉 on L5,8, the signature of A is (2, 1, 2) or (2, 0, 2) or
(2, 0, 3).
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We end this work by giving all the realizable one dimensional curvature
tensors signatures on nilpotent Lie groups up to dimension 5.

Lie algebra g Realizable one dimensional curvature tensors signatures
L3,2 (2, 0, 1),

L4,2 (2, 0, 2),

L5,2 (2, 0, 3),

L5,4 (2, 0, 3), (2, 2, 1), (4, 0, 1)

L5,4 (4, 0, 1)

L5,8 (2, 1, 2), (3, 0, 2), (2, 0, 3).

Table.24: Realizable one dimensional curvature tensors signatures on some
nilpotent Lie groups of dimension ≤ 5.
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Appendix

Conjecture 1 in the class of
completely solvable Lie groups

In [40], the authors established the classification up to automorphism of the
left-invariant Riemannian metrics on all simply connected three-dimensional
Lie groups. In [76], the authors determined a particular subclass of these
left-invariant Riemannian metrics called locally symmetric left-invariant Rie-
mannian metrics on 3-dimensional Lie groups. Most simply connected three-
dimensional Lie groups are completely solvable and admit these particular
Riemannian metrics, among these Lie groups are Ẽ0(2), the universal covering
of the connected component of the Euclidean group and GI one of the nonuni-
modular Lie groups. For more details on Ẽ0(2), GI and their Lie algebras see
[40]. We study the Conjecture 1 when the Lie group is Ẽ0(2) or GI .

Simply connected Lie group Ẽ0(2)

The brackets on a canonical basis (e1, e2, e3) of its associated Lie algbera g are:

[e1, e2] = 0 [e3, e1] = −e2, [e3, e2] = e1.

Thus, Sign(g) = {(2, 1, 0), (2, 0, 1), (1, 1, 1), (3, 0, 0), (1, 2, 0), (1, 0, 2)}.
In [76] , it is proved that locally symetric left-invariant Riemannian metrics

on Ẽ0(2) are equivalent up to automorphism to the metric whose associated
matrix is of the form  1 0 0

0 1 0

0 0 ν

 , ν > 0.

Let 〈 , 〉 be the associated inner product on g. We see that,

〈e1, e1〉 = 〈e2, e2〉 = 1, 〈e3, e3〉 = ν, 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0.

Taking

X = e1, Y = e2, Z =
1√
ν
e3,
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they form an orthonormal basis and satisfy

[X, Y ] = 0, [Z,X] = −1

ν
Y, [Z, Y ] =

1

ν
X.

The direct computation using (1.4), gives

ric(X,X) = ric(Y, Y ) = ric(Z,Z) = 0.

For any such metrics, the Ricci signature is (0, 3, 0) /∈ Sign(g).

Simply connected Lie group GI

The brackets on a canonical basis (e1, e2, e3) of its associated Lie algbera gI
are:

[e1, e2] = 0 [e3, e1] = e1, [e3, e2] = e2.

Thus, Sign(gI) = {(2, 1, 0), (2, 0, 1), (1, 1, 1), (3, 0, 0), (1, 2, 0), (1, 0, 2)}.
In [76], it is proved that all left-invariant Riemannianmetrics on GI are

locally symetric left-invariant Riemannian metrics and are equivalent up to
automorphism to the metric whose associated matrix is of the form 1 0 0

0 1 0

0 0 ν

 , ν > 0.

Let 〈 , 〉 be the associated inner product on gI . We see that,

〈e1, e1〉 = 〈e2, e2〉 = 1, 〈e3, e3〉 = ν, 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0.

Taking

X =
1√
ν
e3, Y = e1, Z = e2,

they form an orthonormal basis and satisfy

[X, Y ] =
1

ν
Y, [X,Z] =

1

ν
Z, [Y, Z] = 0.

The direct computation using (1.4), gives

ric(X,X) = ric(Y, Y ) = ric(Z,Z) = −2

ν
.

For any such metrics, the Ricci signature is (3, 0, 0) /∈ Sign(gI).

Remark .0.1. From, these examples it is obvious that the Conjecture 1 can-
not be extended to the class of completely solvable Lie groups wchich are the
generalization of nilpotent Lie groups.
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[2] D. V. Alekseevskĭı and B. N. Kimelfeld, Structure of homogeneous Rie-
mannian spaces with zero Ricci curvature, Funct. Anal. Appl. 9(2), (1975),
97-102.

[3] A. Baker, Matrix Groups, An Introduction to Lie Group Theory, SUMS,
Springer, 2002.

[4] Marcel Berger, A panoramic view of Riemannian geometry, Springer-
Verlag, Berlin, 2003.

[5] L.B. Bergery, Sur la courbure des métriques riemanniennes invariantes des
groupes de Lie et des espaces homogÃ¨nes, Ann. Sci. École Norm. Sup.
,11(4) , (1978) , 543-576.

[6] A.L. Besse, Einstein Manifolds, Springer-Verlag ,Berlin Heidelberg,1987.

[7] V.N. Berestovskii, Homogeneous Riemannian manifolds of positive Ricci
curvature, Math. Notes. , 58 , (1995).

[8] W.M. Boothby, An Introduction to Differentiable Manifolds and Rieman-
nian Geometry, Academic Press, second edition, 1986.

[9] M. Boucetta, Ricci flat left-invariant Lorentzian metrics on 2-step nilpo-
tent Lie groups, arXiv preprint. 0910.2563 (2009) 1-24.

[10] M. Boucetta, Curvature of left-invariant Riemannian metrics on Lie
groups, Lectures notes at CIMPA School , Marrakesh 2015.

[11] M. Boucetta, Lie Groups and Lie Algebras, Lectures notes at CIMPA
School , Abidjan 2016.

[12] N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras,
ch.1-3, Springer, Berlin(1989).

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups. 83



84

[13] R. Carter, G. Segal, and I. Macdonald, Lectures on Lie Groups and Lie
Algebras, Cambridge University Press, first edition, 1995.

[14] I. Chavel, Riemannian geometry: a modern introduction, Cambridge
Tracts in Mathematics, Vol.108, Cambridge University Press, Cambridge,
1993.

[15] J. Cheeger and D.G. Ebin, Comparison theorems in Riemannian
Geometry,North-Holland Mathematical Lbrary, Elsevier Science,1975.

[16] M.S. Chebarykov, Yu.G. Nikonorov, The Ricci operator of completely
solvable metric Lie algebras, Sib. Adv.Math. 24(1) , (2014), 18-25.

[17] M.S. Chebarykov, On the Ricci Curvature of Nonunimodular solvable
metric Lie Algebras of small Dimension, Sib.Adv.Math. 21(2) , (2011)
81-99.

[18] M.S. Chebarykov, On the Ricci Curvature of three-dimensional metric Lie
Algebras, Vladikavkaz.Mat.Zh 16 , (2014) 57-67.

[19] C. Chevalley, Theory of Lie Groups, Princeton Mathematical Series, Vol.8,
Princeton University Press, Princeton, N.J., 1946.

[20] D. Chen, A note on Ricci signatures, Proc. Amer. Math. , 137 1 , (2009)
, 273-278.

[21] L. Conlon, Differentiable Manifolds , Reprint of the 2nd ed.2001, Boston,
MA: Birkhäuser, 2008.

[22] W.A. De Graaf, Classification of 6-dimensional nilpotent Lie algebras over
fields of characteristic not 2, J. Algebra 309, (2007), 640-653.

[23] M.B. Djiadeu Ngaha, M. Boucetta, and J. Wouafo Kamga, The signature
of the Ricci curvature of left-invariant Riemannian metrics on nilpotent
Lie groups, Differential Geometry and its Applications, 47 (2016), 26-42.

[24] J.J. Duistermaat and J.A.C. Kolk, Lie Groups, Universitext, Springer-
Verlag, Berlin,2000.

[25] D. Djokovic, On the exponential map in classical Lie groups, J. Alg., 64,
(1980) 76-88.

[26] M.P. Do Carmo, Riemannian geometry, Mathematics: Theory & Appli-
cations, Birkhäuser Boston Inc., Boston, MA, 1992, Translated from the
second Portuguese edition by Francis Flaherty.

Ph.D. Dissertation: Ricci signatures on nilpotent Lie groups.



BIBLIOGRAPHY 85

[27] I.M. Dotti, Ricci curvature of left-invariant metrics on solvable unimodular
Lie groups, Math. Z. , 180(2), (1982) , 257-263.

[28] L.P. Eisenhart, An Introduction to Differential Geometry, Princeton
Mathematical Series, Vol.3, Princeton University Press, Princeton, N.J.,
1940.

[29] A. Elduque, Reductive Homogeneous spaces and nonassociative algebras,
Lectures notes at CIMPA School , Marrakesh 2015.

[30] F.R. Gantmakher, Theory of Matrices, Vol.1, New York, Chelsea Publish-
ing Compagny, 1959.

[31] J. Gallier, Notes on Differential Geometry and Lie Groups, Lecture notes,
http://www.cis.upenn.edu/cis610/diffgeom-n.pdf.

[32] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Universi-
text, Springer Verlag, second edition, 1993.

[33] M.L. Geis, Notes on the Riemannian Geometry of Lie groups, Rose-
Hulman Undergraduate. Math.J. , 15(2) , (2014) , 53-73.

[34] O.P. Gladunova, E.D. Rodionov and V.V. Slavskĭı, Sign-defined curvature
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